专利名称:确定egr流量的车载方法
技术领域:
本发明一般地涉及一种确定质量流量的方法,更具体地涉及一种确定 车载内燃机的排气再循环质量流量的方法。
背景技术:
发动机一一包括柴油机、汽油机、天然气发动机以及本领域已知的其 它发动机一一排放空气污染物的复杂混合物。空气污染物可包括气态和固 态的物质,其中包括氮氧化物(NOx)和颗粒物质。由于对环境的关注日 益增加,排气排放标准已变得更加严格,可根据发动机类型、发动机尺寸 和/或发动机等级来控制从发动机排放的NOx和颗粒物质的量。发动机制造商用来遵照关于向环境排放的NOx和颗粒物质的规定的 一种方法是使来自发动机的排气再循环而回到发动机中以用于后续燃烧。 再循环的排气减少了向发动机供给的进气中的氧浓度,这又可降低发动机 气缸内的最高燃烧温度。降低的温度可减少NOx的形成。另外,排气中含 有一定量的颗粒物质,该颗粒物质在再循环经过发动机时被燃烧,从而降 低了排放到环境中的颗粒物质的量。在进行排气再循环(EGR)时,有必要严格控制再循环经过发动机的 排气相对于吸入发动机的新鲜空气的比例。例如,如果再循环经过发动机 的排气量过大,则发动机可能无法接收对于适当运行足够的氧并且可能引 起熄火,产生的动力水平不足,和/或由于发动机气缸内的燃料质量差而产 生过量的烟和颗粒物质。相反,如果再循环到发动机中的排气的量过少, 则发动机可能不符合NOx规定。通常,返回发动机的排气流响应于一个或多个输入由气门机构(装置) 来调节。气门机构通常包括设置在排气通路内并可在打开位置和关闭位置件。该阀元件基于所检测到的排气质量流量而在打开位置和关闭位置之间 移动。即,在排气通路内在气门机构的上游或下游设有质量流量传感器以 产生表示流向发动机的排气流量的信号。位于发动机上别处的控制器接收 排气流量信号,并产生传给气门机构的驱动电机的位置指令。在2006年2月14日授予Hirayama等人的美国专利No. 6,997,162(,162专利)中公开了一种以紧凑的机构来确定流量并调节空气流量的方法。具 体地,,162专利记载了一种具有主空气通路和设于其中的阀元件的电子控 制气门体。该阀元件由电机驱动,该电机在基本垂直于主空气通路的方向 上安装到气门体的外部。,162专利还记载了经由热线式空气流量计和与主 空气通路、阀元件及电机相集成而形成一体的微型计算机来确定质量流量。 微型计算机从流量计接收表示进入发动机的新鲜空气的流量的信号,基于 来自流量计的信号计算空气压力,并基于流量信号和所计算的压力来控制 驱动电积W吏阀元件移动。尽管,162专利描述了对进入内燃机的空气流量的调节,其应用还是有 限的。特别地,因为该方法从质量流量传感器接收质量流量信号,而不是 基于温度和压力来确定质量流量,所以该方法成本更高或要求更大的计算 能力。所公开的确定EGR质量流量的方法旨在克服前述问题中的一个或多水发明内容一方面,本发明涉及一种确定和调节再循环到发动机中的排气的质量 流量的方法。该方法可包括引导排气通过文丘里管,以及检测文丘里管上 的排气差压。该方法还可包括检测文丘里管处的绝对排气压力,和检测排 气温度。该方法还可包括基于所检测到的流体差压、绝对流体压力和温度来确定排气的质量流量。另 一方面,本发明涉及一种确定和调节再循环到发动机中的排气的质量流量的方法。该方法可包括收缩(压缩,constrict)排气流,以及基于 所检测到的收缩部上的流体差压以及在收缩部上游所测得的绝对压力来确 定排气的质量流量。
图l是所公开的示例性动力源的概略示图;图2是用于图1动力源的所公开的示例性排气再循环阀机构的示意图;图3是图2的排气再循环阀机构的剖视图;以及图4是示出图l动力源的所公开的示例性操作的控制框图。
具体实施方式
图1示出具有示例性排气处理系统12的动力源10。动力源10可包括 发动机,例如柴油机、汽油机、气体燃料动力发动机(如天然气发动机) 或本领域的技术人员熟知的任何其它发动机。或者,动力源IO可包括其它 的动力来源,如炉子。排气处理系统12可包括进气系统14、排气系统16、 以及与动力源IO相连接以将流体传入和传出动力源10的再循环系统18。进气系统14可包括用于将增压的空气导入动力源IO的燃烧室(未示 出)的装置。例如,进气系统14可包括进气阀22, 一个或多个压缩机24 以及空气冷却器26。可想到,进气系统14可包括附加的和/或不同的部件, 例如一个或多个空气滤清器27、与压缩机24相联的废气门或旁通回路、 控制系统以及本领域已知的用于将增压的空气导入动力源10的燃烧室的 其它装置。进气阀22可调节大气从滤清器27向压缩机24的流动。进气阀22可 包括,例如,蝶形元件、闸板元件、门形元件、球形元件、球体元件、或 本领域已知的任何其它类型的阀元件。进气阀22的元件可设置在通路28 内,并且可抵抗弹簧的偏压从流动导通位置移动到流动限制位置。在一个例子中,进气阀22的元件可连接到可朝流动限制位置偏压所述元件的扭簧 (未示出)。当处于流动导通位置时,大气可基本不受限制地经压缩机24 ;故导入动力源10。可使压缩机24成串联关系地设置并流体连接到动力源10,以将流入 动力源10的空气压缩到预定程度。各压缩机24可具体表现为固定几何形 状压缩机、可变几何形状压缩机或本领域已知的任何其它类型的压缩机。 可想到,压缩机24也可设置成并联关系,或者进气系统14可包括仅一个 压缩机24。还可想到,当需要非加压式进气系统时可省去压缩机24。空气冷却器26可以是空气-空气式换热器或空气-液体式换热器并设置 成有利于与导入动力源10的空气进行来回传热。例如,空气冷却器26可 具体表现为管壳式换热器、板式换热器、片管式换热器或本领域已知的任 何其它类型的换热器。空气冷却器26可设置在将压缩机24流体地连接到 动力源10的通路30中。排气系统16可包括用于将排气流导出动力源IO的装置。例如,排气 系统16可包括一个或多个串联的涡轮机32。可想到,排气系统16可包括 附加的和/或不同的部件,例如,排放控制装置,如颗粒过滤器42、 NOx 吸收器43或其它催化装置;衰减装置;以及本领域已知的用于将排气流导 出动力源10的其它装置。各涡轮机32可连接到一个压缩机24来驱动相连接的压缩机24。特别 地,随着离开动力源10的热排气向涡轮机32的叶片(未示出)膨胀,涡 轮机32可旋转并驱动相连接的压缩才几24。可想到,涡轮机32也可i殳置成 并联关系,或者排气系统16中仅包括一个涡轮机32。也可想到,如需要, 可省略涡轮才几32,而由动力源10才几械地、液力地、电动地或以本领域已 知的任何其它方式驱动压缩才几24。颗粒过滤器42可设置在涡轮机32的下游以从由动力源10导出的排气 流中除去颗粒。可想到,颗粒过滤器42可包括导电性的或非导电的大孔滤 网元件。也可想到,颗粒过滤器42可包括用于降低由颗粒过滤器42捕集 的颗粒物质的燃点的催化剂、用于再生由颗粒过滤器42捕集的颗粒物质的装置、或催化剂和用于再生的装置二者。催化剂可用于减少HC、 CO和/ 或颗粒物质,并且可包括,例如,普通金属催化剂、熔盐和/或贵金属。用 于再生的装置可尤其包括燃料动力炉、电阻加热器、发动机控制策略、或 本领域已知的其它用于再生的装置。也可想到,如需要,颗粒过滤器42 可省略或位于进入口 40的下游。还可想到,如需要,可在再循环系统18 中设置附加的颗粒过滤器(未示出)。NOx吸收器43可包括一个或多个涂布有或以其它方式包含有液体或 气体催化剂(例如含贵金属的涂层)的基底。催化剂可用于通过选择性催 化还原(SCR)或NOx捕集来减少排气流中的燃烧副产品。在一个例子中, 试剂(如尿素)可被喷射到NOx吸收器43上游的排气流中。尿素可分解 成与排气中的NOx反应以生成H20和N2的氨。在另一例子中,排气中的 NOx被含钡盐的装置捕集,并周期性地被释放出且在催化剂上被还原而生 成C02和N2。如需要,NOx吸收器43也可用于氧化存留在通过了颗粒过 滤器42的排气流中的颗粒物质。再循环系统18可包括用于将动力源10的排气流的一部分从排气系统 16引入进气系统14的装置。例如,再循环系统18可包括进入口 40、排气 冷却器44、再循环阀机构46和排出口 48。可想到,再循环系统18可包括 附加的和/或不同的部件,如催化器、电除尘装置、保护气体系统以及本领 域已知的其它用于将排气从排气系统16引入进气系统14的装置。随着来 自动力源10的排气的一部分经进入口 40进入再循环系统18,这部分排气 的温度可被冷却器44降低到可接受的水平,由再循环阀机构46限制到期 望的流量,并经排出口 48导入进气系统14。it^口 40可与排气系统16相连接以接收至少一部分来自动力源10 的排气流。具体地,iivV口 40可设置在涡轮机32的下游以从涡轮机32 接收低压排气。可想到,如需要,进入口 40也可位于涡轮机32的上游以 接收高压排气。排气冷却器44可在流体通路52内设置在颗粒过滤器42的下游以冷却 流过进入口 40的那一部分排气。排气冷却器44可包括液体-空气式换热器、空气-空气式换热器或本领域已知的任何其它类型的用于冷却排气流的换热器。可想到,如需要,可省去排气冷却器44。再循环阀机构46可经由流体通路54流体地连接到排气冷却器44以调 节通过再循环系统18的排气流。再循环阀机构46可操作以选择性地导通 或限制从其通过的排气流。尽管图1中示出为再循环阀机构46位于排气冷 却器44的下游,但可想到,如需要,再循环阀机构46也可位于排气冷却 器44的上游。排出口 48可流体地连接到再循环阀机构46以将由再循环阀机构46 调节的排气流引入进气系统14。具体地,排出口 48可在压缩机24的上游 连接到进气系统14,使得压缩机24可从排出口 48抽取排气。如图2所示,再循环阀机构46可以是相互作用以调节排气流的多个部 件的组件。例如,再循环阀机构46可包括7>共壳体56、阀元件58、驱动 电机60和控制系统62。响应于一个或多个输入,控制系统62可选择性地 致动驱动电4几60以4吏阀元件58在流动导通与流动阻断位置之间移动,从 而可变地限制通过公共壳体56的排气流。公共壳体56可包括入口 64、出口 66、文丘里管68和多个外部流体通 路。排气可经由入口 64进入公共壳体56,流过文丘里管68,并经由出口 66离开公共壳体56。随着排气流过文丘里管68的喉部区域69,排气流被 收缩,使得排气速度增加而排气压力降低。在流经文丘里管68时,来自喉 部区域69上游的排气的一部分可经由第一流路70被导入到控制系统62, 来自喉部区域69的排气的一部分可经由第二流路72被导入到控制系统 62。由喉部区域69处的收缩造成的流过第一流路70的排气与流过第二流 路72的排气之间的压差可用于确定流过再循环阀机构46的排气流量,这 将在下文中详细说明。应当指出,虽然第一和第二流路70和72在图2中 示出为大致与驱动电机60位于公共壳体56的同一侧,但可想到,如需要, 流路70和72也可位于公共壳体56的相对的或相邻的两侧。阀元件58在7>共壳体56中可设置在文丘里管68的下游,以选择性地 限制排气向动力源10的流动。因为阀元件58的位置在文丘里管68的下游,所以阀元件58、更具体地是经过阀元件58的排气的受到干扰的流动对于 第一和第二流路70和72内的部件的影响非常小或没有影响。阀元件58 可具体表现为,例如,固定连接到可转动驱动轴74的蝶形元件。随着驱动 轴74被转动,阀元件58可从流动阻碍位置朝流动限制位置移动。就本发 明的目的而言,用语"限制"应当解释为至少部分地阻断流体流动。也可 想到,当阀元件58处于流动限制位置时,其可完全阻断流体流动。驱动电才几60可设置成使驱动轴74和相连的阀元件58转动。例如,驱 动电机60可具体表现为安装到公共壳体56上并连接到驱动轴74以使阀元 件58在流动导通与流动限制位置之间以平滑连续的方式或步进的方式移 动的无刷直流旋转致动器。驱动电机60可直接连接到驱动轴74,或者可 经由传动机构76、棘轮装置、滑轮系统或以任何其它合适的方式连接到驱 动轴74。可想到,驱动电机60可响应于一个或多个来自控制系统62的输 入指令选择性地使驱动轴74转动。在一个实施例中,驱动电机60可安装成节省空间的形式。具体地,驱 动电机60的轴向可大致垂直于驱动电机60的旋转(方向)。驱动电机60 可在公共壳体56上安装成,使得驱动电机60的轴向基本平行于通过公共 壳体56的排气的流动方向。在该结构中,传动机构76可具体表现为蜗轮/ 正齿轮结构以适应平行布置。通过将驱动电机60设置成与公共壳体56平 行,驱动电机60在横向上(即,横向于流过壳体56的排气流的方向)消 耗的空间可减到最小。如图3所示,控制系统62可包括相互作用以确定流过再循环阀机构 46的排气的工作特性并响应于该特性调节流动的部件。特别地,控制系统 62可包括绝对压力传感器78、差压传感器80、温度传感器82和控制器84。 控制器84可从绝对压力传感器78、差压传感器80和温度传感器82接收 输入,并响应于该输入来指示驱动电机60的运动。具有散热片88的冷却 盖86可与控制系统62的部件相连接以便于其冷却。可想到,如需要,可 替换地或附加地使流体经冷却盖86循环而加强冷却。绝对压力传感器78可安置成与进入再循环阀机构46的排气流体连通以确定排气压力。例如,绝对压力传感器78可安置成经由公共壳体56的 外表面与冷却盖86的内表面之间的凹部90与第一流路70流体连通。绝对 压力传感器78可具体表现为真空型压力传感器并产生表示凹部卯内的绝 对压力(即,高于基准真空压力的压力幅值)的信号。然后可将该绝对压 力信号传递到控制器84。差压传感器80可安置成与进入再循环阀机构46的排气以及喉部区域 69处的排气流体连通以确定这两个区域之间的压差。例如,差压传感器80 可安置成经由凹部卯与第一流路70和第二流路72流体连通。差压传感器 80可比较第一流路70内的排气压力与第二流路72内的排气压力,并产生 表示压差的信号。然后可将该差压信号传递到控制器84。温度传感器82可安置成与进入再循环阀机构46的排气流体连通以确 定排气温度。例如,温度传感器82可以是测量公共壳体56的在排气离开 再循环阀机构46的出口 66处的温度的表面温度型传感器。或者,温度传 感器82可以是直接测量离开的排气的温度的空气温度型传感器。可想到, 如需要,温度传感器82也可安置在公共壳体56的入口 64处。温度传感器 82可产生表示排气温度的信号,并将该温度信号传递到控制器84。控制器84可具体表现为一个微处理器或多个微处理器,其包括用于控 制再循环阀机构46的工作的装置。可将多种商售的微处理器构造成执行控 制器84的功能。应当意识到,控制器84可容易地实施为能够控制多种发 动机功能的通常的发动机微处理器。控制器84可包括存储器、二级存储装 置、处理器以及其它用于实现应用的部件。控制器84可与各种其它电路相 连接,如供电电路、信号调制电路、螺线管驱动电路以及其它类型的电路。在控制器84的存储器中可存储有一个或多个关于绝对压力、差压、温 度、实际流量和/或期望流量的脉镨图。所述各脉语图可以是表、图和/或乂> 式的形式。控制器84可接收由绝对压力传感器78、差压传感器80和温度 传感器82产生的信号,并参照存储于其存储器中的脉镨图。通过这些脉镨 图,控制器84可确定位置指令、转矩指令、速度指令或其它相似的传递到 驱动电机60以影响阀元件58的期望运动及随后影响通过再循环阀机构46的排气流量的指令。在一个例子中,在控制器84的存储器中可存储有等式EQ.1,如下文 所述,该等式EQ.l用于计算排气质量流量 EQ.l<formula>formula see original document page 12</formula>其中6=排气质量流量;P-排气密度;D一,-喉部处的直径;"砲=入口处直径; =入口与喉部之间的压差。如上面的EQ.1所示,基于压差信号,入口 64和喉部区域69的已知 几何形状以及流过再循环阀机构46的排气密度,可计算出流过再循环阀机 构46的排气质量流量。用作EQ.l的输入的排气密度可根据下面的EQ.2来计算.-EQ.2<formula>formula see original document page 12</formula>其中P-排气密度;户-入口处的排气的绝对压力;及=排气的气体常数;和 r-排气温度。基于对排气质量流量6与期望排气质量流量的比较,控制器84可增加 或者减小由阀元件58提供的限制。例如,如果^小于期望质量流量,则控制器84可命令驱动电机60使阀元件58朝流动导通位置移动。反之,如果^大于期望质量流量,则控制器84可命令驱动电机60使阀元件58朝流动 限制位置移动。图4示出与再循环阀机构46的工作相关的控制图。从该图可见,与再 循环阀机构46相关的控制的大部分可在内部实现。即,因为再循环阀机构 46与控制器84、绝对压力传感器78、差压传感器80、温度传感器82、驱 动电才几60和阀元件58集成为一个组件,所以在再循环阀4几构46与动力源 IO的控制器之间仅有的通信可包括对期望流量的接收。这样,在将再循环 阀机构46组装到动力源10上之前可对该再循环阀机构46进行大量的测试 和标定。工业适用性所公开的流量确定方法可应用于任何燃烧型装置,例如,发动机、炉 子、或本领域已知的任何其它的有必要进行精确和可靠的流体调节的燃烧 装置。所公开的方法可特别应用于排气处理系统,该系统得益于以简单、 成本低、紧凑的解决方案来控制导入燃烧装置的排气的量。下面说明排气 处理系统12的工作。由压缩机24经进气阀22可抽取大气,在压缩机24处大气在进入动力 源10的燃烧室之前可被加压到预定水平。可在进入动力源10的燃烧室之 前或之后使加压空气与燃料混合,并使所产生的混合物燃烧而产生机械功 以及包含气态化合物和固态颗粒物质的排气流。可将该排气流从动力源10 导引到涡轮机32,在该涡轮机处热排气的膨胀会使涡轮机32旋转,从而 使相连接的压缩机24旋转以压缩进气。在离开涡轮机32并流过颗粒过滤 器42之后,排气流可被分成基本无颗粒的两股流,包括导入进气系统14 的第 一股流和导向大气中的第二股流。被导引通过进入口 40的颗粒减少的排气流可由排气冷却器44冷却到 预定的温度,然后净皮压缩才几24抽取经过再循环阀机构46而返回进气系统 14。为调节返回进气系统14的排气流,驱动电机60可转动驱动轴74以使 阀元件58在流动导通位置与流动阻断位置之间移动。阀元件58对排气进行的受控的限制可影响由压缩机24经进气系统14向动力源10抽取的排气 量。然后,可使再循环的排气流与进入燃烧室的空气相混合。被导入动力 源10的燃烧室的排气可减小燃烧室中的氧浓度,这又会降低动力源10内 的最高燃烧室温度。降低的最高燃烧室温度可减慢燃烧过程的化学反应, 因此减少氮氧化物的形成。这样,可在不会由导入动力源IO的过多的颗粒 物质导致有害作用和较差性能的情况下,降低由动力源10产生的气体污 染。随着排气的第二股流经过进入口 40,其可被引导通过催化剂以从排气 中除去NOx和其它污染物。控制器84可控制再循环阀机构46的操作。随着排气被导引通过再循 环阀机构46,控制器84可确定并调节再循环入动力源10的排气的质量流 量。为确定通过再循环阀机构46的排气的质量流量,差压传感器80可确 定第一和第二流路70和72之间的差压,并将表示该差压的信号发送给控 制器84。绝对压力传感器78可确定经过第一流路70的排气的绝对压力, 并将表示该绝对压力的信号发送给控制器84。另外,温度传感器82可确 定流过再循环阀^L构46的排气的温度,并将表示该温度的信号发送给控制 器84。尽管温度传感器82示出为位于文丘里管68的下游和阀元件58的 上游,也可想到温度传感器82可位于文丘里管68的上游或任何其它的合 适的位置。控制器84可从绝对压力传感器78、差压传感器80和温度传感 器82接收信号,并基于这些信号来确定排气的质量流量。控制器84可基于所检测到的差压和排气密度通过从所存储的表获取 质量流量而确定质量流量。在确定质量流量后,控制器84可比较所确定的 质量流量与期望质量流量。然后,控制器84可确定所确定的质量流量与期 望质量流量之间的差异,并响应于所确定的差异来移动阀元件58。由于驱动电机60与公共壳体56的独特的组件构型,所以可节省动力 源10上的空间。即,因为驱动电机60的轴向可基本平行于排气通过公共 壳体56的流动方向,所以在横向上消耗的空间非常小。这样地节省空间可 提高与动力源10的其它部件和系统相关的设计灵活性。因为再循环阀才几构46利用文丘里式流量计,所以与现有冲支术相比,再 循环阀机构46的使用范围可扩大。具体地,即使是用在排气处理的情况下, 因为由再循环阀才几构46用来确定流量的差压传感器受炭黑的影响可最低, 所以再循环阀机构46的寿命和控制精度可提高。因为所公开的方法利用压力传感器和温度传感器来确定和调节排气流 量,所以与现有才支术相比,也可扩大其使用范围。具体地,因为所述确定 质量流量的方法受排气中存在的污物和炭黑的影响可最低,所以该方法在 排气再循环系统中是有益的,并且能够延长部件的寿命。本领域的技术人员显然清楚,可对所公开的方法做出各种不同的修改 和变型。鉴于本"^兌明书以及对所公开方法的实践,其它实施例对于本领域 的技术人员而言是显而易见的。本说明书和示例都应当认为仅是示例性的, 而本发明的真实范围由所附权利要求及其等同物表示。
权利要求
1.一种确定和调节再循环到发动机中的排气的质量流量的方法,该方法包括引导排气通过文丘里管;检测所述文丘里管上的排气差压;检测所述文丘里管处的绝对排气压力;检测所述排气的温度;基于所检测到的流体差压、绝对流体压力和温度来确定所述排气的质量流量。
2. 根据权利要求l所述的方法,其特征在于,检测所述文丘里管处 的绝对排气压力包括检测所述文丘里管上游的紧邻位置处的绝对排气压 力。
3. 根据权利要求l所述的方法,其特征在于,确定质量流量包括基 于所检测到的流体差压、绝对流体压力和温度来计算所述排气的密度。
4. 根据权利要求l所述的方法,其特征在于,确定质量流量包括基 于所检测到的差压和所述排气的密度从所存储的表获取排气流量。
5. 根据权利要求4所述的方法,其特征在于,还包括比较所确定的 质量流量与所期望的质量流量。
6. 根据权利要求5所述的方法,其特征在于,所期望的质量流量对 应于所期望的发动机燃烧特性。
7. 根据权利要求5所述的方法,其特征在于,还包括 确定所确定的质量流量与所期望的质量流之间的差;和 响应于所确定的所述所确定的质量流量与所期望的质量流之间的差,通过在所述文丘里管下游的位置处改变对所述排气的限制来改变所述排气 的流量。
8. 根据权利要求l所述的方法,其特征在于,检测排气温度包括检 测通道壁的温度。
9. 根据权利要求l所述的方法,其特征在于,检测所述文丘里管处 的绝对排气压力包括比较排气压力与真空基准压力。
10. 根据权利要求1所述的方法,其特征在于,检测所述文丘里管上 的排气差压包括确定收缩部的上游位置与所述文丘里管的喉部位置之间的 排气差压。
全文摘要
本发明涉及一种确定EGR流量的车载方法。该方法用于确定和调节再循环到发动机中的排气的质量流量。该方法可包括引导排气通过文丘里管,以及检测文丘里管上的排气差压。该方法还可包括检测文丘里管处的绝对排气压力,和检测排气温度。该方法还可包括基于所检测到的流体差压、绝对流体压力和温度来确定排气的质量流量。
文档编号F02M25/07GK101333981SQ20081012727
公开日2008年12月31日 申请日期2008年6月30日 优先权日2007年6月29日
发明者A·卡塔里, B·V·特拉内尔, C·F·加尔迈尔, D·C·阿特金森 申请人:卡特彼勒公司