一种频率、周期测量方法及装置的利记博彩app

文档序号:5836681阅读:648来源:国知局
专利名称:一种频率、周期测量方法及装置的利记博彩app
技术领域
本发明提供一种测量方法及装置,特别是指一种频率、周期测量方法及装置。
一种频率、周期测量电路可以在一定时间(TS)内对被测量信号的周期数(FC)和标准时钟信号(频率为fCLK)的周期数(TC)进行测量,一个浮点除法器可以计算出与被测量信号的频率成正比的FC/TC或与被测量信号的周期成正比的TC/FC。系统在极宽的频率范围内具有极高的测量相对分辨率和较为稳定的采样周期。
周期信号的频率的测量一般采用频率计数或者周期计时的方法。频率计数法是在一个固定的时间内对被测量信号的周期进行计数,该计数就正比于信号频率。频率计数法适用于较高频率的测量,如果被测量信号的频率较低,则需要较长的计数时间以获得较高的测量分辨率。周期计时法是对被测量信号的一个(或固定的几个)周期进行计时,该时间反比于被测量信号的频率。周期计时法适用于低频信号的频率测量,对于频率较高的信号测量分辨率较低,而且采样周期无法预先估计。
本发明克服了以上的频率测量方法的缺点,使得在宽的信号频率范围内对信号的频率和周期的测量具有极高测量分辨率和较为稳定的采样周期。
本发明的目的在于提供一种频率、周期测量方法及装置,其具有结构简单和分辨率高以及使得在宽的信号频率范围内对信号的频率和周期的测量具有极高测量分辨率和较为稳定的采样周期的优点。
本发明一种频率、周期测量装置,其特征在于其中包括一个采样定时器,用于采样定时与控制;一个脉冲同步电路,用于控制脉冲同步;一个被测量脉冲数目计数器,用于测量脉冲数目;一个时间计数器;其中采样定时器分别接至被测量脉冲数目计数器和时间计数器和脉冲同步电路;采样定时器的一个定时周期开始后的一个被测量信号的跳变沿或者采样定时器被同步于被测量信号的某个跳变沿为一个测量周期的开始,采样定时器的该定时周期结束后的一个被测量信号的跳变沿为该测量周期的结束;被测量脉冲数目计数器用于累计一个测量周期内的被测量脉冲数目;时间计数器用于累计该测量周期内的标准频率脉冲数目。
其中被测量脉冲数目计数器还包括一个浮点除法器用于计算以上两个脉冲数目的商。
本发明一种频率、周期测量方法,其特征在于,该测量方法的步骤为步骤1采样定时器的一个定时周期开始后的一个被测量信号的跳变沿或者采样定时器被同步于被测量信号的某个跳变沿为一个测量周期的开始;步骤2采样定时器的该定时周期结束后的一个被测量信号的跳变沿为该测量周期的结束;步骤3被测量脉冲数目计数器用于累计一个测量周期内的被测量脉冲数目;步骤4时间计数器用于累计该测量周期内的标准频率脉冲数目。
为进一步说明本发明的技术特征,以下结合附图及实施例对本发明作一详细说明,其中

图1是本发明的电路原理图;图2是本发明电路时序图;图3是本发明同步电路的时序图;图4是本发明采样定时器与时序控制电路时序图;图5是本发明电路完整的时序图。
首先请参考图2对本发明的基本工作原理作如下说明为了保持采样时间的基本稳定,使用固定周期的采样定时信号。定时信号的一个周期开始(A时刻)后被测量信号的第一个上升沿B到定时信号该周期结束(D时刻)后被测量信号的第一个上升沿E为一个采样周期tBE。首先测量出一个采样周期内被测量信号的周期数FC。但是采样周期tBE不是一个常数,为了测量tBE,对标准频率信号在B时刻后的第一个上升沿C到E时刻后的第一个上升沿F进行计数TC。
因此被测量信号的频率为fX=1TX≈FCTC·TCLK=FCTC·fCLK]]>其中TX为被测量信号的周期。如果不计标准信号频率fCLK的误差,则测量fX的相对误差为ΔfXfX=±1TC≈±TCLKtBE]]>如果不计标准信号频率fCLK的误差,则测量fX的相对误差为因此当TS≥2TX在连续采样时,不会出现采样时间的误差积累。
当TS>>TX时,本方法的测量相对误差约为±TCLK/TS,它与被测量信号频率无关。由于标准信号的频率可以很高,本方法具有极高的测量精度。
下面参考图1,对本发明电路进行详细说明。
本电路包括以下部分被测量信号同步电路;该电路由两个触发器FF1、FF2和一些组合逻辑构成,用于将被测量脉冲信号fx同步到标准时钟fc。当被测量脉冲信号发生一个上升沿后被测量信号同步器会输出一个宽度为标准时钟周期的高电平脉冲S_FX。
结合参见图3。fx的电平发生变化后,fc上升沿来到时,fx的电平值被FF1锁存到FF1的输出端Q_FF1;同时Q_FF1变化前的电平被锁存到FF2的输出端Q_FF2。如果被测量信号频率不大于标准信号的频率,在fx的电平产生一个上升沿后的第一个Q_FF1为高电平Q_FF2为低电平;第二个fc上升沿来到后Q_FF1为高电平Q_FF2为高电平。经过组合逻辑门G1,在其输出端S_FX产生一个宽度为一个标准频率周期的高电平脉冲。
采样定时器与时序控制电路;采样定时器(TIMER)是一个可预置减计数器,用于控制采样时间(精确的采样由时间计数器计量)。该计数器的位数由标准频率和最大采样时间而定,如24位(标准频率fc为100MHz,最大采样时间为0.16秒)。它的时钟被连接到标准时钟fc;当其预置控制(LOAD)为高电平时,时钟输入的一个上升沿可以将预置数据输入(TS)置入该计数器。如果TIMER_LOAD为低电平则每次时钟输入的一个上升沿会使其计数减1。当计数减到0时,计数器的借位输出(TIMER_BO)为高电平。
时序控制电路由一个触发器FF3和一些组合逻辑G2、G3和G4构成。它可以根据采样定时器的BO输出和被测量信号同步电路的S_FX产生控制信号EOS。
再请参见图4。如果S_FX保持低电平并且FF3的输出Q_FF3为低电平,当TIMER_BO为高电平时,通过G2,G3和G4在FF3的数据输入端D_FF3产生一个高电平;在fc上升沿来到后Q_FF3为高电平。当S_FX变为高电平,EOS变为高电平,并使D_FF3变为低电平。并在fc上升沿来到后Q_FF3变为低高电平。因此EOS标志着上一个采样周期的结束和新的采样周期的开始。两个EOS脉冲的间隔约为TC·(TS+1)±TX,其中TC为标准信号周期,TX为被测量信号周期。EOS的高电平脉冲宽度为为TC。
时间计数器(T_COUNTER)是一个加计数器,用于计量采样时间。它宽度取决于采样定时器的宽度和最小被测量信号频率。它的时钟被连接到标准时钟fc;当其预置控制(LOAD)为高电平时,时钟输入的一个上升沿可以将预置数据“1”置入该计数器。如果LOAD为低电平则每次时钟输入的一个上升沿会使其计数加1。
时间计数锁存器(T_LATCH)是宽度与时间计数器的宽度相同的锁存器,用于在完成一次测量后将测量时间保存下来以便后面的数学处理,同时时间计数器可以进入下一次的测量。它的数据输入来自于时间计数器;它的时钟被连接到标准时钟fc;当其锁存允许(CE)为高电平时,时钟输入的一个上升沿可以将其数据输入(D)锁存。
被测量脉冲数目计数器(F_COUNTER)是一个加计数器,用于计量一个采样周期内的被测量脉冲数目。它的宽度由最大采样时间和最大被测量脉冲数频率决定(如最大采样时间为0.1秒,22位的被测量脉冲数目计数器可以测量的最大被测量脉冲数频率为40MHz)。它的时钟被连接到标准时钟fc;当其预置控制LOAD为高电平时,时钟输入的一个上升沿可以将预置数据“1”置入该计数器。如果LOAD为低电平而且计数允许(CE)为高电平则每次时钟输入的一个上升沿会使其计数加1。
被测量脉冲数目计数锁存器(F_LATCH)是宽度与被测量脉冲数目计数器的宽度相同的锁存器,用于在完成一次测量后将被测量脉冲数目保存下来以便后面的数学处理,同时被测量脉冲数目计数器可以进入下一次的测量。它的时钟被连接到标准时钟fc;当其锁存允许CE为高电平时,时钟输入的一个上升沿可以将其数据输入D锁存。
浮点除法器的输入A,B分别来自于F_LATCH和T_LATCH(FC,TC)。当它的启动(ST)信号上升沿后便启动它进行A/B和(或)B/A的浮点运算。其运算结果的相对精度高于1/TC。它的输出A/B和(或)B/A(FX,TX)分别正比于被测量信号的频率(fX)和被测量信号的周期(TX)fX=FCTC·fCLK]]>TX=TCFC·fCLK]]>参考图5对本发明电路的工作过程进行说明。
EOS为高电平后,fc的一个上升沿为一个采样周期的开始,此时T_COUNTER和F_COUNTER都被置为1(同时将上一个采样周期的T_COUNTER和F_COUNTER的计数值分别锁存到T_LATCH和F_LATCH);此后fc每一个上升沿T_COUNTER均进行加1计数,并且当S_FX为高电平时F_COUNTER也进行加1计数。到下一个EOS高电平来到后fc的一个上升沿将把T_COUNTER和F_COUNTER的计数值分别锁存到T_LATCH和F_LATCH(同时T_COUNTER和F_COUNTER都被置为1,从而启动新的采样周期)。这时T_LATCH和F_LATCH中的数据分别为本采样周期的标准频率信号和被测量频率信号的周期数(TC和FC)。由于EOS为高电平后浮点除法器也被启动,经过若干时钟周期浮点除法器计算出TC/FC和/或FC/TC,它们分别正比于被测量信号的周期和频率。
实际上,上述过程是一个循环过程,在EOS为高电平后的fc的上升沿启动了浮点除法器的运算,同时也开始了新的一个采样周期。因此本电路可以对信号进行连续的测量。
本发明的测量方法是1、使用一个标准频率信号。
2、使用两个计数器采样时间计数器和被测量脉冲计数器。
3、对一定的时间内的两个对被测量脉冲信号的上升沿(或下降沿)之间,(1)使用采样时间计数器累计标准频率信号的脉冲数目TC,(2)使用被测量脉冲计数器累计被测量脉冲数目FC。
4、使用一个浮点除法器计算出TC÷FC和(或)FC÷TC它们分别正比于被测量信号频率和被测量信号周期。
权利要求
1.一种频率、周期测量装置,其特征在于其中包括一个采样定时器,用于采样定时与控制;一个脉冲同步电路,用于控制脉冲同步;一个被测量脉冲数目计数器,用于测量脉冲数目;一个时间计数器;其中采样定时器分别接至被测量脉冲数目计数器和时间计数器和脉冲同步电路;采样定时器的一个定时周期开始后的一个被测量信号的跳变沿或者采样定时器被同步于被测量信号的某个跳变沿为一个测量周期的开始,采样定时器的该定时周期结束后的一个被测量信号的跳变沿为该测量周期的结束;被测量脉冲数目计数器用于累计一个测量周期内的被测量脉冲数目;时间计数器用于累计该测量周期内的标准频率脉冲数目。
2.根据权利要求1所述的一种频率、周期测量装置,其特征在于,其中被测量脉冲数目计数器还包括一个浮点除法器用于计算以上两个脉冲数目的商。
3.一种频率、周期测量方法,其特征在于,该测量方法的步骤为步骤1采样定时器的一个定时周期开始后的一个被测量信号的跳变沿或者采样定时器被同步于被测量信号的某个跳变沿为一个测量周期的开始;步骤2采样定时器的该定时周期结束后的一个被测量信号的跳变沿为该测量周期的结束;步骤3被测量脉冲数目计数器用于累计一个测量周期内的被测量脉冲数目;步骤4时间计数器用于累计该测量周期内的标准频率脉冲数目。
全文摘要
本发明一种频率、周期测量装置,其中包括:一个采样定时器,用于采样定时与控制;一个脉冲同步电路,用于控制脉冲同步;一个被测量脉冲数目计数器,用于测量脉冲数目;一个时间计数器;其中采样定时器分别接至被测量脉冲数目计数器和时间计数器和脉冲同步电路;本发明克服了现有的频率测量方法的缺点,使得在宽的信号频率范围内对信号的频率和周期的测量具有极高测量分辨率和较为稳定的采样周期。
文档编号G01R23/02GK1355434SQ0013365
公开日2002年6月26日 申请日期2000年11月30日 优先权日2000年11月30日
发明者吕铁良 申请人:中国科学院微电子中心
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1