检验井孔测量的质量的方法

文档序号:5387616阅读:155来源:国知局
专利名称:检验井孔测量的质量的方法
技术领域
本发明涉及检验在地层内的井孔测量的质量的方法。在钻井领域里,例如为了油气勘探而进行的钻井,为了确保最后到达地层的目的地域,一般的做法是在钻井的过程中,边钻进边测量井身的走向。此种测量可以利用地球重力场或地球磁场作为参照物来进行,为此,要在钻机索上,每隔一定距离固定上加速度计和磁强计。虽然在大多数情况下,上述这些传感器都可以提供可靠的数据,但一般说来,人们还是认为必须有单独进行的第二种测量方法。这种单独测量方法,一般是用在井孔内设置一个套管之后,将陀螺仪沉入井孔的方法进行。这样做,费钱费时,因此需要提供一种不需要使用陀螺仪的那种单独进行测量的测量方法。
因此,本发明的目的是提供一种无需进行单独测量井孔的第二种方法的检验井孔测量质量的方法。
根据本发明,提供了一种检验地层中的井孔测量的质量的方法。此方法包括下列步骤a.选择一种在所述井孔内测定地场参数和井孔位置参数的传感器;b.确定使用所述传感器测定时所述参数的理论的测量不精确性;c.操纵所述传感器在井孔内的选定位置测定位置参数和地场参数;d.求出在所述位置所测得的地场参数与所述位置上地场参数的已知量的差,并求出所述差与地场参数测量不精确性之间的比值;e.从所述比值和位置参数的理论测量不精确性的乘积中求出所测位置参数的不精确性。
地场参数,譬如,可以是地心引力或者地磁场强度;井孔位置参数,譬如,可以是井孔的倾角或井孔的方位。
所测地场参数,与所述位置的所述地场参数的已知值之间的差与位置参数的理论不精确性之间的比值形成对测量质量的初步检验。如果所测地场参数在该参数的测量公差范围内,也就是说如果上述比值不超过1,那么,测量质量至少是可以接受的.如果上述比值超过1,可以认为测量质量不好。因此上述比值成了测量质量的初步尺度,此比值与位置参数的理论不精确性的乘积(如在步骤d中求出的)成了测量的最佳估计。
下面参照附图更详细地举例说明本发明,附图中

图1是示意图,说明固态磁测工具;图2示出在一个实例井孔中沿深度各点测定的和已知的重力场强度之差的曲线图;图3显示的是沿示例井孔深度各点的测定的和已知的磁场强度之差的曲线图;图4显示的是1张沿示例井孔的深度各点的测定的和已知的倾角之差的曲线图。
参见图1,其中显示了一个固态磁测工具1,它适合使用于本发明的检验法。所述工具包括多个传感器,其形式为三个加速度计3为一组和三个磁强计5为一组,为了便于参考,单个加速度计和磁强计没有示出,而只显示了各自互相之间的垂直测量方向x、y和z。三个一组的加速度计3和三个一组的磁强计5分别测定上述这些方向的分加速度和分磁场强度。所述工具1的纵轴线7,与工具1所沉入的井孔(未显示)的纵轴线同轴。工具1的上侧方向以H表示。
在一般使用中,工具1安装于用来钻井孔的钻具组(未显示)上。在井孔内的选定的间隔操作工具1,测定地心引力场G和地磁场B在x、y和z等三个方向的分加速度和分磁强。本领域众所周知的方法,即可从所测得的分加速度G和分磁强B,求出磁场倾角D,井孔倾斜I和井孔方位A的大小.在进一步处理这些参数之前,要根据与工具1有关的传感器所属的传感器类别的校准数据(即偏置、刻度的偏差、不同轴等)当地的地磁场的变化,计划的井孔走向以及诸如用于原始测量数据的修正量之类的传感器工作条件等确定G、B、D、I和A的理论不精确性。因为G、B、D、I和A的理论不精确性主要决定于传感器的精度和地场的微小变化引起的地场参数的不精确性,所以这些参数各自的理论不精确性的总量可以从传感器和地场参数变化引起的理论不精确性的总量求出。在本说明书中使用了下列符号dGth,s=由于传感器不精确性而产生的重力场强度G的理论不精确性;dBth,s=由于传感器不精确性而产生的磁场强度B的理论不精确性;dDth,s=由于传感器不精确性而产生的倾角的理论不精确性;dBth,g=由于地磁不精确性而产生的磁场强度B的理论不精确性;dDth,g=由于地磁不精确性引起的倾角的理论不精确性;dIth,s=由于传感器不精确性引起的井孔倾斜的理论不精确性;dAth,s=由于传感器不精确性引起的井孔方位的理论不精确性;dAth,g=由于地磁不精确性引起的井孔方位的理论不精确性。
下一阶段,对从测量来的重力场和磁场的未经修正的数据在轴向磁干扰、横向磁干扰和与工具表面有关的偏移方面作修正,EP-B-0193230公开了一种适合的修正方法,该修正方法把当地的期望磁场强度和倾角用作输入数据,并以修正过的重力场强度、磁场强度和倾角作为输出数据的形式提供。把这些修正过的地场参数值与已知的当地的地场参数值相对比,即可求出每一参数的计算出的值与已知值之间的差。
把地场参数G、B和D的修正的测量值与已知值的差与上面相对的G,B和D的测量不精确性相比即可得出测量质量的初步评估。测量质量要达到可接受的程度,所述的差不应超过测量不精确性。在图2、3和4中显示了井孔测量的实例结果。图2显示的是参数G沿井孔深度各点的ΔGm,即参数G的修正的测量值与已知值之间差的曲线图。图3显示的是参数B沿井孔深度各点的ΔBm,即参数B的修正的测量值与已知值之间差的曲线图表。图4显示的是参数D沿井孔深度各点的ΔDm,即参数D的修正的测量值与已知值之间差的图表。本例中地场各参数的测量不精确性为G的不精确性=dG=0.0023g(g是重力加速度);B的不精确性=dB=0.25μT;D的不精确性=dD=0.25度。
这些测量不精确性在各图中作了显示,对于参数G,上下界为10,12;对于参数B,上下界为14,16;对参数D,上下界为18,20。如图所示ΔGm,ΔBm和ΔDm的所有值都在各自的测量不精确性范围内,因此,这些值都被认为是可接受的。为了求出从测定的地场参数G,B和D得出位置参数I和A的不精确性,首先要求出下列各比值ΔGm/dGth,sΔBm/dBth,sΔDm/dBth,sΔBm/dBth,gΔDm/dGth,g其中,ΔGm=参数G的修正的测量值与其已知值之差;ΔBm=参数B的修正的测量值与其已知值之差;ΔDm=参数D的修正的测量值与其已知值之差。
为了计算测得的倾斜不精确性,可以假定上面说明的重力场强的比值ΔGm/dGth,s代表了对倾斜不精确性产生影响的不精确性的所有来源的水平。例如,假使在钻机钻具组的某一测量点,所述比值等于0.85,那么,可以假定钻机钻具组的所有传感器的不精确性均处于0.85×dIth,s的水平。因此钻机钻具组的所有测量点的测量的倾斜不精确性是;ΔIm=abs[(ΔGm/dGth,s)dIth,s],其中ΔIm=由于传感器不精确性引起的测量的倾斜不精确性。
测量方位不精确性用类似的方法求出,然而有两个不精确性的来源(传感器和地磁)可能影响方位不精确性。对于每个来源,可以得出两个比值,即磁场强度和倾角,结果就有四个测量的方位不精确性ΔAS.B=abS[(ΔBm/dBth,s)dAth,s]ΔAS.D=abS[(ΔDm/dDth,s)dAth,s]ΔAg.B=abS[(ΔBm/dBth,g)dAth,g]ΔAg.D=abS[(ΔDm/dDth,g)dAth,g]可以认为测量的方位不精确性ΔAm是这些值的最大值,即ΔAm=max[ΔAS.B;ΔAS,D;ΔAg,B;ΔAg,D]。
侧位不精确性和上位不精确性可以从测量的倾斜不精确性和测量的方位不精确性得出。这些位置不精确性通常用协方差接近的方法求出。为了简便起见,可以运用下面更直接的方法。
LPUi=LPUi-1+(AHDi-AHDi-1)(ΔAim;sin Iim+ΔAi-1msin Ii-1m)/2;和UPUi=UPUi-1+(AHDi-AHDi-1)(ΔIim+ΔIi-1m)/2其中LPUi=i位置的侧位不精确性;AHDi=沿孔深的在i位置;ΔAim=i位置的测量的方位不精确性;ΔIim=i位置的测量的倾斜不精确性;UPUi=i位置的上位不精确性,然后将这样求得的侧位不精确性和上位不精确性与理论侧位不精确性和理论上位不精确性(由理论倾斜不精确性和理论方位不精确性得出)作比较,以显示井孔测量的质量。
权利要求
1.一种检验地层内的井孔测量质量的方法,所述方法包括a.选择一种在所述井孔内测定地场参数和井孔位置参数的传感器;b.求出使用所述传感器测定时所述参数的理论测量不精确性;c.操作所述的传感器,在井孔内的选定位置测定位置参数和地场参数;d.求出在所述位置测得的地场参数与该位置上地场参数的已知量的差,并求出所述差与地场参数测量不精确性之间的比值;e.从所述比值和位置参数的理论测量不精确性的乘积中求出所测位置参数的不精确性。
2.按照权利要求1所述的方法,其特征在于所述的传感器包括一个固态磁测工具,所述的工具至少有一个磁强计和至少有一个加速度计。
3.按照权利要求2所述的方法,其特征在于所述的固态磁测工具有三个磁强计和三个加速度计。
4.按照权利要求1-3中任一项所述的方法,其特征在于求出所述参数的理论测量不精确性的步骤包括求出所选传感器所属的一组传感器的理论测量不精确性。
5.按照权利要求1-4中任一项所述的方法,其特征在于所述理论测量不精确性至少要以传感器不精确性和地场参数的一个不精确性两者中的一个为依据。
6.按照权利要求1-5中任一项所述的方法,其特征在于如果所述比值超过1,则认为测量不合格。
7.按照权利要求1-6中任一项所述的方法,其特征在于所述位置参数选自井孔倾斜和井孔方位参数。
8.按照权利要求7所述的方法,其特征在于在第一种作业方式中,位置参数产生井孔倾斜,地场参数产生地球重力场,位置参数的理论不精确性和地场参数的理论不精确性以传感器不精确性为依据。
9.按照权利要求7或8所述的方法,其特征在于在第二种作业方式中,位置参数产生井孔方位,地场参数产生地磁场强度,位置参数的理论不精确性和地场参数的理论不精确性以传感器不精确性为依据。
10.按照权利要求7-9中任一项所述的方法,其特征在于在第三种作业方式中,位置参数产生井孔方位,地场参数产生地球磁场强度,位置参数的理论不精确性和地场参数的理论不精确性以地磁场不精确性为依据。
11.按照权利要求7-9中任一项所述的方法,其特征在于在第四种作业方式中,位置参数产生井孔方位,地场参数产生地磁场的倾角,位置参数的理论不精确性和地场参数的理论不精确性以传感器不精确性为依据。
12.按照权利要求7-11中任一项所述的方法,其特征在于在第五种作业方式中,位置参数产生井孔方位,地场参数产生地磁场的倾角,位置参数的理论不精确性和地场参数的理论不精确性以地场参数的不精确性为依据。
13.按照权利要求9-12中任一项所述的方法,其特征在于求出测量的位置参数的不精确性的步骤包含求出从第二、三、四和五种作业方式中求得的测量的位置参数不精确性的最大绝对值。
14.参照附图如上所述的方法。
全文摘要
提供一种检验地层内的井孔测量质量的方法,所述方法包括以下步骤:a.选择一种在所述井孔内测定地场参数和井孔位置参数的传感器;b.确定使用所述传感器测定时所述参数的理论测量不精确性;c.操作所述传感器,在井孔内的选定位置测定位置参数和地场参数;d.求出在所述位置测得的地场参数与该位置上地场参数的已知量的差,并求出所述差与地场参数测量不精确性之间的比值;e.从所述比值和位置参数的理论测量不精确性的乘积中求出所测位置参数的不精确性。
文档编号E21B47/022GK1202949SQ96198489
公开日1998年12月23日 申请日期1996年11月20日 优先权日1995年11月21日
发明者罗宾·A·哈特曼 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1