低温蒸馏生产氧和氮的改进方法

文档序号:5229767阅读:321来源:国知局
专利名称:低温蒸馏生产氧和氮的改进方法
技术领域
本发明涉及低温蒸馏生产氧和氮的改进方法及其与燃气轮机的联合生产线。
空气成分低温分离的常规方法包括两座蒸馏塔,高压塔上端与低压塔下端换热连接。压缩冷空气在高压塔中分成富氮和富氧液后送入低压塔而制成氧产品和氮产品。在氧压很低,如约1-2巴时该法很有效。
USP4224045说明了应用来自动力透平的空气作为常规两塔工艺制氧设备的空气进料。由于动力透平的优选空气压力相当高,如10-18巴绝对压力,所以常规/典型双塔工艺必须使高压塔和低压塔在高压下操作,制成的氧和氮压力达2-7巴绝对压力。在氮产品和氧产品再压缩至高压后与附带工艺,如煤气化和钢铁生产或发电过程中的直接还原工艺联合时,总效率相当高。
不幸的是,该法主要缺点在于,高压操作双塔工艺时氧收率相当差。例如,16巴的空气压力可达到约90%氧收率,氧纯度95%并且绝对氧压约5巴。而对于98%的氧含量,同样空压和氧压下收率降为约80%。6巴绝对空压下操作的常规空气设备一般达到99%以上的收率,纯度约99.5%。低收率使能耗加大,设备尺寸也相应增大。
USP3731495说明了用氮气骤冷动力透平进行空分的双塔设备及其工艺。在该法中,空气经低温精馏工艺进行分离,应用了150-400psia塔和45-140psia塔,其中采用所得中温气体混合物作功膨胀之前来自上述后一塔的富氮气骤冷热燃烧气。但由于该法应用双塔,所以仍有USP4224045所存在的缺点。
USP4947649说明了用氮循环流进行的单塔工艺,其中高压空气在塔底冷凝后直接送入塔中。氮气产品压缩后一部分循环回到该工艺中而进行蒸馏塔再沸和回流,其中改变循环流速即可调节产品收率,但与USP4224045相比,总动力消耗改进率很小,仅为1%。
因此目前迫切需要改进高空压下氧和氮生产工艺和设备的低温蒸馏方法和装置以及可有效地与燃气轮机并用的这种方法和装置。
而本发明目的正是提出在高进料空气压力下生产相当高压氧和氮产品的改进低温蒸馏方法和装置。
本发明另一目的是提出能耗低并且设备尺寸小的低温蒸馏生产氧和氮产品的改进方法和装置。
本发明再一目的是提出进料空气全部或一部分来自动力透平的氧和氮改进生产方法。
上述和其它目的可通过低温蒸馏生产氧和氮的方法而达到,该法包括a)将至少含氧和氮的净化,干燥和压缩进料流的至少一部分冷却后送入高压塔并将其分成塔顶的富氮液流和塔底的富氧流,其中高压塔塔顶馏出物与低压塔和中间塔的塔底馏出物换热,
b)将富氧流送入中间塔而制成顶部液体馏分A和底部液体馏分B,中间塔塔顶馏出物在低压塔底部再沸器以上的位置与低压塔换热,其中中间塔压力低于高压塔但高于低压塔,c)将液体馏分A和B送入低压塔作进料,d)将a)中的富氮液体送入低压塔作回流物料和e)在低压塔底回收富氧产品并在低压塔顶回收低压富氮产品。


图1示出了本发明将三塔重叠设置的方案。
图2示出了本发明另一应用侧塔的方案。
图3示出了本发明的空分设备与动力透平的联合生产线。
图4示出了中间塔冷凝器与低压塔分开的另一方案。
图5示出了本发明三塔方法和常规双塔方法的麦凯布-蒂尔(McCabe-Thiele)图。
本发明提出能耗明显降低并且设备尺寸缩小的低温蒸馏生产氧和氮的改进方法。
根据本发明已发现,应用不同于常规双塔法的三塔方法可在高压进料空气和要求相对高压产品的情况下出人意料地提高氧收率并节省能源。更具体地讲,本发明方法中高压塔制成的富氧液体在最终于低压塔中进行蒸馏之前在中间塔中进行处理。
本发明很有效,因为进料空气全部或一部分来自动力透平。为恢复平衡,来自低温分离装置的富氮产品可再压缩并在附属工艺中加热以用于附属工艺或注入动力透平循环。例如,压缩氮产品可在膨胀回收能源之前于燃烧室上游与空气进料混合送入动力透平。而且,压缩氮产品可注入动力透平的燃烧室,还可在膨胀回收能源之前与燃烧室中的热气混合。
已发现加入中间塔可使应用相对高压进料空气并要求相对高压产品的方法中惊人地提高氧收率,而且优异的氧收率又可使能耗和设备尺寸大为缩小。
更详细地讲,本发明所用中间塔底端馏出物与高压塔顶部馏出物换热,上端馏出物与低压塔底塔板以上的中间位置馏出物换热。这种中间塔将高压塔底部制成的富氧液体分成两种液体馏分后作为进料送入低压塔。低压塔下端馏出物也与高压塔顶部馏出物换热,因此其压力与相同空压下操作的典型双塔工艺中的低压塔基本上相同。
此外,高压塔顶部制成的富氮液体作为回流物料送入低压塔。已发现,经中间塔中进一步蒸馏后,后续在低压塔中的蒸馏就更为有效。双塔方法与本发明三塔方法的麦凯布-蒂尔图线比较表明了本发明的优越性,即三塔操作线更接近于平衡线,表明该方法更有效,可参见图5。
本发明方法详述如下。
进料物流按常规办法净化,干燥和压缩以除去二氧化碳和水。
本文所用“进料物流”指至今含氧和氮的任何气体混合物,例如可用大气以及含氧和氮的废气混合物,其中当然还可存在其它气体,如氩。
净化、干燥和压缩进料物流冷却后送入高压塔,在其中分成顶部的富氮气流和底部的富氧液流。高压塔顶部的富氮蒸气在低压塔和中间塔底部冷凝形成富氮液流。该液体的一部分作为高压塔的回流物料,而另一部分作为回流物料送入低压塔。当然,有些液体可作为产品收集起来。高压塔顶的一部分富氮气可作为中压氮产品回收。高压塔塔顶馏出物与低压塔塔底馏出物和中间塔塔底馏出物换热。
富氧液流然后必要时冷却后送入中间塔而制成顶部液体馏分A和底部液体馏分B。中间塔塔顶馏出物在低压塔的底部再沸器以上的位置与低压塔馏出物换热。中压塔的压力低于高压塔的压力但高于低压塔的压力。
之后将液体馏分A和B的全部或一部分送入低压塔中作为进料,如果需要在送入低压塔之前液体馏分A和B之前可冷却。
最后可在低压塔底回收富氧产品物流,并在低压塔顶回收低压富氮物流。
至于工艺致冷过程,可采用任何常规致冷方案,如空气膨胀或氮气膨胀。
进料物流在步骤a)中压缩后的空气压力一般约8-20巴绝对压力,优选约10-18巴绝对压力,中间塔压力一般约3-15巴绝对压力,优选约5-13巴绝对压力,而低压塔压力一般约1-8巴绝对压力,优选2-7巴绝对压力。
通常,在向高压塔输入清洁和干压缩空气时,维持高压塔压力与步骤a)中相同。空气进料维持接近露点。
富氧流产品在回收后可以再压缩以供进一步使用。
另外,按照本发明,最好所有或至少部分空气进料流由动力透平机提供。但本发明的许多其它实施方案也是较好。
例如,较好的是再压缩至少部分步骤f)的低压富氮流以进一步用于有关过程或在用于动力回收的膨胀前将再压缩的富氮流与进到燃烧室的动力透平机上游的空气进料混合。
此外,将再压缩的富氮流注射到动力透平机的燃烧室中或将其与在用于动力回收的动力透平机的燃烧室中现存的热气体混合也是有利的。
进一步讲,按照本发明,再压缩的富氮流在用于动力回收的动力透平机膨胀前,将其在附属过程中加热也是较好的。
已经发现按照本发明较好的是为给低压塔制备额外的进料也可在中间塔处理至少部分富氧液流。
此外,按照本发明的另一个方面,提供一种制备氮和氧的低温蒸馏方法,它包括a)冷却至少一部分净化,干燥并压缩并至少含氮和氧的进料流并将其加到高压塔中,在塔顶将其分离成富氮流,其中高压塔塔顶馏出物与低压塔塔底馏出物及中间塔塔底馏出物交换热量;
b)加富氧流到中间塔以生产塔顶液馏分A和塔底液馏分B,在中间塔塔顶冷凝器中蒸发所述液馏分B以冷凝中间塔塔顶馏出流,然后将蒸发后的液馏分B部分和液馏分B的其余部分加到低压塔中;
c)将液馏分A作为进料加到低压塔;和d)在低压塔底部回收富氧产品流并在低压塔顶部回收富氮流。
本发明将参照一个说明性而非限制性例子作进一步阐述。
按照本发明所有的方法和装置,塔板和/或结构化填料可用作各种塔中的液相和气相间的传质元件。
用于此处的术语“塔板”是指对向下流的液相和向上流的气相间进行密切接触及传质的任何元件或设备。这些塔板是本领域技术人员熟知的。
用于此处的术语“塔板”也包括结构化填料之类的已知元件或像塔板在低温空气分离中起类似密切接触作用的相当元件。结构化填料的例子公开在如美国专利2,047,444;4,186,156和4,296,050中,这些专利全文在此作为参考,且Ellis等人在Trans.Instn.Chem.Engrs.,41,1963中称为Goodloe填料。这些结构化填料在垂直于主流动方向即直立方向的方向上作为促进液体和/或气体混合的元件是公知的。此外塔板和填料的组合也能用作传质元件。
本发明的低温蒸馏方法能与美国专利4,224,045进行比较。
在下列例子中,在两种方法中使用相同的空气进料压力约16巴(绝压)并在两种方法中使用相同的来自低温试验箱的产品压力即约5巴(绝压)。同时作下列假定1)将空气从大气压压缩到所要求的压力,2)氧产品从低温试验箱出口压力压缩到35.5巴(绝压),3)将氮产品从低温试验箱出口压力压缩到与进料相同的压力,和4)所有的压缩机有同样的效率。
表1美国专利本方法改进%4,224,045O2纯度95%的收率(%) 91.2% 99.4% 9%O2纯度98%的收率(%) 84% 93.4% 11.2%O2纯度95%的压缩动力 100 92 8%O2纯度98%的压缩动力 100 91 9%
从表1可看出,本方法对纯度95%的氧的收率为99.4%而常规的两塔方法的收率为91.2%,这表示改进率为9%。与常规两塔法比较压缩动力改进率为8%。
上述的收率和动力改进率9%和8%对低温方法确实是很高的。因此,本方法代表了在低温技术应用方面的根本性和惊人的突破。
注意此处的“收率”是指产品中氧与原料空气中的氧之比。
为了进一步描述本发明的方法和设备,现参照图1-5作进一步说明。
在图1中,至少含氧和氮的原料流净化、干燥和压缩后经泵送至管线(10)。从此之后,至少部分该原料流进到换热设备(11)中,然后经管线(12)到高压塔(13)。原料流的其余部分经管线(14)或者直接到低压塔或必要时经增压压缩机(15)和膨胀透平机(17)然后经管线(18)到低压塔(19)。
在高压塔中,原料流分成塔顶富氮液流和塔底富氧流,其中高压塔的塔顶馏出物与低压塔及中间塔(28)的塔底馏出物热换。
然后,来自高压塔塔底的富氧流经管线(20),必要时经液体过冷器(27)到中间塔(28),以提供塔顶液馏分A和塔底液馏分B,中间塔(28)塔顶馏出物与低压塔热换,其中中间塔的压力低于高压塔(13)但高于低压塔(19)。
液相馏分A和B然后作为原料加到低压塔(19)中,值得注意的是,来自中间塔(28)塔顶的液相馏分A到管线(22),必要时经过液体过冷器(27),加到低压塔(19)。来自中间塔(28)的塔底的液相馏分B到管线(21),必要时经液体过冷器(27)加到低压塔(19)。
然后,在步骤a)中制备的富氮液相经管线(23),必要时经液体过冷器(27)作为回流加到低压塔(19)中。然后,低压塔塔底的富氧流经管线(25)从塔中回收并在气态氧产品回收之前进到换热设备(11)中。
另外,低压塔塔顶的富氮流经管线(24)回收,必要时经液体过冷器(27),然后在气态氮产品的最后回收之前经管线(30)必要时经过换热设备(11)。
图2示出了一个与图1所示的基本相同的方法,然而侧线塔(31)用来代替中间塔(28)。所示的较小的改动参照图1本领域技术人员很容易理解。图2中其余部分与图1相同。
图3示出了按照本发明空气分离装置与动力透平机的联合生产线。可以看出,中等压力的氮流可以由被加到中等压缩级的工艺来制备以节省动力。
通常至少含氮和氧的进料流经输出设备(1)进到压缩机(10)然后其中部分经管线(11)和管线(26)加到燃烧室。其余的进料流,如常压空气经管线(12)和(13)进到冷却和净化设备(15)中。在该阶段,进料流可借助也使用至少含氮和氧的进料流如常压空气的辅助压缩设备(14)来补充。该辅助进料流也经过冷却和净化设备(15)。
然后,进料流经管线(16)加到进料流分离装置中,其中制备氮流、中等压力氮流(MPN2)和气态氧流。氮流和中压氮流分别经管线(21)和(22)排出并加到压缩阶段(23)和(24),然后经管线(25)进入到燃烧室(27)。将燃料经管线(28)加到燃烧室(27)。然后,燃烧室的热废气经管线(29)加到气体透平机(31)中,然后部分热废气用于驱动动力透平机(31),其余部分经管线(32)排空。动力将在发动机(30)中产生。
另外,虽然在图3中没有画出,管线(32)中的废气可用来产生用于产生动力的蒸汽。
更详细地说,也可使用燃气轮机,其中压缩进料空气或含氮和氧的压缩混合物与燃料混合并燃烧。实质上,将由任何类型的“低温试验箱”分离获得的压缩氮注射到燃烧室以控制燃烧室中的压力并最大限度减少氮氧化物(NOX)的生成。
热的燃烧混合物也能用氮气骤冷,然后所得混合物在用于动力回收的动力透平机中膨胀。来自气体透平机的废气体通常送到蒸汽发生器中,将残余的热量通过产生蒸汽而回收。产生的蒸汽可用于本方法的其它部分或在蒸汽透平机中进一步膨胀以回收附加的动力。
这样,本发明也提供制备用于产生动力的水蒸汽的装置和方法。
制备用于产生动力的蒸汽的装置包括a)位于燃烧室上游的进料流输入设备,以输入至少含氮和氧的压缩进料流到燃烧室,b)带有燃料输入设备的燃烧室,c)由至少含氧和氮的进料流制备氧和氮的设备,该设备包括由下列设备组成的三层精馏塔带有进料输入设备的高压塔,连接高压塔顶端和低压塔及中间塔两者底端的热换设备,用于由高压塔加富氮液体到低压塔及加富氧液体到中间塔的独立管线,用于将中间塔产品作为原料加到低压塔的独立管线,用于从低压塔中排出富氮气体的独立管线,用于从低压塔中排出富氧流的独立管线,其中中间塔塔顶在低压塔再沸器上方位置与低压塔换热相连,该设备有至少一根用于加氮到燃烧室的独立管线和气体氧产品独立管线,d)位于燃烧室下游并与其流体联通的动力透平机,和e)由动力透平机驱动的发电设备。
如上所述,来自动力透平机的废气体通常送到蒸汽发生器中,在此回收残余热以产生蒸汽。
制备用于产生动力的蒸汽的本方法包括a)加至少含氮和氧进料流的第一部分和燃料到燃烧室中,b)加至少进料流其余部分到低温设备中,其中进料流被冷却、净化和干燥,并从中分离氧和氮,c)将来自燃烧室的热废气送到位于燃烧室下游并与其流体联通的气体透平机中,和d)将来自气体透平机的废气送到蒸汽发生器中,回收残余热量以产生蒸汽。
值得注意的是,在上述方法中,由进料流分离氧和氮是使用本低温方法。此外,在产生蒸汽过程中,进到该过程中的进料流如空气的一部分是得自由燃气轮机驱动的压缩设备。
作为燃料,虽然任何燃料都可使用,但最好利用气化设备如煤气化器以制备H2、CO和CH4的燃料气体混合物,例如可通过如低温压为约20-35巴的氧到煤气化器中获得。所得燃料加到燃烧室中。
低温方法也可在压力约8-20巴,例如约16巴下向燃烧室中供氮。应注意,在向燃烧室供氮气时,质量平衡可通过减少由于低温进料空气的抽出而恢复。
在图4中,画出了另一套装置,其中中间塔冷凝器与低压器分开。图4示出了一种与图1基本相同的工艺,但中间塔的冷凝器(28)与低压塔(19)分开。该冷凝器加入一部分在中间塔塔底产生的液体。少量的改动,本领域技术人员参照图1很容易理解。
图3示出了本发明三塔过程和常规的二塔过程的麦凯布-蒂尔图,它清楚地表示了本发明方法的优良性能。
例如,图1中的装置也可被描述为有三座蒸馏塔用于制备氧和氮的装置,该装置包括三层精馏塔,其中又包括带有进料输入设备的高压塔,将高压塔顶端与低压塔及中间塔的底端连结起来的换热设备,用于将来自高压塔的富氮液体加到低压塔及把富氧液体加到中间塔的独立管线,用于将中间塔产品作为进料加到低压塔中的独立管线,从低压塔排出富氮气的独立管线,从低压塔排出氧气产品的独立管线,其中中间塔塔顶在位于低压塔再沸器上方的位置与低压塔相连。
图2的装置也可如图1一样类似说明。
本发明也提供用于制备氧和氮的有三座蒸馏塔的装置,该装置包括三层精馏塔,其中又包括带有进料流输入设备的高压塔,将高压塔顶端与低压塔和中间塔两者的底端连接起来的换热设备,将来自高压塔的富氮液体加到低压塔及富氧液体加到中间塔的独立管线,将中间塔产品作为进料加到低压塔的独立管线,从低压塔中排出富氮气的独立管线,从低压塔中排出富氧流的独立管线,输送在中间塔塔底产生的液体到中间塔塔顶的独立管线和将在塔顶冷凝器所得蒸发后的液体加到低压塔的独立管线。
图4也可类似地描述,区别在于侧线中间塔并不与低压塔换热相连,其中提供了用于将在中间塔塔底产生的液相加到其塔顶冷凝器的独立管线,其它各个设备很容易从图4来理解。
从上述对本发明的描述中,显而易见,本领域普通技术人员在不偏离本发明的精神和范围下还可对本发明作出许多变化和改动。
权利要求
1.低温蒸馏生产氧和氮的方法,其中包括a)将至少含氧和氮的净化、干燥和压缩进料流的至少一部分冷却后送入高压塔并将其分成塔顶的富氮液流和塔底的富氧流,其中高压塔塔顶馏出物与低压塔和中间塔的塔底馏出物换热,b)将富氧流送入中间塔而制成顶部液体馏分A和底部液体馏分B,中间塔塔顶馏出物在低压塔底部再沸器以上的位置与低压塔换热,其中中间塔压力低于高压塔但高于低压塔,c)将液体馏分A和B送入低压塔作进料,d)将a)中的富氮液体送入低压塔作回流物料和e)在低压塔底回收富氧产品并在低压塔顶回收低压富氮产品。
2.权利要求1的低温蒸馏方法,其中全部或部分空气进料流来自动力透平。
3.权利要求1或2之一的低温蒸馏方法,其中还包括将步骤e)的受压富氮流的至少一部分再压缩以再用于附属工艺。
4.权利要求3的低温蒸馏方法,压缩富氮流在膨胀回收能源之前与空气进料混入送入燃烧室上游的动力透平。
5.权利要求3的低温蒸馏方法,再压缩富氮流注入动力透平的燃烧室。
6.权利要求3的低温蒸馏方法,再压缩富氮流与进行能源回收的动力透平的燃烧室中的热气混合。
7.权利要求1至6之一的低温蒸馏方法,净化和干燥压缩空气进料流压力约8-20巴绝对压力。
8.权利要求7的低温蒸馏方法,压力为约10-18巴绝对压力。
9.权利要求1至8之一的低温蒸馏方法,中间塔操作压力约3-15巴绝对压力。
10.权利要求9的低温蒸馏方法,压力约5-13巴绝对压力。
11.权利要求1至10之一的低温蒸馏方法,低压塔操作压力约1-8巴绝对压力。
12.权利要求2至11之一的低温蒸馏方法,压力约2-7巴绝对压力。
13.权利要求3至12之一的低温蒸馏方法,至少一部分再压缩富氮流在动力透平中膨胀而进行能源回收之前在附属工艺中加热。
14.权利要求1至13之一的低温蒸馏方法,还包括在中间塔处理至少一部分富氧液流。
15.低温蒸馏生产氧和氮的方法,其中包括a)冷却至少一部分净化,干燥并压缩并至少含氮和氧的进料流并将其加到高压塔中,在塔顶将其分离成富氮流,其中高压塔塔顶馏出物与低压塔塔底馏出物及中间塔塔底馏出物交换热量;b)加富氧流到中间塔以生产塔顶液馏分A和塔底液馏分B,在中间塔塔顶冷凝器中蒸发所述液馏分B以冷凝中间塔塔顶馏出流,然后将蒸发后的液馏分B部分和液馏分B的其余部分加到低压塔中;c)将液馏分A作为进料加到低压塔;和d)在低压塔底部回收富氧产品流并在低压塔顶部回收富氮流。
16.权利要求15的低温蒸馏方法,其中全部或部分空气进料流来自动力透平。
17.权利要求15或16的低温蒸馏方法,净化和干燥压缩空气进料流压力约8-20巴绝对压力。
18.权利要求17的低温蒸馏方法,压力为约10-18巴绝对压力。
19.权利要求15至18之一的低温蒸馏方法,中间塔操作压力约3-15巴绝对压力。
20.权利要求19的低温蒸馏方法,压力约5-13巴绝对压力。
21.权利要求15至20之一的低温蒸馏方法,低压塔操作压力约1-8巴绝对压力。
22.权利要求21的低温蒸馏方法,压力约2-7巴绝对压力。
23.权利要求15-22之一的低温蒸馏方法,其中还包括从高压塔回收中压氮物流。
24.权利要求23的低温蒸馏方法,至少一部分中压和低压氮物流再压缩后重复使用。
25.权利要求24的低温蒸馏方法,至少一部分中压和低压氮物流再压缩后重复使用。
26.有三座蒸馏塔的氧和氮生产装置,该装置包括由三层精馏塔,其中又包括带有进料输入设备的高压塔,将高压塔顶端与低压塔及中间塔的底端连结起来的换热设备,用于将来自高压塔的富氮液体加到低压塔及把富氧液体加到中间塔的独立管线,用于将中间塔产品作为进料加到低压塔中的独立管线,从低压塔排出富氮气的独立管线,从低压塔排出氧气产品的独立管线,其中中间塔塔顶在位于低压塔再沸器上方的位置与低压塔相连。
27.权利要求26的装置,其中与低压塔换热连接的中间塔用侧线塔代替。
28.权利要求26的装置,其中与低压塔换热连接的中间塔用分离的中间冷凝器代替。
29.有三座蒸馏塔的氧和氮生产装置,该装置包括三层精馏塔,其中又包括带有进料流输入设备的高压塔,将高压塔顶端与低压塔和中间塔两者的底端连接起来的换热设备,将来自高压塔的富氮液体加到低压塔及富氧液体加到中间塔的独立管线,将中间塔产品作为进料加到低压塔的独立管线,从低压塔中排出富氮气的独立管线,从低压塔中排出富氧流的独立管线,输送在中间塔塔底产生的液体到中间塔塔顶的独立管线和将在塔顶冷凝器所得蒸发后的液体加到低压塔的独立管线。
30.制备产生动力的蒸汽的装置,其中包括a)位于燃烧室上游的进料流输入设备,以输入至少含氮和氧的压缩进料流到燃烧室,b)带有燃料输入设备的燃烧室,c)由至少含氧和氮的进料流制备氧和氮的设备,该设备包括由下列设备组成的三层精馏塔带有进料输入设备的高压塔,连接高压塔顶端和低压塔及中间塔两者底端的换热设备,用于由高压塔加富氮液体到低压塔及加富氧液体到中间塔的独立管线,用于将中间塔产品作为原料加到低压塔的独立管线,用于从低压塔中排出富氮气体的独立管线,用于从低压塔中排出富氧流的独立管线,其中中间塔塔顶在低压塔再沸器上方位置与低压塔换热相连,该设备有至少一根用于加氮到燃烧室的独立管线和气体氧产品独立管线,d)位于燃烧室下游并与其流体联通的动力透平机,和e)由动力透平机驱动的发电设备。
31.制备用于产生动力的蒸汽的方法,其中包括a)加至少含氮和氧进料流的第一部分和燃料到燃烧室中,b)加至少进料流其余部分到低温设备中,其中进料流被冷却、净化和干燥,并从中分离氧和氮,c)将来自燃烧室的热废气送到位于燃烧室下游并与其流体联通的气体透平机中,和d)将来自气体透平机的废气送到蒸汽发生器中,回收残余热量以产生蒸汽。
全文摘要
根据本发明所采用的中间塔底端与高压塔顶部换热,其上端又与低压塔底板以上的中间位置换热,该中间塔将高压塔底部制成的富氧液体分成两种液体馏分后作为进料送入低压塔,而低压塔下端与高压塔顶部换热。因此其压力与相同空压下操作的典型双塔工艺中的低压塔基本上相同。
文档编号F02C6/18GK1075003SQ9211145
公开日1993年8月4日 申请日期1992年10月12日 优先权日1991年10月15日
发明者保哈 申请人:乔治·克劳德工艺研究开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1