制造甲烷合成气的方法

文档序号:5125514阅读:1008来源:国知局
专利名称:制造甲烷合成气的方法
技术领域
本发明关系到一种反应制出甲烷(methanol)合成气按一定比例对一氧化碳与氢气进行合成的方法;该方法是通过对细微颗粒以至粉尘状的燃料在结渣熔点温度上段进行气化(部分氧化),同时将所产生的部分氧化粗煤气在一个直接联结于气化器之后的余热锅炉所产生水蒸汽中间接冷却,然后对其进行除尘、催化性CO转换脱硫而产生甲烷合成气。
在对于细微颗粒以至粉尘状燃料进行气化而产生的部分氧化粗煤气中,随着所投入燃料的成分以及气化反应条件的不同,一氧化碳与氢气之比,应处于1∶1到2.7∶1的范围内。对于甲烷合成所得甲烷合成气中一氧化碳与氢气之比必须保持在0.4∶1到0.5∶1的范围内。为了达到这样的数值,就必须将多余的一氧化碳通过CO转换反应。
产生氢气使前者从合成气中除去。此种从部分氧化粗煤气中生产甲烷合成气的方式是众所周知的。目前为进行CO转换而使用的催化剂不是固硫的,大多都是在转换之前而不是在转换之后进行脱硫。对于转换本身,则又必须将待转换的气体在其进入转换反应塔之前喷上水蒸汽并在转换之后再将多余的水蒸汽释出。为此,有众所周知的所谓“润湿去湿”系统。但是,在使用固硫的催化剂时,又可以以如下方式对部分氧化粗煤气喷上水蒸汽。即,在除尘之前,将水蒸汽直接喷射到加热的粗煤气上,然后在转换之后再使多余水蒸汽从气体中冷凝排出来。然而,如果该煤气应干燥除尘,该加热的部分氧化粗煤气其冷凝水回流的可能性就受到了限制。不论采用的“润湿”和“去湿”煤气的方法是那一种,都有许多热量在低温区与多余水蒸汽一起进行冷冷凝冷缩,而同时又需要进行很大的热交换来加热煤气等这些气体。而且,对于多余水蒸汽进行冷凝,还需要很高的设备费用。
因此,本发明的目的在于将先有技术的方法加以改造,以避免上述的能量损失和高昂的设备费用,从而将微细颗粒以至粉尘状燃料生产甲烷的效率大大提高,同时将全部设备的结构加以简化。
为解决先有技术上述诸问题,本方法的特征见主要权利要求中的a)到g)款所说明。
这就是说,在根据本发明的方法中,首先将部分氧化粗煤气在余热锅炉中冷却到600℃到1450℃的温度范围,最好冷却到800℃到1200℃,然后与已作了转换的循环煤气相混合,从而使所产生的混合煤气温度降低到200℃到800℃之间,最好是降低到300℃和450℃之间。在上述温度下,对混合煤气作干燥除尘,然后将其分配为产品煤气部分气流和循环煤气部分气流两部分。在分配中应注意,应在对循环煤气部分气流作了转换之后,将该煤气再引到处于余热锅炉之后的部分氧化粗煤气中,从而所产生的混合煤气使具有制成甲烷合成气所希望的成份,因此,在干燥除尘之后,应将混合煤气如此分配,即使得循环煤气部分气流的体积是产为煤气部分气流体积的20倍,这里,
其中,u是CO转换中CO的转换率,即,进行转换的一氧化碳与投入的一氧化碳二者的预定比。
此外,γ是部分氧化粗煤气中一氧化碳对氢气的摩尔比,γs是预定生产的合成气中一氧化碳对氢气的摩尔比。
在分配之后,将对两部分煤气流作进一步处理,最好先对产品煤气部分气流进行间接预冷,然后对其气洗(水洗)来清除余下的灰尘和氨气以及卤素,以便在紧接最终冷却之后以众所周知的方式对其脱硫和除去CO2。在此之后,这一部分气流就可用于合成,并可被引入到甲烷合成反应塔中,而那些在产品煤气最终冷却中所出现的冷凝水,则在循环煤气部分气流的循环中进一步加以使用。
在混合气体分配之后,将循环煤气部分气流与在产品煤气部分气流最终冷却中所产生的冷凝水相接触,并在一定的场合下,与补充的水蒸汽接触,使得该煤气部分气流具有为进行转换反应所必须的一氧化碳对水蒸汽之比。CO转换本身是在固硫的催化剂在场的情况下进行的,在此,60%到95%,最好的有80%到95%,所投入的一氧化碳被转换了。
紧接着,已作了转换的煤气在上述冷却并进行压缩之后,又被引入到本方法的第一阶段(阶段a),并且在此与部分氧化粗气混合。
根据本发明的方法的进一步详情,由所提出的次要权利要求给出。并在下面借助于图示的流程图来加以说明。在这些流程图中,只是示出了对于说明本方法所必须的设备部分,所有的次要设备部分,例如,补充热的热交换器,泵,阀门等等,以及对于说明本方法并不重要的物质流程都没有示出。此外,在流程图中,也没有详细涉及安装在前面的气化设备和安放在后面的甲烷合成设备的详情,因为,这些处理阶段不是本发明的对象。但是,我们可以知道,这些处理阶段以及根据本发明的方法的全部处理阶段都可以由众所周知的已有设备部件和机组构成。
在流程图所示的方法中,所投入的燃料通过送料管道7引入到气化器2中,在这里,燃料的气化(部分氧化)是在气化的通常反应条件下并使用众所周知的气化器结构进行的,最好是使用旋流气化器(Fluqstromeuerqaser)作为气化器2,在其中,投入的燃料是在大于30bar的压力和1300℃到2000℃的温度下进行气化的。所产生的部分氧化粗煤气通过管道3离开气化器,并到达余热锅炉4。在实践中,余热锅炉4大都与气化器2成为一个整体结构,在余热锅炉4中,部分氧化粗煤气被冷却到600℃到1450℃的温度,最好是800℃到1200℃。在此所产生的余热蒸汽通过管道5引出,对其作进一步使用。从余热锅炉4出发,具有上述温度的煤气通过管道6到达退火区7,在这里,部分氧化粗煤气与通过管道8引入的已作了转换的循环煤气相混合,并同时被冷却,由此而产生的混合煤气应具有200℃到800℃的温度,最好是300℃到450℃的温度。在这样的温度下,混合煤气通过管道9被导入到干燥除尘塔10中,并在此被进一步除去与其一起流入的粉尘。在干燥除尘塔10之后,通过管道11流出的煤气流
m被分配为两个部分气流,即产品煤气部分气流
p和循环煤气部分气流
k,从而得出下式
m=
p+
k其中,在循环煤气进行稳定CO转换时,有
K=x.
P其中因子的含意有如上述。
产品煤气部分气流
P通过由管道11分枝而成的管道12导出,并达到冷却器13。在这里,煤气受到间接预冷。紧接着煤气又通过管道14引入到温洗(水洗)塔15中。在这里,煤气被完全除尘和排出在一定的场合下存在的氨气和卤素化合物。在此之后,煤气通过管道76到达最终冷却器17。在这里,煤气被冷却到应该在该温度下进行脱硫的温度。为此,将该煤气通过管道18引入到酸洗塔19中。通常,酸洗是使用适于酸洗目的的起化学和/或物理作用的酸洗溶液进行的。在此,与硫化物一起还有CO2以及其他酸性成份从煤气中被清理出去,对于煤气的脱硫,在一定的场合下,还可以采用另外的方法,例如干燥脱硫的方法。在酸洗塔19之后,煤气已具有适合于合成的成份和纯度,可以通过管道20引入到流程图中没有示出的甲烷合成反应塔中。
与此同时,循环煤气部分气流Vk通过管道11被引导到饱和器(Sattiqer)21中,同时还通过管道22将在最终冷却器17中出现的冷凝水引到该饱和器中,使得这些冷凝水可用于对循环煤气进行的水蒸汽饱合中。紧接着,循环煤气通过管道23到达湿洗塔24中,并在其中在冷凝温度下被湿洗。其后,循环煤气通过管道25导入到热交换器26中,在这里通过与来自转换反应塔30的工作了转换的煤气之间的间接热交换。循环煤气被加热到转换反应发生温度,通常,转换反应发生温度大于270℃。此已被加热了的煤气通过管道27到到饱和器28中,它们可以是由余热锅炉4中生产出的水蒸汽。饱和了的煤气通过管道29到达转换反应塔30,在其中使用固硫的催化剂进行一级式或二级的CO转换。这里所说的催化剂是适合于本转换目的的众所周知的且在市场上常见的催化剂,例如,那些包含有钴/钼作为活性成份的催化剂。
已作了转换的煤气经由管道32导出并在热交换器26以及最终冷却器33中被冷却到接近冷凝温度。在此,最终冷却器33的冷管系统34可用来预热锅炉4用的供应水。紧接冷却之后,已作了转换的煤气通过管道35被引导到压缩机36中,在这里被压缩到预定的程度,然后通过管道8回流到退火区7中。
根据本发明的方法的一个没有在流程图中示出的方案,可以将湿洗塔15和24用一个共同的冲洗水循环结果来驱动,在这里,冲洗水的部分水流由湿洗塔24导出,并已不含有固体物质盐性成份。在此之后,将这些已被净化的冲洗水引到饱和器21中,这样可以减免出现无用水。
根据本发明的方法,可以上述热动力学条件和CO转换的结构安排,以技术上合理的CO转换率M,即以相当低于100%的一氧化碳的投产规模运转。较低的一氧化碳投产率就要求提高循环煤气对产品煤气之分配比。60%到95%的一氧化碳投产率就要考虑到例如仪器、机器费用,特别是其能源价格等经济条件。运行条件,例如,燃料品质的改变,负荷的交变,部分负荷或其他影响因素,都会对煤气的成份有所影响。对于产品煤气部分气流中一氧化碳与氢气的摩尔比的连续的分析监测可以在出现上述情况时很快地通过调整循环煤气与产品煤气的比来修正产品煤气的成份。
另外一种调节方法是,将一部分循环煤气(每公斤无水煤为0到1.0Nm3,最好是0.3到0.6Nm3的无水煤)回流到气化器2的燃烧器中,并在这里替代气化器2里的水蒸汽来进行温度调节,在此,循环煤气是通过一个中心喷枪引入到燃烧器中心,这个喷枪包有两个环形区,通过其内环导入煤粉,通过其外环导入气化用的氧气。通通过将部分循环煤气回流到燃烧器中,可以相应于随其导入的二氧化碳和水蒸汽的数量减小氧气量而不影响气化结果。
最后,我们借助一个展示实例来示出根据本发明的方法的效率。在此展示实例中,将干燥粉尘状态的煤用氧气输送到旋流气化器中。其中不加入水蒸汽而只由氧气进行气化。在无水状态下,煤的化学成份是C 76.6(容积)%H 5.0(容积)%O 8.8(容积)%N 1.3(容积)%S 0.8(容积)%灰 7.5(容积)%(Cl 0.7(容积)%) (含在灰中)
以每公斤煤2.07Nm3的比例生成的部分氧化粗煤气,在1100℃的温度下进入退火区时的成份为CO 67.9(容积)%H226.5(容积)%CO20.3(容积)%N24.7(容积)%H2S 0.2(容积)%HCl 0.05(容积)%H2O 0.3(容积)%为了生产甲烷合成气,在转换率u为0.8的条件下,将7.6Nm3的已作了转换的循环煤气引入到退火区与部分氧化粗煤气会合。已作了转换的循环煤气的成份为CO 2.7(容积)%H242.3(容积)%CO229.8(容积)%N22.2(容积)%H2S 0.1(容积)%HCl 0.0(容积)%H2O 22.9(容积)%由此所产生的混合煤气的成份为CO 16.6(容积)%H238.9(容积)%CO223.5(容积)%
N22.7(容积)%H2S 0.15(容积)%HCl 0.01(容积)%H2O 18.1(容积)%且具有为生产甲烷合成气所需的一氧化碳与氢气的摩尔比γs为γs=0.427对上面的混合煤气在400℃的温度下进行干燥粉尘处理,并且紧接着按照每公斤(无水)煤3.52Nm3产品煤气和6.15Nm3循环煤气的比例将其分配为产品煤气部分气流和循环煤气部分气流。
在本例中部分氧化粗煤气中的一氧化碳对氢气之比例γ=2.56的条件下,循环煤气对产品煤气的分配比x=1.75。
按照上面所说明的方式,对产品煤气部分气流作进一步的处理。在此,在产品煤气最终冷却中所产生的冷凝水以每公斤(无水)煤0.51公斤冷凝水的比例,用来对循环煤气部分气流进行饱和。同样,按照上面所说的方式,对循环煤气部分气流进行进一步的处理。在进行转换之前,在一定的场合中,在300℃温度下按每公斤(无水)取最多为1.0公斤的比例将补充的水蒸汽加入到循环煤气部分气流中,以调节所希望的水蒸汽对一氧化碳的比值。在300℃的温度下,已被饱合的煤气被导引到转换反应塔中。紧接着转换之后,已被加热的煤气按照上面所示的方式冷却到大约160℃到170℃,然后又被引入到压缩机中,在这里,被压缩到其压力为退火区中的压力,然后再被引入到退火区中。
所给出的显示实例显示出根据本发明的方法的一种可能性,即可在一个很大范围内随意调定退火区的温度条件,从而,此温度条件可以适合于余热锅炉的管道设计安排(Auslequnq)。
上述的方法也可以类似的方式用于甲烷合成气以外的合成气的生产,只要如下调定反应条件,即使得产品煤气具有其所要进行的合成反应所需的一氧化碳对氢气的容积比值。
权利要求
1.一种按一定比例对一氧化碳与氢气进行合成反应制出甲烷合成气的方法。该方法是通过对细小颗粒以至粉尘状燃料在结渣溶点上段温度下进行(煤)气化(部分氧化),同时将所产生的部分氧化粗煤气在一个直接联结在气化器之后的余热锅炉中所产生水蒸汽中间接冷却,然后对其进行除尘催化性CO转换,脱硫以生产甲烷合成气,其特征为,a)在余热锅炉之后,通过加入已作了转换的循环煤气,对部分氧化粗煤气进行进一步冷却。b)对所产生的混合煤气进行干燥除尘。c)然后,将混合煤气分配为产品煤气部分气流和循环煤气部分气流。d)对产品煤气部分气流进行进一步冷却,紧接着进行气洗以除去剩余粉尘和其他不洁物,再进行最终冷却以使水蒸汽冷凝以及脱硫和清出CO2,以便在此之后将产品煤气导引到合成反应器中。e)对循环煤气部分气流在利用在产品煤气部分气流最终冷却中产生的冷凝水的同时,利用水蒸汽进行饱合,并在煤气凝点温度下进行水洗。f)对按上述方式净化了的循环煤气部分气流在一种固硫的催化剂在场的情况下进行CO转换,以调定所需一氧化碳对氢气的比值。q)在对已作了转换的循环煤气进行冷却到接近水蒸汽冷凝温度和相应地压缩之后,将循环煤气与阶段a)中的部分氧化粗煤气混合。
2.权利要求1中的方法,其特征为,循环煤气部分气流的体积是产品煤气部分气流。体积的x倍,其中
其中,u是CO转换中CO的转换率,γ是部分氧化粗煤气中一氧化碳对氢气的摩尔比,γs是甲烷合成气中一氧化碳对氢气的摩尔比。
3.权利要求1或2中的方法,其特征为,将部分氧化粗煤气在600℃到1450℃的温度范围,最好是在800℃到1200℃温度范围内被导入退火区并在这里与已作了转换的循环煤气混合,由此所产生的混合煤气温度下降到200°到800°之间,最好是在300℃和450℃之间。
4.权利要求1到3中的方法,其特征为,在循环煤气部分气流的CO转换中,有60%到95%,最好是80%到95%的所投入的一氧化碳被转换。
5.权利要求1到4中的方法,其特征为,用一个共同的冲洗水循环来进行产品煤气部分气流和循环煤气部分气流的湿洗,并在循环煤气部分气流的湿洗中抽出一部分冲洗水流,将其净化,然后用于对循环煤气部分气流的饱和中。
6.权利要求1到5中的方法,其特征为,连续不断地对产品煤气部分气流的一氧化碳对氢气的摩尔比进行分析监测,并当进行条件变化时,通过改变循环煤气与产品煤气的比值x将其调节到所希望的数值。
7.权利要求1到6中的方法,其特征为,通过按照1公斤无水煤0.1到1.0Nm3,最好0.3到0.6Nm3的循环煤气部分气流经过一个中心喷枪导引到气化器的燃烧器中,并在此替代水蒸汽来进行气化的温度调节以改变循环煤气对产品煤气的分配比x。
全文摘要
本方法关系到一种由部分氧化粗煤气生产甲烷合成气的方法。在本方法中,部分氧化粗煤气在气化器余热锅炉之后通过加入已作了转换的循环煤气而在退火区内被冷却。对由此产生的混合煤气除尘并紧接着将其分配为产品煤气部分气流和循环煤气部分气流。在对产品煤气部分气流作了相应的煤气处理之后将其引入到合成反应塔。与此同时,对循环煤气部分气流作CO转换并紧接着将其回流到退火区。
文档编号C10JGK1048721SQ90103349
公开日1991年1月23日 申请日期1990年7月5日 优先权日1989年7月10日
发明者罗尔夫·韦茨尔, 贝尔哈德·费尔哈勃 申请人:克虏伯·科佩尔斯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1