专利名称:水基增粘剂流体及其使用方法
技术领域:
本发明涉及水基增粘剂流体以及它们在稳定支撑裂缝的颗粒中的用途。
背景技术:
烃生产井通常是由水力破碎处理来增产的。在水力破碎处理中,粘性压裂液被以一定的速度和压力泵送入生产区域中,以使地下岩层断裂并且在该区域中形成一个或多个裂缝。通常被称为“支撑剂”的颗粒固体如分级的砂子悬浮于部分压裂液中,然后当该压裂液转化为返回到表面的稀流体的时候,所述颗粒固体沉积于裂缝中。这些颗粒特别是用来防止裂缝的完全闭合,以形成所产生的烃类能够流过的传导通道。
为了防止随后支撑剂和其它颗粒与所产生的流体一起回流,可以将引入裂缝中的一部分支撑剂涂布上可固化树脂,以促进裂缝中的支撑剂颗粒的固结。通常,树脂涂布的支撑剂在大量未涂布的支撑剂已沉积在裂缝中之后沉积在裂缝中。部分闭合的裂缝向树脂涂布的支撑剂颗粒施加压力,从而使这些颗粒相互接触,同时该树脂提高了单个支撑剂颗粒之间的粒-粒接触。压力和树脂的作用引起了支撑剂颗粒固结为坚硬的、可以渗透的具有压缩和拉伸强度的物质,能够防止未固结的支撑剂和地层砂与所产生的流体一起流出裂缝,并且破坏生产设备和/或该井的潜在生产量。
连同或者替代树脂,可以用增粘剂涂布一些或者全部的支撑剂来帮助控制地层碎屑在支撑剂填充物中的迁移。增粘剂即使在被放置到地层中后,其本质上仍保留有粘性或者保留了粘合特性。这样,当地层碎屑企图与地层流体一起流过填充物的时候,它们能够被增粘剂捕获,以至于不能与所生成的流体一起产出。
已经证实这种增粘剂的使用对烃和水的生产特别有用,特别是在煤床甲烷地层中。然而,传统的增粘剂需要烃系或非水性载体流体,这在特定的表面陆地、水或者海环境中被证明可能是有问题的。另外,传统的试剂通常不能提供在某些地下岩层中所希望的高弹性的支撑剂-支撑剂粘结,传统的增粘剂通常还缺乏控制“增粘作用”的开始的能力(即,该增粘剂不能作为非粘性的、可以后来被活化变粘的流体)。因此,所述支撑剂通常应该在被放置到裂缝中之前被增粘,这限制了加固和/或增粘已被放置的支撑剂的能力。此外,在暴露于氧化环境时,传统的增粘剂常常随着时间的流逝而固化。
发明内容
本发明涉及水基增粘流体以及它们在稳定支撑裂缝的颗粒中的用途。
本发明的一些实施方案提供了在地下岩层中形成支撑剂填充物的方法,该方法包括将包含支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及活化该水性增粘剂化合物,以便形成支撑剂填充物。
本发明的其它实施方案提供了稳定支撑剂填充物的方法,该方法包括将水性增粘剂化合物引入至少一部分现有支撑剂填充物中;以及活化水性增粘剂化合物,以便稳定支撑剂填充物。
本发明的其它实施方案提供了控制支撑剂颗粒从支撑剂填充物回流的方法,该方法包括将包含支撑剂颗粒的水性载体流体引入地下裂缝中,以便形成支撑剂填充物,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及活化该水性增粘剂化合物。
本发明的其它实施方案提供了包含支撑剂颗粒和水性流体的维护流体,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物。
本发明的其它实施方案提供了涂布有水性增粘剂化合物的支撑剂颗粒。
对于本领域的技术人员来说,在阅读了下面的优选实施方案以后,本发明的特点和优点将是显而易见的。
具体实施例方式
本发明涉及水基增粘流体和它们在稳定支撑裂缝的颗粒中的用途。
本发明的水性增粘剂化合物根据本发明,可以将水性增粘剂化合物涂布到被引入包含未固结颗粒的地下裂缝一部分中的颗粒(例如支撑剂颗粒)上。对本文中所使用的术语“粘性的”来说,在它的所有形式中,通常是指触觉上本身(或者可以被活化成为)有些粘性的物质。本文中所使用的术语“未固结的”是指颗粒松散地未粘合或者非常弱粘合地粘合在一起,以至于能够随在部分地下岩层中运动的流体一起迁移的情形。例如,没有充分与树脂粘合在一起,并且趋向于与流体一起在地层中迁移的支撑剂颗粒可以被认为是未固结的。
合适的水性增粘剂化合物能够在颗粒(例如,支撑剂)的表面形成至少部分涂层。通常,当被置于颗粒上时,合适的水性增粘剂化合物并不是明显粘性的,但是其能够被“活化”(也就是被去稳定、聚结和/或起反应),以便在需要的时刻该化合物可以转化成粘性的增粘化合物。这样的活化可以发生在将水性增粘剂化合物放入地下岩层之前、之中或之后。在一些实施方案中,可以首先用预处理接触颗粒的表面来为其涂布水性增粘剂化合物作准备。
本发明的一些实施方案描述了使用水性增粘剂化合物来控制存在于地下岩层中的松散颗粒并且用来稳定地下岩层的界面区,以至于阻碍颗粒(例如碎屑)从界面释放或者产生的方法。在本发明的一些实施方案中,水性增粘剂化合物一旦被活化,就有助于通过改进形式的絮凝物来稳定颗粒。在通常的絮凝物中,增粘的颗粒结块在一起;然而,通过本发明的水性增粘剂化合物产生的改进絮凝物还能够絮凝,粘性的颗粒粘附到它们所接触的表面(例如,井底地层面或者另一颗粒的表面)上。由于这些颗粒被增粘且即使当絮凝颗粒从它们所粘附的表面上挣脱下来时依然保持粘性,因此它们具有重新粘附到另一表面的能力。这进一步降低了增粘的颗粒随地层流体一起迁移并削弱该井的生产量的可能性。
本发明的一些实施方案提供了补救地下裂缝而不需要重新破碎或者重新固作可能已经沉积于裂缝中的支撑剂颗粒的方法。在本发明包括“补救操作”(即,其中支撑剂填充物已经就位,不希望的回流已经开始发生并且需要进行补救或操作,而其中地层已经开始散裂且不稳定的地层表面需要补救的操作)的实施方案中,本发明的水性增粘剂化合物可以是特别适合的,因为在某种程度上,它们可以作为非粘性物质而被置于将要被补救的区域内,然后被活化至呈现出粘性特性。本发明的水性增粘剂化合物可以特别适合于这种补救应用,部分是因为它们可以作为非粘性物质或者吸收性物质而置于支撑剂填充物区域内,然后被活化至呈现出粘性特性,从而到达目标颗粒表面而不存在于孔间隙中。
本发明的水性增粘化合物通常是包含以下化合物的带电荷聚合物,当处于水性溶剂或者溶液中时,该化合物可以形成非硬化的涂层(通过其自身或者与活化剂一起),并且当置于颗粒上的时侯,其与水流接触时将可以增加该颗粒的连续临界再悬浮速度(在实施例7中作了进一步描述)。该水性增粘剂化合物提高了地层中单个颗粒(它们是支撑剂颗粒、地层碎屑、或者其它颗粒)之间的粒子-粒子接触,有助于使所述颗粒固结为内聚、挠曲且可渗透的物质。
适合于本发明中使用的水性增粘化合物的实例包括但不限于丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物(例如聚丙烯酸甲酯、聚丙烯酸丁酯和聚丙烯酸2-乙基己酯)、丙烯酸酯共聚物、甲基丙烯酸衍生物聚合物、甲基丙烯酸均聚物、甲基丙烯酸酯均聚物(例如聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯和聚甲基丙烯酸2-乙基己酯)、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物以及它们的组合。
虽然存在很多用于确定适合水性增粘剂的潜在方法,但是选择合适聚合物的一种实用的方法如下将被测试的聚合物设定为浓缩形式(也就是说,约20-50%的浓度),并且向其加入活化剂。根据经验,如果该混合物看起来凝结形成固体或半固体物质的话,则表示该聚合物是本发明合适的水性增粘剂。如果该混合物看上去没有凝结形成固体或半固体物质,则应该选择另外一种活化剂并重复该测试。本领域的技术人员在知道了希望的凝结结果以后,将能够选择合适的活化剂。例如,当测试适合用作水性增粘剂的丙烯酸酯聚合物的时侯,包含50%乙酐和50%冰乙酸(v/v)的混合物是合适的活化剂。水性增粘化合物的选择可能特别取决于井下的条件(例如,盐度、温度和/或pH)。对于所有合适的水性增粘剂化合物来说,这些和其它井下条件之间的关系并不是一致的。例如,高盐度可能加速一些水性增粘剂化合物的活化,而对于其它化合物则可能延迟活化。本领域的技术人员将能够确定具体的井下条件对所选水性增粘剂化合物的影响。例如,当使用聚丙烯酸酯聚合物的时侯,高盐度和/或极端的pH(高于约9或低于约5)通常加速活化。
如上所述,合适的水性增粘剂化合物通常是带电荷聚合物;它们优先粘结在具有相反电荷的表面上。例如,具有负电荷的水性增粘剂化合物可以优先粘结在具有正至中性ξ电势的表面上和/或疏水性表面上。同样地,使用类似化学物,带正电荷的水溶性增粘剂化合物可以优先粘附到具有负至中性ξ电势的表面和/或亲水性表面上。在其中被处理表面(地层或颗粒)缺乏足够的接受表面的具体实施方案中(即,被处理的表面缺乏与被选择的水性增粘剂化合物基本相反的电荷),可以使用预处理流体来使得所述表面更能接受水性增粘化合物。例如,人们可以使用预处理材料例如阳离子聚合物来处理具有负ξ电势的表面,或者使用阴离子预处理物来处理具有正ξ电势的表面。本领域的技术人员应该理解,也可以使用两性的和两性粒子的预处理流体,只要在它们使用中的暴露条件下使它们可以显示出希望的电荷。合适的预处理流体包括带电荷流体,其包括带电荷表面活性剂、带电荷聚合物或者它们的组合。本领域的技术人员应当理解,在本申请公开内容的帮助下,预处理的使用是任选的并且至少部分地取决于电荷的不均匀性,或在所选水性增粘剂化合物与被处理表面之间的电荷缺乏性。
如上面所提及的那样,水性增粘剂化合物最初是非粘性的,当与活化剂接触时变得发粘。通常,活化剂是有机酸(或能够在水中水解生成有机酸的有机酸的酸酐)、无机酸、无机盐(例如盐水)、带电荷表面活性剂、带电荷聚合物或者它们的组合,但是根据本发明的教导,能够使得水性增粘剂化合物不溶解于水溶液中的任何物质都可以用作活化剂。活化剂的选择可以根据特别是水性增粘剂化合物的组成而改变。适于在本发明中使用的一种活化剂的实例是乙酸/乙酸酐的掺合物。其它的酸、酸性盐、酸酐及它们的混合物也可以是合适的。此外,这与凝结是类似的。例如,很多天然橡胶乳胶在生产过程中通过乙酸或甲酸凝结。合适的盐包括但不限于氯化钠、氯化钾、氯化钙、和它们的混合物。在本发明的另一个示例性实施方案中,存在于地层水中的盐或其他活性化合物自身的浓度可以足以活化水性增粘剂化合物。在这样的实施方案中,没有必要加入外部活化剂。通常,在使用时所述活化剂是的存在量为流体量的约0.1重量%-约40重量%;然而,在一些情况下如在使用盐水的情况下,活化剂可以超过处理流体和水性增粘剂化合物。然而在本发明的教导中,不考虑触发水性增粘剂化合物活化所必需的活化剂浓度,任何引起水性增粘剂化合物活化的化合物(例如,引起水性增粘剂化合物变成为不溶性的)都可以使用。
合适的活化剂种类与合适的预处理流体种类基本相同;差别至少部分地在于所使用的量和它的使用时间。例如,在使用相同的化学试剂或化学药品作为预处理流体和活化剂的情况下,预处理流体可以仅仅占所使用总体积的约0.1体积%-约5体积%。本领域的技术人员可以认识到,预处理流体主要是用来为接受水性增粘剂化合物而作准备的,通常不以足以充分活化该水性活化剂化合物的量使用。此外,在一些实施方案中,可能完全不必使用活化剂。例如,处理的地下岩层部分在地层流体中可能含有足量的盐,以至于简单地将水性增粘剂化合物放入地层中并且让它与现有流体接触,就可以导致所希望的活化。
在本发明的一些实施方案中,水性增粘剂化合物被用来涂布支撑剂颗粒。合适的支撑剂颗粒通常具有一定的尺寸,以便防止从地下区域生成可以与所产生的流体一起迁移的地层碎屑。任何合适的支撑剂颗粒都可以使用,其包括分级的天然砂子或果壳,或结构材料如矾土、陶瓷材料、玻璃材料、聚合物珠粒、复合颗粒等。通常,该支撑剂颗粒具有约4-约400目的U.S.分级筛的尺寸。在本发明的一些实施方案中,支撑剂颗粒是粒径为约10-约70目的U.S.分级筛的分级砂子。应该理解,在本申请中所使用的术语“颗粒”包括所有已知形状的材料,其包括基本球形的材料、纤维材料、多角形材料(例如立方体材料)和它们的混合物。此外,在支撑剂和砂粒处理中通常包括纤维材料,纤维材料可以用来或者可以不被用来承受闭合裂缝的压力,特别是用来增加所得填充物的传导性。
在本发明具体的实施方案中,支撑剂颗粒可以至少部分地涂布可固化树脂。在具体的实施方案中,该涂布有树脂的支撑剂(″RCP″)可以包括由商业供应商预涂布的支撑剂。合适的市售RCP材料包括但不限于预固化的树脂涂布的砂子、涂布了可固化树脂的砂子、涂布了可固化树脂的陶瓷及单层、双层或多层树脂涂布的砂子、陶瓷或矾土。可以从Borden Chemical,Columbus,Ohio购得的一些实例是″XRTTMCERAMAX P″、″CERAMAX I″、″CERAMAX P″、″ACFRACBLACK″、″ACFRAC CR″、″ACFRAC SBC″、″ACFRAC SC″和″ACFRAC LTC″。可从Santrol,Fresno,Texas购得的一些实例是″HYPERPROP G2″、″DYNAPROPG2″、″MAGNAPROP G2″、″OPTIPROP G2″、″SUPER HS″、″SUPER DC″、″SUPERLC″和″SUPER HT″。
合适的可固化树脂成分包括能够形成硬化的、固结物质的那些树脂。合适的树脂包括但不限于双组份环氧基树脂、线性酚醛清漆树脂、聚环氧化物树脂、酚醛树脂、脲醛树脂、聚氨酯树脂、酚醛树脂、呋喃/糠醇树脂、酚醛/乳胶树脂、苯酚甲醛树脂、聚酯树脂以及它们的混合物和共聚物、丙烯酸酯树脂、及它们的混合物。一些合适的树脂如环氧树脂可以具有上面所提及的两个组份,并且使用外部催化剂或活化剂。其它合适的树脂,例如呋喃树脂,如果固化温度较低(即,低于250)的话,通常要求延时的催化剂或者外部催化剂来帮助活化这些树脂的聚合,但是如果地层温度高于约250,优选高于约300的话,将在时间和温度的作用下固化。合适树脂涂布材料的选择可以受到将引入该流体的地下岩层的温度的影响。作为实例,对于井底静态温度(″BHST″)为约60-约250的地下岩层,包含可硬化树脂组分和含有特殊硬化剂的硬化剂组分的双组分环氧基树脂可以是优选的。对于BHST为约300-约600的地下岩层,呋喃基树脂可以是优选的。对于BHST为约200-约400的地下岩层,酚醛基树脂或者单组分HT环氧基树脂可以是优选的。对于BHST为至少约175的地下岩层,苯酚/苯酚甲醛/糠醇树脂也可以是适宜的。在本公开内容的帮助下,本领域的技术人员能够选择在本发明实施方案中使用的合适树脂,并且确定是否需要触发固化的催化剂。
在本发明的具体实施方案中,支撑剂颗粒可以预先涂布水性增粘剂化合物。与被预涂布相反,在本发明的其它实施方案中,支撑剂可以现场涂布水性增粘剂化合物。
本发明的一些实施方案描述了使用支撑剂颗粒破碎地下岩层的方法,其中所述支撑剂颗粒至少部分地涂布有水性增粘剂化合物。在这样的实施方案中,支撑剂颗粒通常通过首次在维护流体(例如,压裂液)中形成淤浆而被运输到地下岩层部分。
本发明的合适的维护流体可以是水性流体、乳液、泡沫,或者是本领域中已知的任何其它形式的地下流体。在一些实施方案中,本发明的维护流体包括淡水。在一些实施方案中,咸水溶液也可以用作维护流体,只要流体的盐浓度不会不令人满意地活化和/或去稳定所述水性增粘剂化合物。根据本发明,还可以使用含水凝胶、泡沫、直接氮、二氧化碳、乳液和其它合适的压裂液(交联的或者未交联的)。含水凝胶通常包括水和一种或多种凝胶剂。乳液可以由两种不混溶的液体,例如水凝胶化的液体和液化的、通常为气体的流体如氮气或二氧化碳构成。在本发明的示例性实施方案中,维护流体是由水、用来凝胶化水并且增加其粘度的凝胶剂、以及任选用于交联所述凝胶并且进一步增加流体粘度的交联剂组成的含水凝胶。该凝胶化的或者凝胶且交联的维护流体增加的粘度特别降低了流体损失,并且可能允许维护流体运送大量的悬浮支撑剂颗粒。用来形成维护流体的水可以是淡水、咸水、盐水或者任何其它不负面地与其它组分反应的水性液体。根据本发明,通过使用水性维护流体,对地下处理的环境影响可以最小化或者降低,特别是在维护流体被倒入到表面陆地、水、或海环境中,或者所述流体是根据U.S.EPA Safe Drinking Water Act(Section 1425,42U.S.C.3000h-4(a),Section 1422(b),U.S.C.300h-1(b))调节的情况下。
在本发明包括使用维护流体(例如交联的凝胶)的实施方案中,活化剂可以是不必要的(如在地下流体或者维护流体自身固有地含有足够的活化化合物的情况下),活化剂可能包括在维护流体自身中,并且所述活化剂可以在被放入维护流体之前放入到地层中的预冲洗流体中,活化剂可以被包含在在维护流体之后放入地层中的超量冲洗液中,或者可以使用一种或多种活化剂的放置的结合。如上所述,活化剂通常以总流体体积的约0.1%-约40%的量存在;然而,在盐水或者压裂液的情况下,其可以大大的超量。在其它实施方案中,活化剂以总流体体积的约0.2%-约25%的量存在。在其它实施方案中,活化剂以总流体体积的约0.5%-约10%的量存在。应该理解,不考虑触发水性增粘剂化合物的活化所必需的活化剂的浓度,在本发明的教导内可以使用能够引起水性增粘剂化合物活化的任何化合物(例如,引起水性增粘剂化合物凝结并且变粘)。
虽然水性增粘剂化合物的活化可能发生在将支撑剂放置于地下裂缝之前、之中或者之后,本发明的具体实施方案是在放置支撑剂之后活化水性增粘剂化合物作为处理现有支撑剂填充物的手段。这特别适合于可能不希望以增粘的形式放置水性增粘剂化合物的情况,例如在补救操作中。以这种方式,水性增粘剂化合物可以被活化形成高粘性化合物或增粘剂,其特定地或者优先地粘附到对所述增粘剂具有天然的或者诱导亲合力的希望的支撑剂表面上。
这样,可以在水力破碎处理中使水性增粘剂化合物以任意多次的不同次数暴露于活化剂。在本发明的特定的实施方案中,活化剂可以几乎同时随水性增粘剂化合物而与载体流体混合。以这种方式,引入地下岩层中的水性增粘剂化合物已经被活化,或者至少处于被活化的过程中。在本发明另外的实施方案中,活化剂可以在已将水性增粘剂化合物引入地层以后的某些时间被引入地下岩层中(例如,水性增粘剂化合物可以在其被活化前的某一时间存在于地下岩层中)。以这种方式,在发生水泥散裂或者支撑剂颗粒或者碎屑需要被再固结的情况下,水性增粘剂化合物提供了补救性地增粘裂缝的能力。本领域的技术人员可以认识到,是否预混合活化剂和水性增粘剂化合物决定至少部分取决于所选择的活化剂。例如,盐活化剂可能趋向于比带电荷表面活性剂更快地活化水性增粘剂化合物。
为了便于更好地理解本发明,给出了下面的优选实施方案的实施例。下面的实施例决不应该被认为是对本发明范围的限制或定义。
实施例实施例1通过混合1升含有20克KCl盐的水、4.2克干瓜尔胶聚合物和0.2ml乙酸/乙酸铵混合物(用作pH缓冲剂来将混合物的pH降低到约6.5),并且在混合机中混合约10分钟使瓜尔胶水合,以制备1000加仑含有35lb干瓜尔胶聚合物的硼酸盐交联压裂液的碱性凝胶。在水合步骤以后,加入2.5ml碳酸钾(用作pH缓冲剂),将最后的碱性凝胶的pH升高到约10.2。
用每250克Brady砂1ml季铵盐的表面活性剂来处理Brady砂子(20/40目),然后用3重量%、由40%聚丙烯酸酯聚合物溶液形成的涂料对其进行干法涂布。
然后将250克涂布过的20/40 Brady砂放置在干净的1升烧杯中,加入300ml所述碱性凝胶溶液,其后将该烧杯放入具有高架混合器的140的水浴中。在混合的同时,用约2分钟将0.32ml硼酸盐交联剂加入到该碱性凝胶/支撑剂浆液中,使交联开始。
得到了稳定的交联,将其与使用了没有用本发明处理的支撑剂所进行的对照试验进行比较。两种流体都保持稳定,这表明本发明的溶液对于流体稳定性没有显著的负面影响;也就是说,其没有表现出例如不能交联或者太早断裂的有害影响。
在用HCl破坏交联凝胶的时候,将涂布的砂分开并进行测试,结果证实其具有希望的粘性和改进的T测试性能(参见下面)。此外,发现涂布过的砂不需要另外的活化剂来得到希望的涂布性能,这至少部分是因为含有活化剂如KCl的破碎凝胶系统,并且其对丙烯酸基聚合物也表现出令人满意的活化pH。
实施例2使用粒度小于100目的Brazos River砂子来模拟地层砂子。然后将该材料填充到5英寸长1英寸ID的锥形特氟龙管套中。将约0.5英寸厚的20/40目的Ottawa砂子填充到Brazos River砂材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积(pore volume)进行冲洗,以确定砂子填充物的初始渗透度。然后用2倍孔隙体积的处理流体(4体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)处理含Brazos River砂子的柱。然后用5倍孔隙体积的KCl盐水(3%)超量冲洗(overflush)该砂子填充物。然后将处理过的砂柱放在烘箱中,在175下固化20个小时。
在固化阶段之后,使用3%的KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min来确定砂子填充物所保留的渗透度,用来与初始渗透度相比较。被处理的砂子填充物有大于95%的渗透度保留下来,在用来建立重新得到渗透的5mL/min KCl流动过程中所收集的流出液中,没有产生碎屑的迹象。
该实施例的结果确定了该处理流体能够稳定地层砂子材料,没有引起对砂子填充物渗透度的过度破坏。
实施例3除了使用了不同浓度的处理流体外,在本实施例中重复实施例2中所描述的相似的制备和测试程序。使用Brazos River砂子模拟地层碎屑。将该材料填充到5英寸长1英寸ID锥形特氟龙管套中。将约0.5英寸厚的具有20/40目粒度的Ottawa砂子填充到Brazos River砂子材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积进行冲洗,以确定砂子填充物的初始渗透度。然后加入2倍孔隙体积的处理流体(2体积%的40%聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)。随后再用5倍孔隙体积的KCl盐水(3%)超量冲洗该砂子填充物。
然后将处理的砂柱放在烘箱中,在175下固化20个小时。在固化阶段之后,使用3%KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min来确定砂子填充物保留的渗透度,用来与初始渗透度相比较。
被处理的砂子填充物保留了大于97%的渗透度。再一次在重新获得渗透的流动过程中所收集的流出液中,没有产生碎屑的迹象。
实施例4使用Brazos River砂来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并且将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,并且用3倍孔隙体积的3%KCl盐水超量冲洗砂柱。
然后将一个单元放在175的烘箱中20个小时,将一个放在325的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出来并且观察它的结构、形状和挠曲性。处理过的Brazos River砂子表现为呈现单元形状的坚固结构。尽管具有与通常从固结岩石所观察到的可以忽略的固结强度,处理过的Brazos River砂粒粘结在一起形成稳定的结构。
实施例5使用了Brazos River砂子来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,不再采用超量冲洗。
然后将一个处理过的柱子放在175的烘箱中20个小时,并且将一个放在325的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出并且观察结构、形状和曲挠性。处理过的Brazos River砂子表现为呈现单元形状的坚固结构。尽管具有通常从固结岩石所观察到的可以忽略的固结强度,但处理过的Brazos River砂粒粘结在一起形成稳定的结构。
实施例6使用筛分粒度为200目及更小的Brazos River砂碎屑来模拟地下碎屑。将该材料填充到1英寸ID的透明丙烯酸流动单元中,以便于观察。将20/40目筛眼的Ottawa砂子填充到该地层碎屑材料的下面和上面。然后然后用3%的KCl盐水使砂柱饱和,并且用5倍体积的该盐水对其进行冲洗,接下来用2倍孔隙体积的处理流体(2体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2表面活性剂、余量为水)对其冲洗,然后用2倍孔隙体积的3%的KCl盐水超量冲洗砂柱。
然后将处理过的砂柱放在烘箱中在140下固化20个小时。在固化阶段之后,使用3%的KCl盐水建立与处理过程相反方向流过被处理砂柱的流动。流动速率开始为10mL/min,并逐渐增加到80mL/min。收集流出液以帮助确定流动过程中在所述单元中所观察到的结果。所有结果都表明,与对照物相比,被处理的柱能够在所有流速内完全控制碎屑的迁移。
作为对比,将同样制备但是没有用浓缩处理流体处理过的砂柱作为对照物。观察到一旦建立了流动,碎屑颗粒就立即开始迁移到砂子填充物中,并且作为流出液的一部分而产生,即使流动速率为10mL/min。
实施例7基于总处理流体的体积,以约2%(v/w)的量处理20/40 Brady砂子试样(41.25%的聚丙烯酸酯聚合物浓缩液、3.75%表面活性剂、30%水、接下来25%的活化剂)。将试样放入下面所描述的T检测中。对用作增粘化合物的化合物的液体或溶液的评价通过下面的测试完成首先,确定将要涂布该增粘化合物的材料的临界再悬浮速度。一种合适的测试装置包括连接到入口水源的1/2″的玻璃T型管,出口处理管线对于流体流动是封闭的。通过入口管将颗粒的水基浆料吸入到T型管中,并且通过筛子收集过滤到的一部分。当T型部分充满的时侯,除去真空源并且使用塞子来密封该部分的端部。然后将从入口到出口的流动通道擦洗干净,并将控制体积的泵连接到入口,开始受控制的水流动。缓慢地增加通过入口的流体速度,直到流动的水流得到了第一颗粒的粒子材料。这确定了开始再悬浮速度的基线。接下来,进一步增加流体速率,直到颗粒的迁移变为连续。这确定了连续的再悬浮速度的基线。接下来,可以结束该测试并且将该装置中再填满颗粒,所述该颗粒具有相应于被涂布颗粒约0.5重量%活性材料的涂层。在所测试浓度为约0.1-约3%的时候,在结果中看到了大体相同的趋势,然而,在优选涂覆范围内0.5%含量对于标准化的程序来说是优选的。可以重复该测试来确定颗粒移动的起始点,以及所述移动变得连续的速度。然后基于初始的或者连续的基线值确定速度增加(或降低)的百分数。
与未处理过的支撑剂相比,有效处理过的支撑剂可以抵抗输送。即使当测试装置在其最大速率2,000mL/min流动的时候,测试试样也没有显示出运动的迹象。未被处理的20/40 Brady砂子在速度为154mL/min时开始流动;处理过的砂抵抗高于未被处理的砂13倍流动速率的流动。
实施例8基于总处理流体的体积,以约2%(v/w)的量处理20/40的Brady砂子试样(40%的聚丙烯酸酯聚合物浓缩液、5%表面活性剂、10%活化剂、余量为水)。与未经处理的20/40 Brady砂相比,本试样显示出对支撑剂传导性有13%的提高。还观察到被处理的支撑剂表现出所希望的粘合特性,其中单个支撑剂胶着并且有弹性地粘合在一起。
实施例9确定聚合物是否适合用作水性增粘剂的一种方法是制备由50%乙酸酐和50%冰乙酸(v/v)组成的混合物。将10ml测试聚合物放入60ml玻璃瓶中。接下来,加入40ml去离子水并且用手旋动使其混合。然后加入15ml乙酸/乙酸酐(或其它活化剂)。剧烈地摇动瓶子30s。合适的聚合物将形成固体的或者半固体物质。重复用其它已知的活化剂进行筛选,例如乙酸/乙酸酐的掺合物、其它酸、酸的盐、酸酐、带电荷聚合物、带电荷表面活性剂、氯化钠、氯化钾、氯化钙和它们的混合物。
实施例10在表现出相对低的单口井产量的煤层甲烷地进行处理。据估计井的产量至少部分地受到阻止气体流入钻井的煤碎屑的削弱。这些井已经在多个煤层中进行了预先水力破碎。用在水中包括乙酸酐、冰乙酸、聚丙烯酸酯聚合物水性增粘剂化合物、酶和氧化剂的溶液处理两口井。
第一口井从处理前约43MCFD(千立方英尺/天)的甲烷产量变成处理后的约75MCFD。类似地,第二口井从处理前约80MCFD的甲烷产量变成处理后的约105MCFD。此外,这些被处理井的观察结果显示,与其在处理前的状态相比,所生成的水中没有碎屑颗粒;从而支持了对地层颗粒达到了有效稳定的假设。
实施例11用研钵和杵从干燥的煤地层制备50ml地下煤颗粒(Subitmunious A)浆料,并将其放置到盛放有淡水的瓶子中,并且使其变成泥浆。然后用10ml包括乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物的溶液处理该煤/水浆液。处理之后,在约12小时的时间内观察到了煤颗粒的初始絮凝,其后观察到这些煤颗粒成为能够在搅拌时破裂并且重新形成的凝聚物质。水相澄清,没有可见的碎屑颗粒保留在溶液中。该实施例从视觉上解释了所描述的煤碎屑稳定和从水溶液中除去的过程。
实施例12将约2cm平方的固体煤试样放置到盛有水的60ml瓶中。然后将该瓶子放在超声发生器中10分钟。结果是从较大块的表面破碎的大量可见的煤颗粒。在另一个瓶中,用包含乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物的溶液处理几乎相同的煤试样,然后将其置入水中,再放入超声发生器中10分钟。对被处理煤试样的视觉观察表明几乎完全没有煤碎屑从处理过的煤表面上破碎下来。
实施例13对表现出低井产量的产生微固结气体的碎屑状地层进行处理。据猜想井产量至少部分地受到阻止气体流入钻井的碎屑的削弱。这些井已经被预先水力破碎。用在水中包括聚丙烯酸酯、乙酸酐/乙酸、季铵盐表面活性剂、两性表面活性剂、酶和氧化剂的水性增粘剂化合物处理这口井。该井的产量从30MCFD变成200MCFD,这显示了已经基本上解决了碎屑问题。
实施例14用100ml阳离子增粘流体处理100克20/40 Brady砂子(2%的阳离子聚丙烯酰胺聚合物浓缩液、94%水,接下来为4%的乙酸酐/乙酸活化剂)。在回收后,该Brady砂表现出希望的粘性特性。
实施例15用100ml阳离子增粘流体处理1克活化过的煤碎屑试样(2%的阳离子聚丙烯酰胺聚合物浓缩液、1%阴离子表面活性剂、93%的水,接下来是4%的乙酸酐/乙酸活化剂)。在5分钟以内,该碎屑固结成为粘性物质。
实施例16用100ml阳离子增粘流体处理1克被活化的煤碎屑试样(2%的阳离子聚丙烯酰胺聚合物浓缩液、1%阴离子表面活性剂、1%两性表面活性剂、92%的水,接下来是4%的乙酸酐/乙酸活化剂)。在5分钟以内,该碎屑固结成为粘性物质。
因此,本发明非常适合实现所提及的目的和优点以及自身固有的那些优点。虽然本领域的技术人员可以进行很多改变,但是这样的改变都被包括在由下面所附的权利要求所限定的本发明的精神内。
权利要求
1.一种在地下岩层中形成支撑剂填充物的方法,该方法包括将包含支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及,活化所述水性增粘剂化合物以形成所述支撑剂填充物。
2.权利要求1的方法,其中活化所述水性增粘剂化合物形成了稳定的支撑剂填充物。
3.权利要求1的方法,其中所述维护流体包括水性流体、乳液或者泡沫。
4.权利要求1的方法,其中所述维护流体包括淡水、咸水、或它们的组合。
5.权利要求1的方法,其中所述维护流体被交联。
6.权利要求1的方法,其中所述维护流体进一步包括活化剂。
7.权利要求6的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
8.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之前被活化。
9.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝的同时被活化。
10.权利要求1的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之后被活化。
11.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。
12.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到疏水性表面上。
13.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
14.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到亲水性表面上。
15.权利要求1的方法,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物。
16.权利要求1的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
17.权利要求1的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物曝露于活化剂。
18.权利要求17的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
19.权利要求17的方法,其中所述活化剂包括乙酸/乙酸酐的掺合物。
20.权利要求1的方法,其中使所述支撑剂颗粒在被至少部分涂布水性增粘剂化合物之前与预处理流体接触。
21.权利要求20的方法,其中所述预处理流体包括带电荷表面活性剂、带电荷聚合物、或者它们的组合。
22.权利要求1的方法,其中所述支撑剂颗粒在被至少部分涂布水性增粘剂化合物之前被至少部分地涂布树脂。
23.一种稳定支撑剂填充物的方法,该方法包括将水性增粘剂化合物引入现有支撑剂填充物的至少一部分中;以及活化所述水性增粘剂化合物以稳定所述支撑剂填充物。
24.权利要求23的方法,其中在将所述水性增粘剂化合置入部分地下岩层之前,使其与维护流体混合。
25.权利要求24的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。
26.权利要求24的方法,其中所述维护流体包括淡水、咸水、或者它们的组合。
27.权利要求24的方法,其中所述维护流体被交联。
28.权利要求24的方法,其中所述维扩流体进一步包括活化剂。
29.权利要求28的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
30.权利要求23的方法,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物。
31.权利要求23的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
32.权利要求23的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物暴露于活化剂。
33.权利要求32的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
34.权利要求32的方法,其中所述活化剂包括乙酸/乙酸酐的掺合物。
35.权利要求23的方法,其中至少部分现有支撑剂填充物在将水性增粘剂化合物引入现有支撑剂填充物的至少一部分中之前与预处理流体接触。
36.权利要求35的方法,其中所述预处理流体包括带电荷表面活性剂、带电荷聚合物、或它们的组合。
37.权利要求23的方法,其中在水性增粘剂被活化之后,所述支撑剂填充物表现出比水性增粘剂被活化之前更高的传导性。
38.一种控制支撑剂颗粒从支撑剂填充物回流的方法,该方法包括将包含支撑剂颗粒的水性载体流体引入地下裂缝中以形成支撑剂填充物,其中至少一些支撑剂颗粒至少部分地涂布有水性增粘剂化合物;以及,活化所述水性增粘剂化合物。
39.权利要求38的方法,其中活化水性增粘剂化合物形成了稳定的支撑剂填充物。
40.权利要求38的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。
41.权利要求38的方法,其中所述维护流体包括淡水、咸水、或者它们的组合。
42.权利要求38的方法,其中所述维护流体被交联。
43.权利要求38的方法,其中所述维护流体进一步包括活化剂。
44.权利要求43的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
45.权利要求38的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之前被活化。
46.权利要求38的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝的同时被活化。
47.权利要求38的方法,其中所述水性增粘剂化合物在将支撑剂颗粒引入地下裂缝之后被活化。
48.权利要求38的方法,其中所述水性增粘剂化合被优先粘结到具有正ξ电势的表面上。
49.权利要求38的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
50.权利要求38的方法,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物。
51.权利要求38的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。
52.权利要求38的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物暴露于活化剂。
53.权利要求52的方法,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
54.权利要求52的方法,其中所述活化剂包括乙酸/乙酸酐的掺合物。
55.权利要求38的方法,其中所述支撑剂颗粒在被至少部分地涂布水性增粘剂化合物之前与预处理流体接触。
56.权利要求55的方法,其中所述预处理流体包括带电荷表面活性剂、带电荷聚合物、或它们的混合物。
57.权利要求38的方法,其中所述支撑剂颗粒在被至少部分地涂布水性增粘剂化合物之前被至少部分地涂布树脂。
58.一种包括支撑剂颗粒和水性流体的维护流体,其中至少一些支撑剂颗粒被至少部分地涂布水性增粘剂化合物。
59.权利要求58的维护流体,其中所述水性流体包括淡水、咸水、或它们的组合。
60.权利要求58的维护流体,其中所述水性流体被交联。
61.权利要求58的维护流体,其进一步包括活化剂。
62.权利要求61的维护流体,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。
63.权利要求61的维护流体,其中所述活化剂包括乙酸/乙酸酐的掺合物。
64.权利要求58的维护流体,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。
65.权利要求58的维护流体,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
66.权利要求58的维护流体,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物。
67.涂布有水性增粘剂化合物的支撑剂颗粒。
68.权利要求67的支撑剂颗粒,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。
69.权利要求67的支撑剂颗粒,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。
70.权利要求67的支撑剂颗粒,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物。
全文摘要
本发明涉及水基增粘剂流体以及它们在稳定支撑裂缝的颗粒中的用途。本发明的一些实施方案提供了在地下岩层中生产支撑剂填充物的方法,该方法包括将包括支撑剂颗粒的水性维护流体引入地下裂缝中,其中至少一些支撑剂颗粒至少部分地被水性增粘剂化合物涂布;并且,活化水性增粘剂化合物以形成支撑剂填充物。其它的实施方案提供了稳定支撑剂填充物的方法,其包括将水性增粘剂化合物引入一部分现有的支撑剂填充物中;并且,活化水性增粘剂化合物以稳定支撑剂填充物。其它的实施方案提供了包括支撑剂颗粒和水性流体的维护流体,其中至少一些支撑剂颗粒被部分地涂布有水性增粘剂化合物。
文档编号E21B43/267GK1965146SQ200580018966
公开日2007年5月16日 申请日期2005年5月19日 优先权日2004年6月9日
发明者马修·E.·布劳克, 托马斯·D.·韦尔顿, 菲利普·D.·阮 申请人:哈利伯顿能源服务公司