一种大面积超薄阳极氧化铝多孔膜的制备方法
【技术领域】
[0001]本发明涉及一种大面积超薄阳极氧化铝多孔膜的制备方法,具体属于阳极氧化铝多孔膜技术领域。
【背景技术】
[0002]常用的制备纳米结构材料的方法有自组织生长、电子束光刻、纳米压印等。但是,这些方法对工艺和设备要求高,产率低,因此成本很高。模板合成纳米结构单元和纳米结构阵列体系是一种简单而普适的合成工艺,而阳极氧化铝多模板具有成本低、空洞分布均匀有序且大小可控等优点,是制备尚度有序纳米材料的理想t旲板。其中,超薄阳极氧化招多孔膜(厚度不大于1 μπι)在制备高密度有序纳米点阵、纳米柱阵列等方面具有广泛的应用。
[0003]目前超薄阳极氧化铝多孔膜的制备和转移已有很多报道。一般采用传统的两步氧化法制备阳极氧化铝,通过控制第二次氧化的时间来控制膜的厚度。第二次氧化后便在铝基板上获得了超薄阳极氧化铝多孔膜。但是膜的孔是不通的,底部存在一层阻挡层,而且膜位于铝基之上,需要将铝基和阻挡层去除,转移所需要的衬底之上才可以使用。目前报道的转移方法分为两种:一种是在膜表面涂上一层有机物(一般为聚甲基丙烯酸甲酯,即ΡΜΜΑ)作为支撑层,以保证去除铝基和阻挡层的时候多孔膜不破损,然后将薄膜贴于衬底上,再用有机溶剂除去有机物支撑层;另一种是不使用任何支撑,直接将铝基除去,通过滤网将膜捞起转移到磷酸中以去除阻挡层,再通过滤网捞起放入水中清洗数次,最后用衬底薄膜捞起。后者的优点在于免去清洗有机物的麻烦,不会引入有机物杂质,但是由于超薄阳极氧化铝多孔膜非常脆弱,转移过程中很容易破损和折叠,成功率较低。该方法的一个严重缺点就是通孔的超薄阳极氧化铝多孔膜的保存和运输非常困难,因为在转移到衬底上之前它必须保存在水面上。相比之下,采用有机物作为支撑层的超薄阳极氧化铝多孔膜的保存和运输都很方便。
[0004]然而,目前已有报道所获得的超薄阳极氧化铝多孔膜面积都比较小(几平方厘米),对于薄膜表面这一层关键的有机物支撑层的制备技术没有详细的研究和优化。如果采用有机溶液旋涂法,获得有机层太薄,难以保持和运输;直接将有机溶液滴铸在薄膜表面却不优化控制其制备工艺,当膜面积大于几十平方厘米时,整个薄膜会出现卷曲现象,同样无法保持、运输和使用。现有技术中存在为了降低其弯曲程度而采用较厚的有机物支撑层的技术方案,但是会导致阳极氧化铝多孔膜容易从有机物层底部脱落而破损。因此,发明一种超薄阳极氧化铝多孔膜的制备方法,能够有效解决有机物支撑层的厚度和卷曲问题,从而制备得到大面积超薄阳极氧化铝多孔膜,显得尤为必要。
【发明内容】
[0005]为解决现有技术的不足,本发明的目的在于提供一种大面积超薄阳极氧化铝多孔膜的制备方法,能够有效制备得到大面积超薄阳极氧化铝多孔膜。
[0006]为了实现上述目标,本发明采用如下的技术方案:
[0007]一种大面积超薄阳极氧化铝多孔膜的制备方法,包括以下步骤:S1、氧化铝多孔膜的制备;S2、预扩孔处理;S3、有机物支撑层的制备;S4、铝基和阻挡层的去除。
[0008]前述制备方法中,具体包括以下步骤:
[0009]S1、氧化铝多孔膜的制备:抛光铝片在酸溶液中经过两次阳极氧化得到带有铝基的单通超薄阳极氧化铝多孔膜;
[0010]S2、预扩孔处理:将带有铝基的单通超薄阳极氧化铝多孔膜放入酸溶液中进行扩孔;可以将孔径扩大,同时增加膜微观表面积从而增加多孔膜与步骤S3所述有机物支撑层的粘合程度;
[0011]S3、有机物支撑层的制备;在经过预扩孔处理的带有铝基的单通超薄阳极氧化铝多孔膜的表面滴加有机溶液,随后进行烘烤,通过快速退火获得宏观应力很小的有机物薄膜,形成有机物支撑层;
[0012]S4、铝基和阻挡层的去除:重复步骤S3数次(可以用于控制有机物支撑层的厚度)得到带有铝基的具有有机物支撑层的单通超薄阳极氧化铝多孔膜,再将多孔膜的铝基一面放置于刻蚀液中去除铝基;随后取出具有有机物支撑层的单通超薄阳极氧化铝多孔膜,放置于酸溶液表面去除阻挡层,单通多孔膜变为通孔,即得大面积超薄阳极氧化铝多孔膜。
[0013]进一步地,前述制备方法中,包括以下步骤:
[0014]S1、氧化铝多孔膜的制备:抛光铝片在酸溶液中经过两次阳极氧化得到带有铝基的单通超薄阳极氧化铝多孔膜;
[0015]S2、预扩孔处理:将带有铝基的单通超薄阳极氧化铝多孔膜放入酸溶液中在20?50°C下扩孔1?240分钟;
[0016]S3、有机物支撑层的制备;在经过预扩孔处理的带有铝基的单通超薄阳极氧化铝多孔膜的表面滴加有机溶液,摇动使得有机溶液在表面分布均匀,随后在120?150°C下烘烤5s?25min,形成有机物支撑层;
[0017]S4、铝基和阻挡层的去除:重复步骤S3 2?4次得到带有铝基的具有有机物支撑层的单通超薄阳极氧化铝多孔膜,将铝基一面放置于刻蚀液中去除铝基;随后取出具有有机物支撑层的单通超薄阳极氧化铝多孔膜放置于酸溶液表面,在20?50°C下腐蚀1?240分钟去除阻挡层,即得大面积超薄阳极氧化铝多孔膜。
[0018]前述制备方法,步骤S1中酸溶液为硫酸、草酸、磷酸或柠檬酸中的一种或多种,酸溶液的质量百分比浓度为1%?10%。
[0019]前述制备方法,步骤S2和S4中,酸溶液为磷酸溶液,酸溶液的质量百分比浓度为1% ?10%。
[0020]前述制备方法,步骤S3中,有机溶液的溶质为聚甲基丙烯酸甲酯和/或聚苯乙烯;有机溶液的溶剂为氯仿、丙酮、二氯甲烷或甲苯中至少一种,有机溶液的质量分数为3?
[0021]进一步地,前述制备方法,步骤S3中,有机溶液的溶质为聚甲基丙烯酸甲酯,有机溶液的溶剂为甲苯。
[0022]前述制备方法,步骤S3中,有机溶液的滴加量为0.01?0.lmL/cm2。
[0023]前述制备方法,步骤S3中,有机溶液滴加与烘烤之间的时间间隔为0?30s,以免过度加热。
[0024]前述制备方法,步骤S4中,刻蚀液为氯化铜、硫酸铜、盐酸、氯化锡或氯化汞中的至少一种。
[0025]通过本发明方法制备的大面积超薄阳极氧化铝多孔膜,由于是一种超薄膜,不能自支撑,因此引入有机物支撑层进行支撑。结构如图1所示。本发明中有机物支撑层是超薄阳极氧化铝多孔膜支撑和进行转移的关键结构材料,具有以下性质:第一,有机物支撑层不卷曲,厚度不太薄,具有一定的强度,能够自支撑,可以任意夹取;第二,有机物支撑层厚度不太厚,与阳极氧化铝多孔膜表面粘合紧密,在整个制备操作过程中多孔膜始终不与有机物支撑层脱离;第三,该有机物支撑层最终可以用特定溶剂除去。
[0026]如图2和图3所示,通过本发明的方法制备得到的阳极氧化铝多孔膜结构规整,为一种超薄膜。本发明的多孔膜厚度仅为lOOnm?400nm,膜面积可超过50cm2。
[0027]本发明制备的多孔膜,可以移转到目标衬底上,从而满足使用要求。在将制备得到的多孔膜转移到目标衬底之前,先将衬底进行亲水处理,并在衬底表面涂上一层水,然后将带有有机物支撑层的多孔膜贴于衬底之上,然后将衬底放在丙酮或二氯甲烷等有机溶剂中除去有机物支撑层,即得到转移到目标衬底上的超薄阳极氧化铝模板。
[0028]本发明的有益之处在于:本发明提供的一种大面积超薄阳极氧化铝多孔膜的制备方法,能够制备得到大面积超薄的阳极氧化铝多孔膜,超薄多孔膜结构规整,厚度仅为lOOnm?400nm。通过对多孔膜的预扩孔处理以及控制有机物支撑层的厚度,起到了使多孔膜既不易破碎,又能与有机物支撑层粘合紧密的作用,使得多孔膜可以方便的移转到目标衬底,形成满足使用需求的超薄阳极氧化铝多孔膜。通过对液态有机溶液的快速退火获得宏观应力很小的有机物支撑层,从而解决了大面积薄膜的卷曲问题,可以获得面积超过50cm2的带有有机物支撑层的超薄阳极氧化铝多孔膜。有机物支撑