一种润滑油抗磨添加剂的利记博彩app

文档序号:10607233阅读:533来源:国知局
一种润滑油抗磨添加剂的利记博彩app
【专利摘要】本发明公开了一种润滑油抗磨添加剂,由下列物质制成:硼酸三正丁脂、异辛氧基硼酸铜、二氨基吡啶、聚异丁烯双丁酰亚胺、十六烷基苯磺酸钠、硫化烷基酚钙、齐墩果酮酸、硫磷丙辛仲伯烷基锌盐、二异氰酸脂、油桐籽提取物、纳米颗粒混合物。本发明润滑油各成分间相互作用,协同配合,显著提高了润滑油的抗磨效果,其稳定性、抗氧化性、分散性、润滑性等均得到较好的改善,此润滑油可广泛应用于各种机械设备的润滑,能显著提升机械设备的抗磨效果,具有较强的市场竞争力。
【专利说明】
一种润滑油抗磨添加剂
技术领域
[0001 ]本发明涉及一种润滑油添加剂,具体涉及一种润滑油抗磨添加剂。
【背景技术】
[0002] 摩擦磨损是普遍存在的自然现象,而润滑油是降低摩擦减少及抗御磨损最有效的 途径之一,对磨损表面在运动中进行原位修复一直是润滑工作者不断追求的目标。润滑油 一般由基础油和添加剂两部分组成,基础油是润滑油的主要成分,决定着润滑油的基本性 质,添加剂则可以弥补和改善基础油的某些性能。润滑油按其来源分动、植物油,石油润滑 油和合成润滑油三大类。石油润滑油的用量占总用量97%以上,因此润滑油常指石油润滑 油。主要用于减少运动部件表面间的摩擦,同时对机器设备具有冷却、密封、防腐、防锈、绝 缘、功率传送、清洗杂质等作用,主要以来自原油蒸馏装置的润滑油馏分和渣油馏分为原 料。润滑油最主要的性能是粘度、氧化安定性和润滑性,它们与润滑油馏分的组成密切相 关。粘度是反映润滑油流动性的重要质量指标,不同的使用条件具有不同的粘度要求,重负 荷和低速度的机械要选用高粘度润滑油,氧化安定性表示油品在使用环境中,由于温度、空 气中氧以及金属催化作用所表现的抗氧化能力。油品氧化后,根据使用条件会生成细小的 沥青质为主的碳状物质,呈粘滞的漆状物质或漆膜,或粘性的含水物质,从而降低或丧失其 使用性能。润滑性表示润滑油的减磨性能。润滑油添加剂概念是加入润滑剂中的一种或几 种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。添加剂按功能 分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫 抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型。
[0003] 目前市场上常见的润滑油抗磨添加剂组分较为单一,通常对润滑油的功能提升不 显著,因为润滑油的各个性能是所有成分共同作用的结果,且不同成分对不同性能都会有 所影响,单纯的添加某种功能性成分的效果不甚明显。

【发明内容】

[0004] 为了解决上述问题,本发明提供了一种润滑油抗磨添加剂。
[0005] 本发明通过以下技术方案来实现: 一种润滑油抗磨添加剂,由如下重量份的物质制成: 8份硼酸三正丁脂、4份异辛氧基硼酸铜、3份二氨基吡啶、5份聚异丁烯双丁酰亚胺、4份 十六烷基苯磺酸钠、6份硫化烷基酚钙、3份齐墩果酮酸、5份硫磷丙辛仲伯烷基锌盐、4份二 异氰酸脂、2份油桐籽提取物、12份纳米颗粒混合物;所述纳米颗粒混合物是由纳米改性石 墨与纳米改性沸石按质量比2:1混合而成。
[0006] 进一步的,所述油桐籽提取物的制备方法包括如下步骤: a. 将油桐籽放于质量分数为1.8%的食盐溶液中浸泡25min后,取出用清水冲洗晾干备 用; b. 将洗净后的油桐籽放入低温粉碎机中,控制温度为-45~-40°C,粉碎成粒径为0.2~ 0.3mm的颗粒,制成油桐籽粉备用; c. 将油桐籽粉与其质量2倍的清水混合均匀,然后加入清水质量1.8%的复合酶制剂,保 持水温为40~42°C,酶解20min后得酶解液备用,所述复合酶制剂中含有纤维素酶、半纤维素 酶和果胶酶; d. 将酶解液放入其质量3倍的质量分数为95%的乙醇溶液中,辅以频率为35KHz的超声 波进行提取,1~1.5h后得醇提液备用; e. 对醇提液进行去醇去水处理后即得油桐籽提取物。添加的油桐籽提取物可提高各成 分间与基油间的融合性,又具有一定的抗氧化功能。
[0007] 进一步的,所述纳米改性石墨的制备方法包括如下步骤: a. 将石墨放入质量分数为2.5%的胡萝卜酸溶液中,浸渍15min后取出,然后放入质量分 数为2.5%的小苏打溶液中,浸渍15min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的石墨放入质量分数为11%的氯化镁溶液中,保持溶液温度为30~35°C,同 时施加频率为29KHz的超声波,20~22h后取出干燥得氯化改性石墨备用; c. 将氯化改性石墨放入球磨机中,控制温度为-30-25°C,不断研磨至粒径为30~35nm, 得纳米石墨备用; d. 将纳米石墨放入其质量3倍的菜籽油中,加热保持菜籽油温度为105~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性石墨。改性后石墨的耐高温、耐腐蚀性得到提升,在 基油中的分散性和稳定性得到改善。
[0008] 进一步的,所述纳米改性沸石的制备方法包括如下步骤: a. 将沸石放入质量分数为2.8%的酒石酸溶液中,浸渍20min后取出,然后放入质量分数 为2.8%的小苏打溶液中,浸渍20min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的沸石放入窑中煅烧2~2.5h,煅烧的温度为900~1000°C,取出后得高温改 性沸石备用; c. 将高温改性沸石放入球磨机中,控制温度为-25-23°C,不断研磨至粒径为25~30nm, 得纳米沸石备用; d. 将纳米沸石放入其质量3倍的猪油脂中,加热保持猪油脂温度为108~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性沸石。改性后沸石的耐高温、耐腐蚀、强度和承载性 得到提升,在基油中的分散性和稳定性得到改善,与改性石墨一起提高了润滑油的整体性 能。
[0009] 进一步的,所述添加剂在润滑油中添加的质量分数为7~11%。
[0010]本发明具有如下有益效果: (1)本添加剂中的纳米颗粒混合物是由纳米改性石墨与纳米改性沸石共混而成,相比 现有单一的纳米颗粒添加物而言,具有如下优点:纳米改性石墨颗粒为片层结构,纳米改性 沸石为球形结构,两者共同添加到润滑油中,即能减轻零件相对运动时产生的摩擦力,又能 保证油膜的完整性,充分发挥了纳米颗粒的作用;经过特殊改性后,其与润滑油的融合性更 佳,为耐磨添加成分功效的发挥奠定了基础。
[0011] (2)本发明润滑油各成分间相互作用,协同配合,显著提高了润滑油的抗磨效果, 其稳定性、抗氧化性、分散性、润滑性等均得到较好的改善,此润滑油可广泛应用于各种机 械设备的润滑,能显著提升机械设备的抗磨效果,具有较强的市场竞争力。
【具体实施方式】 [0012] 实施例1 一种润滑油抗磨添加剂,由如下重量份的物质制成: 8份硼酸三正丁脂、4份异辛氧基硼酸铜、3份二氨基吡啶、5份聚异丁烯双丁酰亚胺、4份 十六烷基苯磺酸钠、6份硫化烷基酚钙、3份齐墩果酮酸、5份硫磷丙辛仲伯烷基锌盐、4份二 异氰酸脂、2份油桐籽提取物、12份纳米颗粒混合物;所述纳米颗粒混合物是由纳米改性石 墨与纳米改性沸石按质量比2:1混合而成。
[0013] 进一步的,所述油桐籽提取物的制备方法包括如下步骤: a. 将油桐籽放于质量分数为1.8%的食盐溶液中浸泡25min后,取出用清水冲洗晾干备 用; b. 将洗净后的油桐籽放入低温粉碎机中,控制温度为-45~-40°C,粉碎成粒径为0.2~ 0.3mm的颗粒,制成油桐籽粉备用; c. 将油桐籽粉与其质量2倍的清水混合均匀,然后加入清水质量1.8%的复合酶制剂,保 持水温为40~42°C,酶解20min后得酶解液备用,所述复合酶制剂中含有纤维素酶、半纤维素 酶和果胶酶; d. 将酶解液放入其质量3倍的质量分数为95%的乙醇溶液中,辅以频率为35KHz的超声 波进行提取,1~1.5h后得醇提液备用; e. 对醇提液进行去醇去水处理后即得油桐籽提取物。
[0014] 进一步的,所述纳米改性石墨的制备方法包括如下步骤: a. 将石墨放入质量分数为2.5%的胡萝卜酸溶液中,浸渍15min后取出,然后放入质量分 数为2.5%的小苏打溶液中,浸渍15min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的石墨放入质量分数为11%的氯化镁溶液中,保持溶液温度为30~35°C,同 时施加频率为29KHz的超声波,20~22h后取出干燥得氯化改性石墨备用; c. 将氯化改性石墨放入球磨机中,控制温度为-30-25°C,不断研磨至粒径为30~35nm, 得纳米石墨备用; d. 将纳米石墨放入其质量3倍的菜籽油中,加热保持菜籽油温度为105~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性石墨。
[0015] 进一步的,所述纳米改性沸石的制备方法包括如下步骤: a. 将沸石放入质量分数为2.8%的酒石酸溶液中,浸渍20min后取出,然后放入质量分数 为2.8%的小苏打溶液中,浸渍20min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的沸石放入窑中煅烧2~2.5h,煅烧的温度为900~1000°C,取出后得高温改 性沸石备用; c. 将高温改性沸石放入球磨机中,控制温度为-25-23°C,不断研磨至粒径为25~30nm, 得纳米沸石备用; d. 将纳米沸石放入其质量3倍的猪油脂中,加热保持猪油脂温度为108~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性沸石。
[0016] 进一步的,所述添加剂在润滑油中添加的质量分数为7~11%。
[0017]对比实施例1 本对比实施例1与实施例1相比,纳米颗粒混合物中仅含有纳米改性石墨,所用质量与 实施例1中的纳米颗粒混合物质量相同,除此外的方法步骤均相同。
[0018] 对比实施例2 本对比实施例2与实施例1相比,纳米颗粒混合物中仅含有纳米改性沸石,所用质量与 实施例1中的纳米颗粒混合物质量相同,除此外的方法步骤均相同。
[0019] 对照组1 市售具有抗氧防腐性能的润滑油。
[0020] 对照组2 市售20#标准机械油。
[0021] 为了对比本发明效果,设置了抗磨减摩试验,具体如下: 本试验方法采用四球试验方法,四球试验参数标准为:转速1450r/min,载荷392N,时间 10011^11。试验所用钢球按照68/308-89制造,6〇15,二级钢球,直径13.4111111,硬度为64-66HRC。试验中,将试验用油注入容纳钢球的油杯中,使液面刚好没过钢球的表面,施加垂直 载荷P为400N,测量出摩擦力矩,由公式:μ=0·233ΧΤ/Ρ(其中μ为摩擦因数;T为摩擦力 矩)计算出摩擦因数,一次用于评价检测油的摩擦因数μ与磨损量。检测油为上述四种润 滑油与20#标准机械油,试验前后对钢球和环块进行充分清洗,然后用万分之一电子天平称 量试验前后钢球的磨损量,用金相显微镜测量钢球的磨斑直径,对比数据如下:
通过实际观察发现,对照组1和对照组2对应的钢球表面有明显磨损现象,对比实施例1 和对比实施例2对应的钢球表面有轻微的磨损,而实施例1对应的钢球表面几乎无磨损。
【主权项】
1. 一种润滑油抗磨添加剂,其特征在于,由如下重量份的物质制成: 8份硼酸三正丁脂、4份异辛氧基硼酸铜、3份二氨基吡啶、5份聚异丁烯双丁酰亚胺、4份 十六烷基苯磺酸钠、6份硫化烷基酚钙、3份齐墩果酮酸、5份硫磷丙辛仲伯烷基锌盐、4份二 异氰酸脂、2份油桐籽提取物、12份纳米颗粒混合物;所述纳米颗粒混合物是由纳米改性石 墨与纳米改性沸石按质量比2:1混合而成。2. 根据权利要求1所述的一种润滑油抗磨添加剂,其特征在于,所述油桐籽提取物的制 备方法包括如下步骤: a. 将油桐籽放于质量分数为1.8%的食盐溶液中浸泡25min后,取出用清水冲洗晾干备 用; b. 将洗净后的油桐籽放入低温粉碎机中,控制温度为-45~-40°C,粉碎成粒径为0.2~ 0.3mm的颗粒,制成油桐籽粉备用; c .将油桐籽粉与其质量2倍的清水混合均匀,然后加入清水质量1.8%的复合酶制剂,保 持水温为40~42°C,酶解20min后得酶解液备用,所述复合酶制剂中含有纤维素酶、半纤维素 酶和果胶酶; d. 将酶解液放入其质量3倍的质量分数为95%的乙醇溶液中,辅以频率为35KHz的超声 波进行提取,1~1.5h后得醇提液备用; e. 对醇提液进行去醇去水处理后即得油桐籽提取物。3. 根据权利要求1所述的一种润滑油抗磨添加剂,其特征在于,所述纳米改性石墨的制 备方法包括如下步骤: a. 将石墨放入质量分数为2.5%的胡萝卜酸溶液中,浸渍15min后取出,然后放入质量分 数为2.5%的小苏打溶液中,浸渍15min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的石墨放入质量分数为11%的氯化镁溶液中,保持溶液温度为30~35°C,同 时施加频率为29KHz的超声波,20~22h后取出干燥得氯化改性石墨备用; c .将氯化改性石墨放入球磨机中,控制温度为-30~-25 °C,不断研磨至粒径为30~35nm, 得纳米石墨备用; d.将纳米石墨放入其质量3倍的菜籽油中,加热保持菜籽油温度为105~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性石墨。4. 根据权利要求1所述的一种润滑油抗磨添加剂,其特征在于,所述纳米改性沸石的制 备方法包括如下步骤: a. 将沸石放入质量分数为2.8%的酒石酸溶液中,浸渍20min后取出,然后放入质量分数 为2.8%的小苏打溶液中,浸渍20min后取出,最后用清水冲洗后干燥备用; b. 将干燥后的沸石放入窑中煅烧2~2.5h,煅烧的温度为900~1000°C,取出后得高温改 性沸石备用; c .将高温改性沸石放入球磨机中,控制温度为-25-23 °C,不断研磨至粒径为25~30nm, 得纳米沸石备用; d.将纳米沸石放入其质量3倍的猪油脂中,加热保持猪油脂温度为108~110°C,不断搅 拌,30~35min后滤出干燥即得纳米改性沸石。5. 根据权利要求1所述的一种润滑油抗磨添加剂,其特征在于,所述添加剂在润滑油中 添加的质量分数为7~11 %。
【文档编号】C10M167/00GK105969485SQ201610364797
【公开日】2016年9月28日
【申请日】2016年5月30日
【发明人】武献东
【申请人】五河县黄淮粮油机械有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1