流量传感器单元及使用它的流量计、以及流量传感器的利记博彩app

文档序号:6099169阅读:221来源:国知局
专利名称:流量传感器单元及使用它的流量计、以及流量传感器的利记博彩app
技术领域
本发明涉及一种流体流量检测技术,特别涉及一种用于检测流动在配管内的气体、液体等的流体的流量或累计流量的流量计及应用于它的流量传感器单元、及检测流动在配管内的流体的流量的流量传感器。
背景技术
过去,作为测定各种流体特别是液体的流量(或流速)的流量传感器(或流速传感器)使用着各种各样形式的流量传感器,因为容易低价格化,大都使用着所谓的热式(特别是旁热式)的流量传感器。
作为该旁热式流量传感器,使用的是将利用薄膜技术通过绝缘层在基板上层积薄膜发热体和薄膜感温体而成的传感器晶片可热传递地配置在与配管内的流体之间的传感器。通过对发热体通电,加热感温体,使该感温体的电气特性例如电阻值变化。该电阻值的变化(基于感温体的温度上升)根据流动在配管内的流体的流量(流速)进行变化。这是因为发热体的发热量中的一部分传递到流体中,扩散到该流体中的热量根据流体的流量(流速)进行变化,由此,供给到感温体的热量进行变化,从而该感温体的电阻值进行变化。该感温体的电阻值的变化根据流体的温度而不同,因此,在测定上述感温体的电阻值变化的电路中组装入了温度补偿用的感温元件,尽量使流体的温度带来的流量测定值的变化减少。
例如作为热响应性优良、测定精度高、小型且廉价的旁热式流量传感器的公开于上述特开平8-146026号公报中的使用了薄膜元件的旁热式流量传感器具有以下的构成。
即,如图24A和图24B所示,流量传感器501利用薄膜技术通过绝缘层505在基板502上层积薄膜发热体503和薄膜感温体504,如图25所示地,设置在配管506的适当位置进行使用。
在该流量传感器501中,通过对发热体503通电来加热感温体504,检测感温体504的电阻值的变化。在此,由于流量传感器501设置在配管506上,因此发热体503的发热量的一部分通过基板502散放到流动在配管中的流体中,传递到感温体504的热量是减去该散发热量的热量。而且,该散发热量由于对应于流体的流量进行变化,因此,通过检测由于供给的热量而进行变化的感温体504的电阻值的变化,可以测定流动在配管506内的流体的流量。
另外,由于上述散发热量也根据流体的温度进行变化,因此,如图25所示,在配管506的适当位置设置传感器507,在检测感温体504的电阻值变化的流量检测电路中附加温度补偿电路,可以尽量减少流体的温度带来的流量测定值的误差。
但是,过去的流量传感器501直接设置在金属制配管506上,并且,其金属制配管506露出于外部大气中,因此,流体所保有的热量通过热传导性高的金属配管506散放到外部大气中、或,热量从外部大气容易供给到流体,成为使流体传感器501的测定精度降低的主要原因。特别是在流体的流量是微小时,对测定精度的影响大,在流体的温度和外部气体的温度之差大时,在流体的比热小时,其影响更加显著。
另外,在流体是粘性流体、特别是粘度比较高的粘性流体、特别是液体时,与配管506内的流体的液流垂直的断面中的流速在管壁附近和中央部大不相同,流速向量呈现在中央部具有极值的大致抛物线状的分布。即,流速分布的不均匀显著。在过去的管壁上只设有基板502或与其连接的壳体508而露出到流体中,在只测定管壁附近部的流速时,上述流速的分布对流量测定精度影响大。这是由于在流量检测时未考虑流动在配管的断面中央部分流体的流速只考虑了配管的配壁附近的流体的流速。这样,在现有的流量传感器中,在是具有比较高的粘度的粘性流体时,有难以进行正确的流量测定的问题。而且,即使是在常温时粘度低的流体,由于随着温度的降低其粘度上升,也产生与以上的流体的粘性相关联的问题。特别是在与每单位时间的流量大相比流量比较小的情况下,基于上述粘性的问题更加显著。
另外,流量传感器501在地理条件、室内外的另外种种的不同的环境下使用,特别是在室外,由于季节性的条件、昼夜等的原因,还必须考虑外部环境所带来的温度变化。但是,现有技术的流量传感器501由于是容易受到这样的外部环境温度的影响的构造,流量的测定值误差大,人们希望有一种在范围宽的外部环境温度下可以高精度地检测流量的流量传感器。
作为解决这样的问题的流量传感器,有图26的示的流量传感器。它与例如特开平11-118566号公报所记载的相同。
在图26中,所使用的流量传感器301是将在基板302上通过绝缘层层积了薄膜发热体和薄膜感温体的流量检测部306载置在弯曲为L字形的翅板307的水平板部307a上而成的。在壳体308内,在翅板307的垂直板部307b和流通管309的开口部之间充填着玻璃310而进行密封,由合成树脂311覆盖流量检测部306和翅板307的水平板部307a整体而进行密封并进行固定。另外壳体308的上部由盖312覆盖。
该流量传感器301大幅度地改善了由于向外部气体散发热量或从外部气体供给热量、管路横截面中的流速变化、外部环境的影响等所引起的流量测定精度降低的问题。
但是,在流量传感器301中,由于流量检测部306和合成树脂311直接接触着,因此感温体所保有的热量向合成树脂311流出或从合成树脂311向感温体流入热量。而且,流量检测部306由于借助热传导性良好的银糊等的接合材料313与翅板307的水平板部307a接合着,经翅板307传递的热量通过接合材料313向合成树脂311流出或从合成树脂311向翅板307流入热量。因此,在流体的比热小时或流量少等时,会使流量传感器301的灵敏度降低。
通过在翅板307的垂直板部307b和流通管309的开口部之间充填玻璃310来隔断热传递,但是,由于使用的玻璃310,当伴随着流体的流动使翅板进行微小的振动而使密封状态不完全时,经翅板307传递的热量通过热传递性良好的金属制流通管309向壳体308流出或从壳体308向翅板307流入热量。因此,同样在流体的比热小时或流量少等时,会使流量传感器301的灵敏度降低。
发明目的本发明的目的是消除上述的问题,提供一种流量传感器,该流量传感器极力地抑制流量传感器各部与壳体及外部之间的热量的流入或流出,即使在流体的比热小时、流量少等时也可以高精度地测量流量,并且组装容易,价格低廉。
另外,在上述特开平11-118566号公报中所记载的流量传感器中,为了获得与流体的流量对应的电气输出,使用着含有桥电路的电路。
但是,该流量传感器的电路的输出一般与流量值没有简单的比例关系。因此,在将电路输出换算为流量值时,进行使用检量线的数据处理。在该数据处理中可以使用微型电子计算机,可以将获得的流量值数字信号输入显示器、或根据需要通过通信线路向远处传送。
然而,以上那样的流量传感器,根据用途要求定期地或在流过规定时的流体后废弃与流体接触的部分及其周围的部分(所谓一次性使用)。例如在高纯度试剂的合成或医药的合成等中,在使用于原材料的流量测定时,从可靠地防止不纯物的混入所带来的制品纯度降低的观点出发,要求一次性使用,在化学滴定等的化学分析中使用于检测体的流量的测定时,从防止由于检测体中所含有的成份不明而产生对预料之外的化学反应的反应分析带来坏影响的观点出发要求一次性使用,另外,在使用于注入生物体的医疗用药液的流量测定和从生物体采取生物体液的流量测定时,从防止感染病的观点出发,要求一次性使用。
而且,在现实中,强烈要求该一次性使用的部分小型化及廉价化。因此,作为该一次性使用的部分,考虑将向流体流通管内延伸出的热传递构件和固定在该热传递构件上的传感器片和连接在该传感器片的端子上的配线单元化。
但是,在这样的情况下,存在着如下的问题。即,在一次性使用上述那样地被单元化的传感器单元时,在用于将电路输出换算为流量值的数据处理电路中,相对于多个传感器单元使用着共同的检量线。该检量线规定着标准的关系,没有考虑各传感器单元中的每个传感器单元的个别的条件。但是,在现实中,每个传感器单元基于向外部延伸出的热传递构件的姿势、或传感器片与热传递构件的接合状态、或传感器片与配线的连接状态等的微小的不同,各传感器单元的每个传感器单元中的流量对应输出和流量值的关系常常不同。在这种情况下,在流量测定中产生基于传感器单元的个体差别的测定误差,测定精度降低。
因此,本发明的目的是提供一种可以降低由于于传感器单元的个体差别而产生的流量测定误差的流量传感器。
另外,本发明的另一目的是提供一种可以降低由于传感器单元的个体差别而产生流量测定误差的流量计。
技术方案为了达到上述目的,本发明的流量传感器单元,含有发热体和流量检测用感温体的流量检测部与流量检测用热传递构件接合,在壳体内收容着上述流量检测部和上述流量检测用热传递构件的一部分,其特征在于,在上述壳体内收容着存储器,该存储器储存着在使用包括上述发热体和上述流量检测用感温体的检测电路的检测信号获得流体流量值时使用的该流量传感器单元的个体信息,上述流量检测部和上述存储器在上述壳体内与部分地露出于上述壳体外的多个引线连接。
在本发明的一实施形态中,含有流体温度检测用感温体的流体温度检测部与流体温度检测用热传递构件接合着,上述流体温度检测部及上述流体温度检测用热传递构件的一部分被收容在上述壳体内,上述检测电路包含上述流体温度检测用感温体,上述流体温度检测部在壳体内与部分地露出于上述壳体外的多个引线连接。
在本发明的一实施形态中,存储在上述存储器中的个体信息是在用上述检测电路的检测信号获得流体流量值时所利用的基准检量线的补正信息。
在本发明的一实施形态中,在上述壳体上连接着流体流通路,上述流量检测用热传递构件的另一部分向上述流体流通路内延伸出。另外,在本发明的一实施形态中,在上述壳体上连接着流体流通路,上述流体温度检测用热传递构件的另一部分向上述流体流通路内延伸出。
另外,为了达到上述目的,本发明的流量计包括以上那样的流量传感器单元和与该流量传感器单元的引线连接的电路部,其特征在于,上述电路部根据上述检测电路的检测信号,并参照预先存储的基准检量线获得上述流体流量值,在这时,使用储存在上述流量传感器单元内的存储器中的个体信息进行上述基准检量线的补正。
在本发明的一实施形态中,上述电路部,具有模拟电路部和数字电路部,该模拟电路部使用上述检测电路的检测信号获得与上述流体的流量对应的输出,该数字电路根据该模拟电路部的输出获得上述流体流量值。在该数字电路部中包括微型电子计算机和存储着上述基准检量线的主存储器。
在本发明的一实施形态中,存储在上述流量传感器单元的存储器中的个体信息反映由该流量传感器单元实测所获得与上述流体流量对应的输出值与真实的流体流量值的多个关系。
在本发明的一实施形态中,上述流量传感器单元的引线和上述电路部可装卸地连接着。
另外,为了达到上述目的,本发明的流量传感器单元,含有发热体和流量检测用感温体的流量检测部与流量检测用热传递构件接合,在壳体内收容着上述流量检测部和上述流量检测用热传递构件的一部分,其特征在于,在上述壳体上连接着流体流通路,上述流量检测用传递构件的另一部分向上述流体流通路内延伸出,配置着从上述壳体内向上述流体流通路内延伸出的传热构件;在上述壳体内收容着存储器,该存储器储存着在使用包括上述发热体和上述流量检测用感温体的检测电路的检测信号获得流体流量值时使用的该流量传感器单元的个体信息,上述流量检测部和上述存储器在上述壳体内与部分地露出于上述壳体外的多个引线连接。
在本发明的一实施形态中,含有流体温度检测用感温体的流体温度检测部与流体温度检测用热传递构件接合着,上述流体温度检测部及上述流体温度检测用热传递构件的一部分被收容在上述壳体内,上述流量检测用传递构件的另一部分向上述流体流通路内延伸出,上述检测电路含有上述流体温度检测用感温体。上述流体温度检测部在上述壳体内与部分地露出到上述壳体外的多个引线连接着。
在本发明中一形态中,存储在上述存储器中的个体信息是在用上述检测电路的检测信号获得流体流量时所利用的基准检测线的补正信息。
在本发明中一形态中,上述传热构件延伸到比上述流量检测用热传递构件更近于上述引线的壳体内的部分的位置。
另外,在本发明中一形态中,上述传热构件延伸到比上述流体温度检测用热传递构件更近于上述引线的壳体内的部分的位置。
在本发明中一形态中,在上述传热构件上接合着上述存储器。
在本发明中一形态中,上述流量检测用热传递构件、上述流体温度检测用热传递构件及上述传热构件都是板状,在上述流体流通路内沿该流体流通路的方向排列在同一平面上。
为了达到上述目的,本发明的流量计包括以上那样的流量传感器单元和与该流量传感器单元的引线连接的电路部,其特征在于,上述电路部根据上述检测电路的检测信号,并参照预先存储的基准检量线获得上述流体流量值,在这时,使用储存在上述流量传感器单元内的存储器中的个体信息进行上述基准检量线的补正。
在本发明中一形态中,上述电路部,具有模拟电路部和数字电路部,该模拟电路部使用上述检测电路的检测信号获得与上述流体的流量对应的输出,该数字电路根据该模拟电路部的输出获得上述流体流量值。在该数字电路部中包括微型电子计算机和存储上述基准检量线的主存储器。
在本发明的一实施形态中,存储在上述流量传感器单元的存储器中的个体信息反映由该流量传感器单元实测所获得与上述流体流量对应的输出值与真实的流体流量值的多个关系。
在本发明的一实施形态中,上述流量传感器单元的引线和上述电路部可装卸地连接着。
为了达到上述目的,本发明的流量传感器,由检测流体流量的流量计量部、补偿该流量计量部中的流体温度对计量的影响的温度补偿计量部、壳体构成,其特征在于,上述流量计量部具有流量检测部、翅板、输出端子,该流量检测部夹着绝缘体地层积发热体和感热体而成,该翅板其一端与该流量检测部接合,该输出端子电气地与该流量检测部连接,上述温度补偿计量部具有温度检测部、翅板、输出端子,该温度检测部层积绝缘体和感温体而成,该翅板其一端与该温度检测部接合,该输出端子电气地与该温度检测部连接,在上述壳体内收纳着上述流量检测部和温度检测部,上述流量计量部和温度补偿计量部的翅板和输出端子突出到该壳体的外部。
上述壳体最好由具有0.7W/m·K以下的热传导率的合成树脂构成。本发明的流量传感器最好在上述壳体内设有空洞部,在该空洞部内的与壳体未接触的位置设置上述流量检测部和温度检测部。
附图的简单说明图1是表示本发明的流量传感器单元的模式剖面图。
图2是图1的A-A’剖面图。
图3是表示流量检测部的构成分解立体图。
图4是表示流量温度检测部的构成的分解立体图。
图5是模式地表示本发明的流量传感器单元的剖面图。
图6是图5的A-A’剖面图。
图7是本发明的流量计的概略构成图。
图8是表示本发明的流量计的流量传感器单元与电路部的连接例的图。
图9是本发明的流量计的电路构成图。
图10是表示本发明的流量计中的检量线的一例的图。
图11是表示本发明的流量计中的基准检量线和补正检量线的图。
图12是模式地表示本发明的流量传感器单元的剖面图。
图13是图12的A-A’剖面图。
图14是模式地表示本发明的流量传感器单元的剖面图。
图15是图14的A-A’剖面图。
图16是表示本发明的流量计的流量传感器单元与电路部的连接例的图。
图17是表示本发明的流量传感器一例的立体图。
图18A及图18B是表示本发明的流量传感器的一例的纵剖面图。
图19A及图19B是表示本发明的流量传感器的另一例的纵剖面图。
图20是流量传感器的制造方法的一例的说明图。
图21是表示嵌插着流量传感器的流量检测装置的一例的纵剖面图。
图22是表示去除了流量传感器的流量检测装置的纵剖面图。
图23是流量检测装置的电路图。
图24A是现有的流量传感器的立体图。
图24B是图24A的流量传感器的纵剖面图。
图25是表示将现有的流量传感器设置在配管上的状态的剖面图。
图26是流量传感器和流量检测装置的概略说明图。
实施例以下,参照


本发明的实施例。
图1是模式地表示本发明的流量传感器单元的一实施例的剖面图,图2是其A-A’剖面图。
如这些图所示,流量检测部5与作为流量检测用传递构件的翅板6的表面接合,流体温度检测部9与作为流体温度检测用热传递构件的翅板10的表面接合着。这些流量检测部5、流体温度检测部9及翅板6、10的一部分收容在壳体2内。
如图3所示,流量检测部5是由晶片状的部件构成,该晶片状的部件是在例如硅或铝等构成的厚度0.4mm、2mm见方的矩形基板30上依次地层积流量检测用薄膜感温体31、层间绝缘膜32、薄膜发热体33及用于该发热体的电极34、35、保护膜,并形成覆盖流量检测用薄膜感温体31的连接部及发热体电极34、35的衬层37而构成的。
薄膜感温体可以使用例如膜厚为0.5~1μm的形成为所希望的形状例如曲折形状的白金(Pt)或镍(Ni)等的温度系数大且稳定的金属电阻膜,或者也可以使用氧化锰类的NTC热敏电阻构成的感温体。层间绝缘层32和保护层36使用例如膜厚为1μm的SiO2构成的膜。作为薄膜发热体33,可以使用膜厚为1μm的形成为所希望的形状的电阻体例如由Ni、或Ni-Cr、Pt、而且Ta-SiO2、Nb-SiO2等的金属陶瓷构成的发热体。发热体电极34、35可以使用例如由膜厚为1μm的Ni构成的电极或在此上层积了膜厚为0.5μm的金(Au)薄膜的电极。衬层37可以使用纵横0.2mm×0.15mm、厚度为0.1mm的Au薄膜或Pt薄膜构成的衬层。
如图4所示,流体温度检测部9具有与从流量检测部5除去了薄膜发热体33等后的同样的构造,即由片状的部件构成,该片状的部件是在与上述基板30相同的基板30’上顺序地层积着与上述流体温度检测用薄膜感温体31同样的流体温度检测用薄膜感温体31’及与上述保护膜36同样的保护膜36’,并形成着覆盖流体温度检测用薄膜感温体31’的连接部的衬层37’而构成。
翅板6、10的一端部的一面由热传导性良好的接合材料与流量检测部5或流体温度检测9的基板30、30’侧的面接合着。翅板6、10由例如铜、硬铝、铜钨合金构成的、厚度为0.2mm、厚度2mm的矩形的构件。作为接合材料可以使用例如银糊。
如图1和图2所示,在传感器单元的壳体2上连接着流通路构件12,翅板6、10的另一端部伸出到形成在该流通路构件12的内部的流体流通路13中。该翅板6、10在具有大致圆形的断面的流体流通路13内穿过其断面内的中心而延伸的。翅板6、10由于沿流体流路13内的流体的流通方向(在图1中用箭头表示着)配置着,因此对流体流通不会带来的大的影响,可以良好地进行流量检测部5及流体温度检测部9与流体之间的热传递。
壳体2及流通路构件12可以由环氧树脂或聚苯硫醚树脂等的合成树脂形成。在壳体2内收容着用于存储传感器单元的个体信息的晶片状的半导体存储器1。关于该存储在存储器1中的个体信息在以后叙述。
流量检测部5、流体温度检测部9及存储器1的各电极端子(凸缘)由各自的Au线3与各引线4的内引线部(壳体内的部分)4a连接着。各引线4向壳体2外延伸而部分地露出于壳体外,形成外引线部4b。该外引线部4b也可以是例如J弯曲形状。
在图1及图2中,在壳体2的中央部形成着空间15,在此处设置着流量检测部5、9、翅板6、10的一部分及内引线部4a,实际上,该空间部15如图2所示由与壳体2一体的那样的盖16覆盖着或以与壳体2一体化的形式封装合成树脂。
图5及图6表示以上的流量传感器单元的变型例。在这些图中,在具有与图1及图2中同样的功能的构件及部分上标注同样的符号。在该变型例中,只有壳体2借助与流通路构件12同时成形而形成为一体这一点与图1及图2所示的不同。
图7表示用以上那样的流量传感器单元构成的流量计的一实施例的概略构成图。露出到传感器单元2的壳体外的外引线部4b上配合着插座20。在该插座20上连接着配线21,该配线其一端与各外引线部4b电气连接,其另一端与电路部22连接着。该电路部22具有模拟电路部23和数字电路部24和显示部25,配线21与模拟电路部23连接着,该模拟电路部23的输出输入到数字电路部24。数字电路部24与显示部25和用于与外部通信的通信线连接着。
图8表示以上那样的流量传感器单元和电路部的连接的变型例。在该变型例中,在配线21的中途夹设着组合插座26,该组合插座26使配线21与传感器单元侧部分21a和电路侧连接部分21b可分离。因此,因此在壳体2和插座20的连接着的状态下可以由组合插座26从配线部分21b将配线部分21a、21b、安装在该插座20上的流量传感器单元卸下。由此,可以将配线部分21a及插座20与流量传感器单元一起在使用后丢弃。这样,虽然增加了丢弃的部分,但是由于壳体2相对插座20安装时的翅板6、10向流路流通路中伸的状态没有变化,因此有装卸操作变容易的优点。
图9是以上那样的流量计的电路构成图。
供给电源使用的是交流100V、借助直流变换电路71从该供给电源输出+15V、-15V、+5V的直流电。从直流变换电路71输出的直流+15V输入稳压电路72。
从稳压电路72供给的稳压化直流电供给到桥电路(检测电路)73。桥电路73含有流量检测用感温体31、温度补偿用感温体31’和电阻体74及可变电阻体75。桥电路73的a、b点的电位Va、Vb输入到放大率可变的差动放大电路76。该差动放大电路76的输出被输入积分电路77。
另外,稳压电路72的输出通过用于控制供向上述薄膜发热体33的电流的场效应型晶体管81供给到薄膜发热体33。即,在流量检测部5中,根据薄膜发热体33的发热,通过翅板6接受被检测流体的吸热影响,进行薄膜感温体31的感温。另外,作为感温的结果获得图9所示的桥电路73的a、b点的电位Va、Vb之差。
(Va-Vb)的值通过流量检测器用感温体31的温度根据流体的流量进行变化而进行变化。通过预先适当设定可变电阻体75的电阻值,在是成为基准的所希望的流量时,(Va-Vb)的值可以成为零。在该基准流量中,差动放大电路76的输出为零。积分电路77的输出为一定(对应于基准流量的值)。另外,积分电路77的输出的大小被调整为其最小值为0V。
积分电路77的输出被输入V/F变换电路78。在此,形成与电压的信号对应的频率(例如最大5×10-5)的脉冲信号。该脉冲信号的脉冲宽度(时间宽度)是一定(例如1~10微秒的所需值)。例如在积分电路77的输出为1V时,输出频率为0.5kHz的脉冲信号,在积分电路77的输出为4V时输出频率为2kHz的脉冲信号。
V/F变换电路78输出供给到晶体管81控制极。这样,通过向控制极输出了脉冲信号的晶体管81向薄膜发热体33流入电流。因此,在薄膜发热体33上通过晶体管以与积分电路77的输出值对应的频率脉冲状地施加稳压电路72的输出电压的分压,电流间歇地在该薄膜发热体33中流过。由此,薄膜发热体33进行发热。V/F变换电路78的频率根据高精度的时钟设定,该高精度时钟在基准频率发生电路80中根据温度补偿型石英振子的振荡来设定。
通过包括以上的构成要素构成上述模拟电路23。
而且,从V/F变换电路78输出的脉冲信号由脉冲计数器82计数。微型电子计算机83根据以由基准频率发生电路80发出的频率作为基准进行脉冲计数的结果(脉冲频率)换算为对应的流量(瞬时流量),通过相对于时间累计该流量而算出累计流量。
向该流量的换算用预先存储在主存储器84中的基准检量线进行。将该基准检量线的一例表示在图10中。即通过使用成为某基准的流量传感器单元对流体各流量的每一个流量测定从脉冲计数器82输出的脉冲频率所获得的数据表作为基准检量线存储在主存储器84中。
在本实施例中,在流量传感器内存储器1内记录着流量测定中的该传感器单元的个体信息。该个体信息是表示例如使用该传感器单元预先实测所获得的真实的流量值和脉冲计数器82的输出脉冲频率的多个关系的数据。
关于该个体信息,参照图11进行说明。在图11中表示着基准检量线SL。该基准检量线SL表示脉冲频率值y与流量值x的关系。与此相对,在传感器单元内存储器1内存储着作为个体信息的在图11中由P、Q表示的点(流量值—脉冲频率值)的关系、即P(x1、y1)及Q(x2、y2)。
向这样的存储器1中的数据存储,例如存储器1使用EEPROM,在图1及图2所示那样的空间15存在(即在进行树脂封装及盖16的安装以前)的情况下,以流量值x1及x2进行流体流通并测定输出脉冲频率值y1和y2,可以通过由激光照射将这些值进行写入来进行。而且,在对这样的存储器1存储个体信息后通过进行空间15的树脂封装及盖16的安装完成传感器单元。由此可以廉价地制造含有存储器1的传感器单元。存储器1不限定于EEPROM,也可以是与此不同种类的可写入的存储器。
在微型计算机83中,在测定被检测流体的流量时,首先根据以上的个体信息补正基准检量线来做成补正检量线。即,根据图11所示的基准检量线SL和个体信息P(x1、y1)及Q(x2、y2)得到通过(x1、y1)及(x2、y2)的补正检量线CF。具体地讲,将例如在脉冲频率值为y1时做成为对于流量值x附加了补正值[含有符号]C(y1)的值[x+C(y1)],在脉冲频率值为y2时做成为对于流量值x附加了补正值[含有符号]C(y2)的值[x+C(y2)],在是其以外的脉冲频率值y时只要由例如外插法决定补正值C(y)即可。在那时,考虑到基准检量线SL的y=f(x)的关系形态,进行外插以减少从该形态的偏移。
在以上的说明中表示了个体信息由P(x1、y1)及Q(x2、y2)2点组成的情况,但是通过将个体信息做成为由3点以上构成,可以更加容易地获得补正检量线CL。
如上所述,微型电子计算机83将在流量测定时与从脉冲计数器82输出的脉冲频率对应的补正检量线CL上的流量值作为测定值进行特定(也可以如上所述地使用基准检量线SL获得基准流量值,通过在该基准流量值上附加补正值C(y)进行)。
包括以上的构成要素地构成上述数字电路30。
如上所述地获得的瞬时流量和积累流量的值由显示部25显示,同时通过由电话线及其它的网络构成的通信线向外部传送。另外,根据需要可以将瞬时流量和积累流量存储在主存储器84中。
85是备用电源(例如电池)。
当流体流量增减时,差动放大电路76的输出对应于(Va-Vb)的值其极性(根据流量检测用感温体31的电阻—温度特性正负而不同)及大小变化,与此相应,积分电路77的输出进行变化。积分电路77的输出的变化速度可以由差动放大电路76的放大率设定进行调节。由该积分电路77和差动放大电路76设定控制系统的响应特性。
在流体流量增加了时,由于流量检测用感温体31的温度降低,获得使薄膜发热体33的发热量增加(即使脉冲频率增加)那样的积分电路77的输出(更高的电压值),在该积分电路输出成为与流体流量对应的电压的时刻,桥电路73成为平衡状态。
另外,在流体流量减少了时,由于流量检测用感温体31的温度上升,获得使薄膜发热体33的发热量减少(即,使脉冲频率减少)那样的积分电路77的输出(更低的电压值),在该积分电路输出成为与流体流量对应了的电压的时刻,桥电路73成为平衡状态。
即,在本实施例的控制系统中设定向薄膜发热体33供给的脉冲状电流的频率(与热量对应),以使桥电路73成为平衡状态,该平衡状态的实现(控制系统的响应)例如可以为0.1秒内。
在以上那样的实施例中,由于根据新用的流量传感器单元的个体信息进行基准检量线的补正,因此,流量检测部5或流体温度检测部9的晶片与热传递构件的接合状态、或流量检测部5或流体温度检测部9的晶片与引线的导线焊接的连接状态等由于各个流量传感器单元而不同,也可以以高精度由各个流量传感器单元进行流量测定。因此,在继续使用流量计的电路部且一次性使用流量传感器单元时也可以维持高的测定精度,可以使流量测定的适用领域扩大。
另外,根据以上实施例,为了流量测定而使用由V/F变换电路78做成的脉冲信号,由于该脉冲信号容易使温度变化带来的误差充分小,因此可以使根据脉冲频率获得的流量值及累计流量值的误差变小。另外,在本实施例中,向薄膜发热体33的通电控制由于由V/F变换电路78做成的脉冲信号产生的ON-OFF进行,由于温度变化带来的控制误差极小。
另外,在本实施例中,由于流量检测部使用着含有薄膜发热体及薄膜感温体的微小晶片状的部件,因此,可以实现以上那样的高速响应性,可以做成为良好的流量测定精度的流量检测部。
另外,在本实施例中,无论被检测流体的流量如何,薄膜发热体33的周围的流量检测用感温体31的温度都基本维持为一定,因此,流量传感器单元的老化小,另外,可以防止产生可燃性的被检测流体的着火爆炸。
图12是模式地表示本发明的流量传感器单元的一实施例的剖面图,图13是其A-A’剖面图。在这些图中,在具有与图1、图2中的同样的功能的构件或部分上标注相同的符号。该实施例,在配置着作为传热构件的翅板17、18在这一点上与上述图1和图2的实施例在本质上不同。翅板17、18的一部分收容在壳体2内。流量检测部5由图3中所说明的那样的晶片状的部件构成。另外,流体温度检测部9由图4中所说明的那样的晶片状的部件构成。
如图1和图2所示,在传感器单元的壳体2上连接着流通路构件12,翅板6、10、17、18的端部延伸到形成在该流通路构件12的内部的流体流通路13中。该翅板6、10、17、18在具有大致圆形的断面的流体流通路13内通过其断面内的中央延伸着。翅板6、10、17、18由于沿流体流通路13内的流体的流通方向(图12中用箭头表示的方向)配置着,不会对流体流通带来大的影响,可以良好地进行流量检测部5及流体温度检测部9与流体之间的翅板6、10的热传递及翅板17、18的壳体内部与流体之间的热传递。
翅板17、18可以由于与翅板6、10相同的材料构成,翅板6、10和引线4都可以通过成形一片板状体来制作。翅板17在壳体2内延伸到内引线部4a和流量检测部5之间,即延伸到比流量检测部5更接近内引线部4a的位置。同样,翅板18在壳体2内延伸到内引线部4a和流体温度检测部9之间,即延伸到比流体温度检测部9更接近内引线部4a的位置。
跨越翅板17、18的壳体内的端部地配置着连接线3,为了避免该连接线3与翅板17、18接触,可以在翅板17、18的端部上形成绝缘膜17’、18’。但是,在不可能与翅板17、18接触地形成连接线3时,可以省略绝缘膜17’、18’。
通过配置翅板17、18,可以良好地进行流通流体流通路13内的流体与壳体2内部(特别是内引线部4a与流量检测部5及流体温度检测部9之间的区域)之间的热传递,即使有经过引线4的壳体2的内外间的热流动,也可以有效地防止其影响波及到流量检测部5和流体温度检测部9,特别是可以将经由引线4向壳体2内流入的热量高效地向流体流通路13内的流体逃逸。
图14及图15表示以上那样的流量传感器单元的变型例。在这些图中,在具有与图12、图13中的同样的功能的构件或部分上标注相同的符号。在该变型例中,作为传热构件的翅板19配置在翅板6、10的中间。而且,翅板19的位于壳体内部的端部上接合着存储器1。
内引线部4a位于从翅板6、10的位于壳体内部的端部离开距离L1的位置上,翅板19的位于壳体内部的端部与内引线部4a之间的距离L2、L3都比L1小。例如在将距离L1做成为3mm以上时,距离L2、L3小于3mm。
通过配置这样的翅板19,可以进行流通流体流通路13内的流体和壳体2内部(特别是内引线部4a的附近区域)之间的热传递,即使有经过引线4的壳体2的内外间的热流动,也可以有效地防止其影响波及到流量检测部5和流体温度检测部9。
在以上的实施例及变型例中,通过同时成形壳体2和流通路构件12可以做成为一体形成的部件。
使用以上那样流体传感器单元可以如图7所说明的那样地构成流量计。在图16中表示以上那样的流量传感器单元和电路部的连接的变型例。该变型例除了使用具有翅板17、18的流量传感器单元以外,其它的与上述图8的例子相同。通过这样,由于壳体2相对插座20安装时的那样的翅板6、10、17、18的向流体流通路的延伸状态没有变化,有容易进行装卸操作的优点。
以上那样的流量计的电路构成与上述图9所说明的相同。另外,在该流量计中为了向流量的换算而使用的预先存储在主存储器84中的基准检量线与上述图10中所说明的相同。另外,该传感器单元内的个体信息向传感器单元内存储器1记录、以及使用它在微型电子计算机83中进行的被检测流体的流量测定的程序与参照上述图11对上述图1~图2的实施例进行说明了的情况相同。
以下参照附图对本发明的流量传感器的最佳实施例进行说明。
图17是表示本发明的流量传感器的一例的立体图。图18A是图17的流量传感器的纵剖面图,图18B是图18A的用X-X线切断的纵剖面图。
如图17、图18A及图18B所示,流量传感器101由壳体102及流量计量部103和温度补偿计量部104构成。
如图18A及图18B所示,流量计量部103由设置在壳体102内的流量检测部105、一端与流量检测部105接合而另一端突出到壳体102的外部的翅板106、电气地连接流量检测部105和输出端子107的连接线108、一端与连接线108接合而另一端突出到壳体102的外部的输出端子107构成。
温度补偿计量部104由设置在壳体102内的温度检测部109、一端与流量检测部105接合而另一端突出到壳体102的外部的翅板110、电气地连接温度检测部109和输出端子111的连接线112、一端与连接线112接合而另一端突出到壳体102的外部的输出端子111构成。
图18A和图18B所示的流量传感器具有在壳体2内未设空洞部,用树脂充填流量检测部105和温度检测部109的周围的构造。在这种情况下,为了极力地抑制流量传感器各部与作为流量传感器的周围的构造体的壳体之间的热流出入,壳体102的材质需要使用热传导率小的合成树脂。具体地讲,如果热传导率为小于0.7W/m·K、最好小于0.4W/m·K,则壳体102内的热传导量少,可以高精度地测定流量。
图19A和图19B表示本发明的流量传感器的另一例,在该例中,在壳体内设有空洞部。图19A是流量传感器的纵剖面图,图19B是图19A的X-X线纵剖面图。
图19A及图19B中的流量传感器121将流量计量部103的流量检测部105和温度补偿计量部104的温度检测部109的双方与形成外壳122的树脂不接触地设置在壳体122的空洞部123内。输出端子107、111固定地支承在壳体122的壁上。
如图19A及图19B所示,通过在壳体122内设置空洞部123,即使在形成壳体122的树脂的热传导率比较大,也可以借助空洞部123的隔热效果极力地抑制流量传感器各部与流量传感器周围的构造体(壳体)之间的热流出入。
在流量传感器的外周面上设有缺口部,以在与壳体之间产生隔热用的空隙,这时可以更加有效地抑制流量传感器与壳体之间的热流出入。
以下对流量传感器的各部分进行说明(参照图18A及图18B)。
壳体102用耐药品性和耐油性高的硬质树脂、更好使用热传导性低的树脂例如环氧树脂或聚对苯二甲酸丁二醇酯(PBT)、聚苯硫醚(PPS)等形成。
输出端子107、111是由铜等的导电性好的材料构成的厚度200μm的线状薄板。
输出端子107、111直线状地并置为一列地突出到在树脂壳体102的外部,并且最好从上述直线状的列的一端朝向另一端,从树脂壳体102的突出长度渐渐地增加(渐渐地降低)。通过这样地构成,可以容易地进行从上推压流量传感器101的传感器推压板的安装和与输出端子107、111连接的形成电路的流量检测电路基板的安装。另外,在安装这些传感器推压板或流量检测电路基板时损伤流量传感器101的可能性变小。
位于壳体内的输出端子107、111的端部,输出端子彼此相互接近地方式汇集着。由此,将连接线108、112与输出端子107、111和流量检测部105及温度检测部109连接的作业变容易。
翅板106、110由铜、硬铝、铜钨合金等的热传导性良好的材料构成的厚200μm、宽2mm的矩形薄板构成。翅板106、110通过银糊等的接合材料固定在流量检测部105及温度检测部109上。
流量检测部105与图3中所说明的流量检测部5相同。温度补偿计量部104与上述图4所说明的流体温度检测部9相同。流量传感器101的制造方法可以采用各种方法,但也可以从一体的物体上同时地获得上述翅板106和输出端子107、及上述翅板110及输出端子111。
例如,如图20所示,也可以依次地进行如下的步骤来制造流量传感器101,即蚀刻板材料138来形成规定形状的板基材料139(S1);镀银处理接合流量检测部105的部分(S2);涂敷银糊来固定流量检测部105,将流量检测部105与输出端子107由连接线108连接,将相当于翅板106的部分镀镍(S3);然后由环氧树脂模塑流量检测部105、翅板106的上半部及输出端子107的下半部来形成壳体102(S4)。
在从一体的物体上同时地获得上述翅板110及输出端子111时,除了代替流量检测部105而使用温度检测部109以外,也可以与从一体的物体上同时地获得上述翅板106和输出端子107的情况相同地进行。
本发明的流量传感器101,例如如图21、图22所示地嵌插在过滤一体形流量计140中进行使用。图21及图22中,过滤一体形流量计140共用壳体141,使过滤部142和流量计部143一体化。
壳体141是由铝、锌、锡合金等铸造(压铸)而成的,在其两端部形成着用于与外部配管连接的连接部144、145,在内部形成着流入侧流通路146、流出侧流通路147、过滤部142由上述壳体141的左下部、过滤构件148,过滤构件插入筒体149构成。
在壳体141的下半部形成着向下方若干突出的筒体安装部150,在该筒体安装部150的内侧,设置着在内周面上刻有内螺纹的安装凹部151。而且,在安装凹部151的中央部突出设置着嵌合突出部152。
上述流入侧流通路146的垂直部在安装凹部151的上壁面上开口,上述流出侧流通路147的垂直部在嵌合突出部152的下端面上开口。
另外,流出侧流通路147的垂直部在其上方具有排气孔153,在该排气孔153上刻有内螺纹,在内螺纹部上安装着封闭构件154。
过滤构件148由保持体148a和过滤材料148b构成。保持体148a是由铝、锌、锡合金等铸造(压铸)而成的,两端的突缘部由圆筒状连接部连接,在中央部形成着贯通孔148c。另外,在保持体148a的圆筒部连接部上形成着许多小直径的连通孔148d。过滤材料148b是由玻璃纤维、塑料纤维等构成的无纺布,安装在保持体148a的圆柱状连接部的外周面上。
过滤构件插入筒体149是由铝、锌、锡合金等铸造(压铸)而成的,在上端部的外周面上刻有外螺纹。而且在过滤构件插入筒体149的底面中央部载置着过滤构件148,将过滤构件插入筒体149外螺纹部与上述安装凹部151的内螺纹部螺纹配合,将过滤构件插入筒体149上端面通过薄板圆环状的密封件155与安装凹部151的上壁面抵接时,由嵌合突出部152封闭过滤构件148的贯通孔148c的上端开口。
而且,使煤油在流通路146、147内流动,在确认了流通路内不存在空气后,将堵塞构件154安装在排气孔153中。当煤油在壳体141的流入侧流通路146中流动而流入过滤构件插入筒体149中时,煤油沿过滤构件148的外周流下,滞留在过滤构件插入筒体149的底面上。
而且,在通过过滤材料148期间除去尘埃等的异物,通过保持体148a的连通孔148d流入贯通孔148c,从流出侧流通路147的垂直部的开口向流出侧流通路147流动,向流量计部143流去。流量计部143由上述壳体141的右上部、流量传感器101、传感器推压板156、流量检测电路基板157及盖体158构成。
如图22所示,在壳体141的右半部形成着用于安装流量传感器的凹部。从传感器插入空间159朝向流出侧流通路147的垂直部穿设着该传感器插入孔160,上述凹部由传感器插入空间159、传感器插入孔160构成。
盖体158由铝、锌、锡合金等铸造(压铸)而成,可相对壳体141自由装卸。
传感器101从壳体141的传感器插入空间159嵌插在传感器插入孔160中,使翅板106、110的下端到达流出侧流通路147的轴线左方。为了防止从流量传感器101和传感器插入孔160的间隙泄漏流体,在传感器插入孔160的台阶部上夹设着O形密封环161。
在嵌装了流量传感器101后,将传感器推压板156插入传感器插入空间159中,推压流量传感器101的壳体102的上表面,用螺栓将传感器推压板156固定在壳体141上,再将流量检测电路基板157插入配置在传感器插入空间159,将盖体158安装固定在壳体141上,构成流量计部143。
在流量传感器101中的流量计量部103中,通过对发热体33通电而加热感温体31,检测感温体31的电阻值变化。在此,流量传感器101与流出侧流通路147面对地设置,因此发热体33的发量的一部分通过翅板106向流动在流出侧流通路147内的煤油中散发,被感温体31传递的热量是减去该散发热量的热量。该散发热量由于对应于煤油的流量进行变化,通过检测由供给的热量进行变化的感温体31的电阻值的变化,可以测定流动在流出侧流通路147内的煤油的流量。
另外,上述散发热量由于也根据煤油的温度进行变化,因此在流量传感器101中设有温度补偿计量部104,在流量检测电路中附加温度补偿电路,由此来尽可能地减少由煤油的温度带来的流量测定值的误差。
流量检测电路基板157与流量传感器101、设在壳体141的表面上的显示部228、电源导线电气连接着,整体上构成图23所示的电路。
在图23中,由直流变形电路265将作为电源的交流电100V变型为适当电压值的直流。将所获得的直流电压由稳压电路266稳压后,将电压供给到流量传感器的流量计量部103的发热体243(图3的发热体33)及桥电路267。
桥电路267由流量传感器的流量计量部103的感温体247(图3中的感温体31)、流量传感器的温度补偿计量部104的感温体268(图4的感温体31’)、电阻体269及可变电阻体270构成,由于感温体247的电阻值根据煤油的流量进行变化,因此,桥电路267的a、b点处的电压差(电位差)Va-Vb也进行变化。电压差Va-Vb通过差动放大电路271、积分电路272输入到V/F变换电路273中,在V/F变换电路273中,形成与输入的电压信号对应的频率的脉冲信号V/F变换电路273的频率根据基于温度补偿型石英振子274的振荡在基准频率发生电路275中由高精度时钟设定的基准频率而形成。
当从V/F变换电路273输出的脉冲信号输入晶体管276时,在发热体243中流入电流而进行发热。另外,该脉冲信号由计数器277计数,在微型电子计算机278中换算为与其频率对应的流量。而且该流量数字地表示在显示部228中并存储在存储器279内。
280是电池等的备用电源。
以上的电路构成相当于从图9的电路构成中除去了传感器单元内存储器的电路构成。
产业上的可利用性根据以上说明,根据本发明的流量传感器单元及流量计,即使流量检测部和流体温度检测部的晶片和热传递构件或引线的连接状态等由于各个流量传感器而不同,也可以由该流量传感器单元高精度地进行流量测定,在使用一次性流量传感器单元时也可以维持高的测定精度。
另外,根据本发明,即使经由引线在壳体内部与壳体外部之间有热流动,也可以通过传热构件良好地进行流体流通路内的流体与壳体内部之间的热传递,因此,可以有效地防止经由引线的相对壳体内部的热出入的影响波及到流量检测部,不管外部环境如何及其变化都可以稳定地进行流量的测定。
另外,根据本发明的流量传感器,由于流量计量部和温度补偿计量部设在一个壳体内,与将这些计量部分别设在不同的壳体内的情况相比,组装工序简单化,可以实现廉价化。特别是在连接流量检测部及温度检测部和输出端子的连接线的安装时,由于将连接线的安装位置集中在一处,因此可以高效率地进行安装作业。
权利要求
1.流量传感器单元,含有发热体和流量检测用感温体的流量检测部与流量检测用热传递构件接合,在壳体内收容着上述流量检测部和上述流量检测用热传递构件的一部分,其特征在于,在上述壳体内收容着存储器,该存储器储存着在使用包括上述发热体和上述流量检测用感温体的检测电路的检测信号获得流体流量值时使用的该流量传感器单元的个体信息,上述流量检测部和上述存储器在上述壳体内与部分地露出于上述壳体外的多个引线连接。
2.如权利要求1所述的流量传感器单元,其特征在于,含有流体温度检测用感温体的流体温度检测部与流体温度检测用热传递构件接合着,上述流体温度检测部及上述流体温度检测用热传递构件的一部分被收容在上述壳体内,上述检测电路包含上述流体温度检测用感温体,上述流体温度检测部在壳体内与部分地露出于上述壳体外的多个引线连接。
3.如权利要求1所述的流量传感器单元,其特征在于,存储在上述存储器中的个体信息是在用上述检测电路的检测信号来获得流体流量值时所利用的基准检测线的补正信息。
4.如权利要求1所述的流量传感器单元,其特征在于,在上述壳体上连接着流体流通路,上述流量检测用热传递构件的另一部分向上述流体流通路内延伸出。
5.如权利要求2所述的流量传感器单元,其特征在于,在上述壳体上连接着流体流通路,上述流体温度检测用热传递构件的另一部分向上述流体流通路内延伸出。
6.流量计,包括权利要求1~5中的任何一项所述的的流量传感器单元和与该流量传感器单元的引线连接的电路部,其特征在于,上述电路部根据上述检测电路的检测信号,并参照预先存储的基准检量线获得上述流体流量值,在这时,使用储存在上述流量传感器单元内的存储器中的个体信息进行上述基准检量线的补正。
7.如权利要求6所述的流量计,其特征在于,上述电路部,具有模拟电路部和数字电路部,该模拟电路部使用上述检测电路的检测信号获得与上述流体的流量对应的输出,该数字电路根据该模拟电路部的输出获得上述流体流量值,在该数字电路部中包括微型电子计算机和存储上述基准检量线的主存储器。
8.如权利要求7所述的流量计,其特征在于,存储在上述流量传感器单元的存储器中的个体信息反映由该流量传感器单元实测所获得与上述流体流量对应的输出值与真实的流体流量值的多个关系。
9.如权利要求6所述的流量计,其特征在于,上述流量传感器单元的引线和上述电路部可装卸地连接着。
10.流量传感器单元,含有发热体和流量检测用感温体的流量检测部与流量检测用热传递构件接合,在壳体内收容着上述流量检测部和上述流量检测用热传递构件的一部分,其特征在于,在上述壳体上连接着流体流通路,上述流量检测用传递构件的另一部分向上述流体流通路内延伸出,配置着从上述壳体内向上述流体流通路内延伸出的传热构件;在上述壳体内收容着存储器,该存储器储存着在使用包括上述发热体和上述流量检测用感温体的检测电路的检测信号获得流体流量值时所使用的该流量传感器单元的个体信息,上述流量检测部和上述存储器在上述壳体内与部分地露出于上述壳体外的多个引线连接。
11.如权利要求11所述的流量传感器单元,其特征在于,含有流体温度检测用感温体的流体温度检测部与流体温度检测用热传递构件接合着,上述流体温度检测部及上述流体温度检测用热传递构件的一部分被收容在上述壳体内,上述流量检测用传递构件的另一部分向上述流体流通路内延伸出,上述检测电路含有上述流体温度检测用感温体,上述流体温度检测部在上述壳体中与部分地露出到上述壳体外的多个引线连接着。
12.如权利要求10所述的流量传感器单元,其特征在于,存储在上述存储器中的个体信息是在用上述检测电路的检测信号获得流体流量时利用的基准检测线的补正信息。
13.如权利要求10所述的流量传感器单元,其特征在于,上述传热构件延伸到比上述流量检测用热传递构件更接近于上述引线的壳体内的部分的位置。
14.如权利要求11所述的流量传感器单元,其特征在于,上述传热构件延伸到比上述流体温度检测用热传递构件更接近于上述引线的壳体内的部分的位置。
15.如权利要求10所述的流量传感器单元,其特征在于,在上述传热构件上接合着上述存储器。
16.如权利要求11所述的流量传感器单元,其特征在于,上述流量检测用热传递构件、上述流体温度检测用热传递构件及上述传热构件都是板状,在上述流体流通路内沿该流体流通路的方向排列在同一平面上。
17.流量计,包括权利要求10~16的任一项所述的流量传感器单元和与该流量传感器单元的引线连接的电路部,其特征在于,上述电路部根据上述检测电路的检测信号、并参照预先存储的基准检量线获得上述流体流量值,在这时,使用储存在上述流量传感器单元内的存储器中的个体信息进行上述基准检量线的补正。
18.如权利要求17所述的流量计,其特征在于,上述电路部,具有模拟电路部和数字电路部,该模拟电路部使用上述检测电路的检测信号获得与上述流体的流量对应的输出,该数字电路根据该模拟电路部的输出获得上述流体流量值。在该数字电路部中包括微型电子计算机和存储着上述基准检量线的主存储器。
19.如权利要求18所述的流量计,其特征在于,存储在上述流量传感器单元的存储器中的个体信息反映由该流量传感器单元实测所获得与上述流体流量对应的输出值与真实的流体流量值的多个关系。
20.如权利要求17所述的流量计,其特征在于,上述流量传感器单元的引线和上述电路部可装卸地连接着。
21.流量传感器,由检测流体流量的流量计量部、补偿该流量计量部中的流体温度对计量的影响的温度补偿计量部、壳体构成,其特征在于,上述流量计量部具有流量检测部、翅板、输出端子,该流量检测部夹着绝缘体地层积发热体和感热体而成,该翅板其一端与该流量检测部接合,该输出端子电气地与该流量检测部连接,上述温度补偿计量部具有温度检测部、翅板、输出端子,该温度检测部层积绝缘体和感热体而成,该翅板其一端与该温度检测部接合,该输出端子电气地与该温度检测部连接,在上述壳体内收纳着上述流量检测部和温度检测部,上述流量计量部和温度补偿计量部的翅板和输出端子突出到该壳体的外部。
22.如权利要求21所述的流量传感器,其特征在于,上述壳体最好由具有0.7W/m·K以下的热传导率的合成树脂构成。
23.如权利要求21所述的流量传感器,其特征在于,上述壳体内设有空洞部,在该空洞部内的与壳体未接触的位置设置上述流量检测部和温度检测部。
全文摘要
含有发热体和感温体的流量检测部5与热传递构件6接合着,含有感温体的流体温度检测部9与热传递构件10接合着,流量检测部5和流体温度检测部9和热传递构件6、10的一部分收容在壳体2内。在壳体2内收容着存储器1,该存储器1存储流量传感器单元的个体信息,在使用含有流量检测部的感温体和流体温度检测部的感温体而构成的检测电路的检测信号获得流量值时使用该流量传感器单元的个体信息。流量检测部5、流体温度检测部9及存储器1在壳体2内多个引线4与连接着。在壳体2内连接着流体流通路13。热传递构件6、10向流体流路13内延伸出。使用该流量传感器单元,可以降低由于传感器单元的个体差别所带来的流量测定误差的产生。
文档编号G01F1/696GK1358271SQ00809374
公开日2002年7月10日 申请日期2000年6月21日 优先权日1999年6月24日
发明者山岸喜代志, 友成健二, 井上真一, 高畑孝行 申请人:三井金属矿业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1