专利名称:回收烯烃的方法
技术领域:
一般来说,本发明涉及从含有烯烃的气体中分离烯烃。更具体地说,本发明涉及一种通过使用膜分离和变压吸附技术的组合从含有烯烃和氢的气体中除去氢以便从中分离出烯烃的改进方法。
背景技术:
烯烃例如乙烯、丙烯和丁烯可通过在高温下加热饱和烃例如乙烷、丙烯或丁烷的方法来生产。同样,石脑油、瓦斯油和其他重质烃进料也可在裂解炉中在水蒸汽存在下热裂解来生产烯烃。
通过加热饱和烃、石脑油或瓦斯油进料生产的裂解流出物通常含有氢、水蒸汽、二氧化碳、一氧化碳、甲烷、乙烷、乙烯、丙烷、丙烯和少量其他组分,例如重质烃类。然后将裂解流出物送入烯烃装置的产品回收工段。
在产品回收工段中,将裂解流出物在一个或多个压缩段中压缩,以便使烃类组分部分液化,用于深冷蒸馏分离。在冷冻裂解流出物以前,必需先除去二氧化碳、水蒸汽和重质烃类,以防止设备冻结和堵塞。从裂解流出物中除去这些组分以后,将流出物通过深冷工段(通常称为“冷箱”),在那里将流出物的温度降低,以便可用蒸馏法进行烃类组分的分离。对于冷箱较热的部分通过乙烯致冷循环;而对于冷箱较冷的部分通过废气流膨胀来提供冷箱的致冷平衡。
蒸馏工段通常有三个塔,除去轻组分的脱甲烷塔、除去重组分的脱乙烷塔和从乙烷循环流中分离乙烯产品的乙烷/乙烯分割塔。乙烯致冷循环还为蒸馏工段提供重沸和冷凝负荷。
使用裂解气体中所含的氢气来部分平衡深冷工段的冷端。但是,它的存在需要在蒸馏工段有更冷的温度,以便分离产品。在蒸馏工段中,氢还起压载物的作用,它避免加工额外数量的产品。
考虑到与氢在裂解流出物中存在有关的缺点,为了从裂解流出物中除去氢,已提出了各种方法。例如参见US 5082481、5452581和5634354;因此它们的公开内容作为参考并入。在这些专利中所描述的方法包括使用膜分离器来从裂解流出物中除去氢。
但是,存在几个与这些方法有关的缺点。例如,除非所公开的方法使用很高选择性的膜,否则渗透物流中会损失不定数量的产品。甚至使用高选择性的膜时,氢脱除速率可能也不足以高到使这种方法在经济上可行的程度。
因此,在本领域中需要这样一种方法,它使渗透物流中产品的损失减到最小或者完全没有损失,而又不需要使用很高选择性的膜。此外,在本专业中还需要这样一种方法,它可采用更高的氢脱除速率,而又不伴随产品的损失。
轻质烯烃也可通过含有甲醇、乙醇、二甲醚、二乙醚或其混合物的原料的催化转化来生产。例如参见US 4499327,因此它的全部公开内容作为参考并入。这样的方法通常称为甲醇转化成烯烃法(MTO)或气体转化成烯烃法(GTO)。在这些方法中,氢有时用作稀释剂,它必需从目的烯烃产品中除去。
因此,在本领域中还需要一种经济且有效的方法来从这些方法得到的烯烃产物流中分离氢。
发明概述本发明通过提供一种从含有烯烃和氢的裂解流出物中回收烯烃的改进方法来满足在本领域中上述的需要。该法包括将裂解流出物在至少一个压缩段中压缩,得到经压缩的裂解流出物;在有效制得富氢渗透物流和贫氢保留物流的条件下将经压缩的裂解流出物与膜接触;以及在有效制得富氢的不吸附物流和含烯烃的脱附物流的条件下将渗透物流送入变压吸附系统。
在一优选的实施方案中,本发明涉及一种从裂解流出物中回收烯烃和高纯度氢的方法。该法包括将裂解流出物在至少一个压缩段中压缩,得到经压缩的裂解流出物;在有效制得富氢渗透物流和贫氢保留物流的条件下经压缩的裂解流出物与膜接触;将渗透物流在至少一个个另外的压缩段中压缩,得到经压缩的渗透物流;在有效制得含有高纯度氢的不吸附物流和含烯烃的脱附物流的条件下将经压缩的渗透物流送入变压吸附系统;以及将脱附的物流循环到上述至少一个压缩段。
更一般来说,本发明的方法可用于从任何来源得到的含烯烃和氢的气体中分离烯烃,这些来源包括甲醇转化成烯烃法(MTO)或气体转化成烯烃法(GTO)。在这种情况下,该法包括将气体在至少一个压缩段压缩,得到经压缩的气体;在有效制得富氢渗透物流和贫氢保留物流的条件下经压缩的气体与膜接触;以及在有效制得富氢的不吸附物流和含烯烃的脱附物流的条件下将渗透物流送入变压吸附系统。
在一优选的实施方案中,本发明涉及一种从含有烯烃和氢的气体中回收烯烃和高纯度氢的方法。该法包括将气体在至少一个压缩段中压缩,得到经压缩的气体;在有效制得富氢渗透物流和贫氢保留物流的条件下经压缩的气体与膜接触;将渗透物流在至少一个另外的压缩段中压缩,得到经压缩的渗透物流;在有效制得含有高纯度氢的不吸附物流和含烯烃的脱附物流的条件下将经压缩的渗透物流送入变压吸附系统;以及将脱附的物流循环到至少一个压缩段。
附图简介
图1为本发明一实施方案的示意流程图。
图2为本发明另一实施方案的示意流程图。
图3为使用PSA的典型乙烯装置的示意流程图。
图4为使用单独PSA和膜分离系统的典型乙烯装置的示意流程图。
图5为本发明乙烯装置的示意流程图。
优选实施方案的详述在本发明中,优选组合使用膜分离器和变压吸附(PSA)系统。具体地说,从膜分离器流出的主要含氢和一些有价值产品例如烯烃的渗透物流任选在一个或多个压缩机中再压缩,然后送入PAS系统。PSA系统优先吸附渗透物流中存在的产品,得到富氢的不吸附物流。吸附的产品在低压下脱附,得到含有产品的脱附物流。可将脱附的物流循环到至少一个压缩段的吸入侧。另一方面,可将脱附的物流在一个或多个另外的压缩机中压缩,然后循环到膜分离器的进料侧。
任何一种膜都可用于本发明的方法,只要它能完全渗透氢,而基本上不渗透烃类例如乙烯。此外,膜应与要分离的气体有良好的相容性,有高的结构强度以便能经受住高的跨膜压差,以及对一定的分离参数有足够高的通量等。这样的膜可由聚合物材料制成,例如维生素衍生物、聚砜、聚酰胺、聚芳酰胺和聚亚酰胺。这样的膜也可由陶瓷、玻璃和金属制成。用于本发明的优选膜包括在EP219878和US5085774中公开的那些膜;因此其公开内容作为参考并入。
本发明使用的膜可包含在一个或多个膜分离段中,它可为膜分离器的形式。膜分离器可含有一系列交替的膜层和垫片层,它们以“螺旋缠绕”方式缠绕在收集管周围。气体进入分离器,渗透物通过缠绕的膜进入收集管。渗透物流过收集管,并通过出口从分离器排出。不渗透的气体即保留物或残留物通过另一出口从分离器排出。
在另一替代方法中,膜可为中空纤维形式。在这样的分离器中,进入分离器的气体与纤维膜接触。渗透物进入中空纤维,而不渗透的气体即保留物或残留物仍留在纤维外面。在减压下渗透物在纤维内输送到集气管,再将渗透物送以渗透物出口。保留物在基本上与进入的进料气体相同的压力下输送到分离器出口。
在以下的文献中进一步描述了上述膜分离器的一些例子Spillman,“气体分离膜的经济性”,化学工程进展,1989年1月,第41-62页;Haggin,“为工业分离研制的新一代膜”,化学与工程新闻,1988年6月6日,第7-16页;以及“MEDAL-膜分离系统,Du Pont/AirLiguide“。
适用于本发明方法的PSA系统在本专业中是大家熟悉的,它们可从美国的工业气体公司购得。简单地说,PSA系统采用一个或多个吸附剂床通过压力周期变化和阀门次序的组合来从气体混合物中选择性吸附和脱附气体组分。
作为在本发明中优选的应用,PSA系统可生产高纯度氢产品,它基本上不含更强吸附的烃类,它含有至少98%(体积)氢。PSA系统还可生产含有甲烷、乙烷、乙烯和更高级烃类以及一些氢的脱附物流,这些氢通常是在减压步骤和冲洗步骤中损失的。
根据本发明通过使用膜分离和PSA分离系统的组合,有可能不象在现有技术的方法中那样在渗透物流中损失有价值的产品的条件下,使用更低的选择性的膜和/或更高的氢脱除速率。在本发明中,在PSA系统中收集有价值的产品,任选将它们循环和回收。通过在较高的氢脱除速率下操作,可提高分离产品的蒸镏工段的生产能力,深冷工段也可在较高的温度下操作。此外,本发明的方法能在PSA系统中回收更大数量的纯氢,使整个装置的经济性更好。
本发明的方法可优选用于从含有烯烃和氢的任何一种气体物流的氢中分离烯烃。这样的气体物流包括但不限于由裂解法和GTO法或MTO法得到的那些气体物流。当然,气体可含有通常与这些物流有关的其他组分。
现在将参考附图来描述本发明各种优选的实施方案,其中相同的标记的部分有相同的数字。
参考图1,将石脑油进料10送入裂解炉102。石脑油进料101在水蒸汽存在下在裂解炉102中热裂解,生成裂解流出物103。裂解流出物通常含有氢、水蒸汽、一氧化碳、二氧化碳和包括乙烯、丙烯和其他烯烃在内的各种烃类。在急冷单元105中,用水104将裂解流出物103急冷。经管线106从急冷单元105中排出水蒸汽。经急冷的裂解流出物107从急冷单元105中取出,送到主分离工段,除去重质馏分108和排出水蒸汽冷凝物109。主分离工段包括蒸馏塔110和冷凝器111。产品蒸汽112从冷凝器111取出,并送到一系列压缩机113a、113b、113c和113d,其中产品蒸汽112被压缩到适合于随后的深冷烯烃回收的压力。在最后的压缩段113d以前,经压缩的物流114在洗涤塔115中用苏打116处理,以便除CO2。用过的苏打117从洗涤塔115中取出。然后经洗涤的气体118从洗涤塔115送到最后的压缩机113d,再送入干燥器119,以便从中除去残留的水。从干燥器119中取出预调制的裂解流出物120。
在有效制得富氢的渗透物流122和贫氢的保留物流123的条件下,将预调制的裂解流出物120送到膜分离器121。将渗透物流122在一个或多个另外的压缩机中压缩(未示出),如果需要,然后在有效从渗透物流122中生产富氢的不吸附物流125和含有烃类产品的脱附物流126的条件下将它送入PSA系统。将脱附物流126在压缩机127中压缩,再经管线128循环到膜分离器121的进料侧。任选的是,如虚线129所示,将至少一部分经压缩的脱附物流128循环到压缩机113a的吸入侧。
将含有烃类的贫氢保留物流123在深冷分离工段分离成各种组分(未示出)。深冷工段包括从较重的烃类产物132中分离甲烷131的脱甲烷塔130。然后将含有乙烯的较重的烃类产物132送到另外的分馏塔(未示出),以便生产目的产品物。任选的是,如虚线133所示,将至少一部分甲烷塔顶物流131循环到PSA系统124。
参考图2,这里所示的方法一直到PSA系统124都与图1所示的相同。在图2的方法中,含有烃类产品的脱附物流126简单地循环回压缩机113a的吸入侧。此外,膜分离器134用来从脱甲烷塔130的塔顶物流131中的废气135中分离氢。膜分离器134可使用与膜分离器121中相同的或不同的膜。膜分离器134在有效生产富氢的渗透物流135和贫氢的保留物流136的条件下运转。如管线137所示,膜分离器134中至少一部分渗透物循环到PSA系统124。
现在参考以下实施例来描述本发明。
实施例在图3-5所示的工艺流程图的基础上进行计算机模拟。模拟了这里所示的在大约500磅/英寸2压力下操作的乙烯装置,以及模拟了在大约-105℃下操作的冷箱。下面给出的C2/C2=损失不包括在蒸馏中的损失。
对比例1图3表示使用PSA的典型乙烯装置。简单地说,该装置包括裂解工段,在那里新鲜原料、循环物流和水蒸汽混合,并在裂解炉中在接近大气压和高温下反应。该工段的流出物1(通常称为“裂解气”)在流出物压缩机中压缩,然后在一个或多个干燥器中干燥(未示出)。然后将经压缩的流出物送入深冷工段(冷箱),在那里将它的温度降到这样的水平,以致可用蒸馏法进行流出物中各组分的分离。对于冷箱的较热部分通过乙烯致冷循环,而对于冷箱的较冷部分通过膨胀器来为冷箱提供致冷平衡。为膨胀器提供致冷负荷的废气6为甲烷和氢的混合物。
然后将经冷冻的流出物送到脱甲烷塔,以便得到含有甲烷和氢的塔顶物流4以及含有较重烃类的蒸馏进料物流5。如上指出的,塔顶物流4中的一部分6用来为膨胀器负荷提供致冷负荷。将塔顶物流4中的剩余部分7送到PSA系统,由它生产含高纯度氢的不吸附物流8和脱附的尾气流9。将蒸馏进料物流5送到蒸馏工段,以便生产乙烯产品物流。
图3所示工艺流程的模拟结果列入下表1。
表1
对比例2图4表示使用分开的PSA和膜分离系统的典型乙烯装置。图4中的工艺流程与图3中的相同,不同的是在进料压缩机以后插入膜分离系统。在渗透物流中主要含氢的废气物流3被排出,不送到冷箱和蒸馏工段。保留物流2按上述经压缩的裂解流出物相同的方式来加工。图4示出的工艺流程的模拟结果列入下表2。
表2
实施例1图5表示本发明的乙烯装置。它优选使用PSA和膜分离系统的组合。象图4一样,将经压缩的流出物10送到膜分离器。与图4中的流程不同,渗透物流3在另外的压缩机中再压缩,并作为进料送入PSA系统。将PSA系统的尾气9送到进料压缩机的吸入侧和送回蒸馏工段,尾气9现在含有在渗透物流3中存在的有价值产品。纯氢作为PSA系统的不吸附物流8回收。
图5所示的工艺流程的模拟结果列下表3。
表3
通过实施例1与对比例1和2的比较,可以看出,本发明的方法可将C2/C2=产品的损失降低到0.5%以下。
虽然参考附图、实施例和优选的实施方案描述了本发明,但应当理解,对于熟悉本专业的技术人员来说,很显然可进行各种改型和改进。这样的改型和改进在附后的权利要求书的权限和范围内。
权利要求
1.一种从含有烯烃和氢的气体物流中回收烯烃的方法,所述的方法包括以下步骤(a)将所述的气体在至少一个压缩段中压缩,得到经压缩的气体物流;(b)在有效制得富氢的渗透物流和贫氢的保留物流的条件下所述的经压缩的气体物流与膜接触;以及(c)在有效制得富氢的不吸附物流和含有烯烃的脱附物流的条件下将所述的渗透物流送入变压吸附系统。
2.根据权利要求1的方法,还包括将至少一部分所述的脱附物流循环到所述的至少一个压缩段。
3.根据权利要求1的方法,还包括将至少一部分所述的脱附物流送到至少一另外的压缩段,以便得到经压缩的脱附物流,以及将至少一部分所述的经压缩的脱附物流循环到所述的膜接触步骤。
4.根据权利要求1的方法,其中所述的烯烃包括乙烯。
5.根据权利要求1的方法,其中所述的不吸附物质基本上为纯氢。
6.根据权利要求1的方法,还包括将所述的保留物流送到深冷分离工段。
7.根据权利要求6的方法,其中所述的深冷分离工段包括有含有甲烷的塔顶物流和含有所述烯烃的塔底物流的脱甲烷塔。
8.根据权利要求7的方法,还包括将至少一部分所述的塔顶物流循环到所述的变压吸附系统。
9.根据权利要求1的方法,其中所述的气体物流来自甲醇转化成烯烃(MTO)装置或气体转化成烯烃(GTO)装置。
10.一种从含有烯烃和氢的气体中回收烯烃和高纯度氢的方法,所述的方法包括以下步骤(a)将所述的气体物流在至少一个压缩段中压缩,得到经压缩的气体物流;(b)在有效制得富氢的渗透物流和贫氢的保留物流的条件下所述的经压缩的气体物流与膜接触;(c)将所述的渗透物流在至少一另外的压缩段中压缩,得到经压缩的渗透物流;(d)在有效制得含有高纯度氢的不吸附物流和含有烯烃的脱附物流的条件下,将所述的经压缩的渗透物流送入变压吸附系统;(e)将所述的脱附物流循环到所述的至少一个压缩段。
11.根据权利要求10的方法,其中所述的烯烃包括乙烯。
12.根据权利要求10的方法,还包括将所述的保留物流送到深冷分离工段。
13.根据权利要求12的方法,其中所述的深冷分离工段包括有含有甲烷的塔顶物流和含有所述的烯烃的塔底物流的脱甲烷塔。
14.根据权利要求13的方法,还包括在有效制得富氢的渗透物流和贫氢的保留物流的条件下所述的塔顶物流与第二种膜接触。
15.根据权利要求14的方法,还包括将至少一部分所述的渗透物流循环到所述的变压吸附系统。
16.根据权利要求10的方法,其中所述的气体物流来自甲醇转化成烯烃(MTO)装置或气体转化成烯烃(GTO)装置。
17.一种从含有烯烃和氢的裂解流出物中回收烯烃的方法,所述的方法包括以下步骤(a)将所述的裂解流出物在至少一个压缩段中压缩,得到经压缩的裂解流出物;(b)在有效制得富氢的渗透物流和贫氢的保留物流的条件下所述的经压缩的裂解流出物与膜接触;以及(c)在有效制得富氢的不吸附物流和含有烯烃的脱附物流的条件下将所述的渗透物流送入变压吸附系统。
18.根据权利要求17的方法,还包括将至少一部分所述的脱附物流循环到所述的至少一个压缩段。
19.根据权利要求17的方法,还包括将至少一部分所述的脱附物流送到至少一另外的压缩段,得到经压缩的脱附物流,以及将至少一部分所述的经压缩的脱附物流循环到所述的膜接触步骤。
20.根据权利要求17的方法,其中所述的烯烃包括乙烯。
21.根据权利要求17的方法,其中所述的不吸附物流基本上为纯氢。
22.根据权利要求17的方法,还包括将所述的保留物流送到深冷分离工段。
23.根据权利要求22的方法,其中所述的深冷分离工段包括有含有甲烷的塔顶物流和含有所述烯烃的塔底物流的脱甲烷塔。
24.根据权利要求23的方法,还包括将至少一部分所述的塔顶物流循环到所述的变压吸附系统。
25.一种从裂解流出物中回收烯烃和高纯度气的方法,所述的方法包括以下步骤(a)将所述的裂解流出物在至少一个压缩段中压缩,得到经压缩的裂解流出物;(b)在有效制得富含的渗透物流和贫氢的保留物流的条件下将所述的经压缩的裂解流出物与膜接触;(c)将所述的渗透物流在至少一另外的压缩段中压缩,得到经压缩的渗透物流;(d)在有效制得含有高纯度氢气的不吸附物流和含有烯烃的脱附物流的条件下将所述的经压缩的渗透物流送入变压吸附系统;以及(e)将所述的脱附物流循环到所述至少一个压缩段。
26.根据权利要求25的方法,其中所述的烯烃包括乙烯。
27.根据权利要求25的方法,还包括将所述的保留物流送到深冷分离工段。
28.根据权利要求27的方法,其中所述的深冷分离工段包括含有甲烷的塔顶物流和含有所述的烯烃的塔底物流的脱甲烷塔。
29.根据权利要求28的方法,还包括在有效制得富氢的渗透物流和贫氢的保留物流的条件下所述的塔顶物流与第二种膜接触。
30.根据权利要求29的方法,还包括将至少一部分所述的渗透物流循环到所述的变压吸附系统。
全文摘要
一种从含有烯烃和氢的气体物流中回收烯烃的方法。该法包括将气体物流在至少一个压缩段中压缩,得到经压缩的气体物流;在有效制得富氢的渗透物流和贫氢的保留物流的条件下经压缩的气体物流与膜接触;以及在有效制得富氢的不吸附物流和含有烯烃的脱附物流的条件下将渗透物流送入变压吸附系统。
文档编号C10G5/00GK1282363SQ98812348
公开日2001年1月31日 申请日期1998年12月10日 优先权日1997年12月16日
发明者Y·恩格勒, G·杜普斯 申请人:液体空气乔治洛德方法利用和研究有限公司, 液体空气美国公司