专利名称:粉体分级装置的利记博彩app
技术领域:
本发明涉及一种将具有粒度分布的粉体在期望的分级点进行分级的粉体分级装置,尤其涉及一种利用通过回旋气体流施予粉体的离心力和通过气体流产生的阻力之间的平衡,对大量的粉体进行分级的粉体分级装置。
背景技术:
以往为人所知的分级装置是用导流叶片形成回旋气体流,对粉体施予回旋运动而离心分离成粗粉和微粉。例如,在专利文献I提出的粉体分级装置中,在圆锥面状的粉体通路的下方,复数个导流叶片由隔板分割成上下2段同时排列成环状;通过从排气管进行排气,而形成通过导流叶片间的回旋空气流;通过圆锥面状的粉体通路而对掉落在位于上侧的导流叶片间的粉体施予回旋运动,通过离心力和阻力的平衡对粉体进行分级。另外,在专利文献2中揭示了一种原料供给装置,其沿着原料供给筒的圆周将复数个导流叶片配制成环状,从邻接的导流叶片间的二次空气流入通道将外部空气导引至原料供给筒内,籍此使供给至原料供给筒内的粉体原料分散。通过由排气管的抽吸排气产生的空气流,原料在分散状态下高速度回旋着掉落在原料供给筒内,流入分级室内离心分离成粗粉和微粉。此外,在专利文献3中揭示了一种气流分级装置,其中,复数个导流叶片呈环状的配置在分级室的外周部,且在邻接的导流叶片间设置空气流入通道,通过来自排气管的抽吸排气,使供给至分级室内的粉体以高速度回旋并离心分离成微粉和粗粉。[专利文献][专利文献I]日本特公平6-83818号公报[专利文献2]日本特开平8-57424号公报[专利文献3]日本特开平11-138103号公报
发明内容
发明要解决的课题根据利用以上导流叶片的分级装置,例如通过使用送风机从排气管进行抽吸排气,可以由通过导流叶片间的空气形成回旋空气流,对粉体施予回旋运动而离心分离成粗粉和微粉。然而,在利用通过回旋空气流施予粉体的离心力和气体流所产生的阻力之间的平衡进行分级的粉体分级装置中,当为了提高处理能力的目的将装置大型化而增大分级室的容积时,由于粉体的回旋半径会变大,所以分级点会变动成更大的值,例如次微米粉体等细微粒子的分级变得困难。因此,存在对细微粒子进行分级时处理能力受到限制的问题。本发明是为了解除这种以往的问题而开发完成的,其目的在于提供一种能以较高处理能力将细微粒子进行分级的粉体分级装置。
解决问题的手段本发明的粉体分级装置,具备:复数个粉体分级机,其分别通过回旋气体流对粉体施予回旋运动而分级成粗粉和微粉;及气体供给源,其向所述复数个粉体分级机分别供给用以形成回旋气体流的气体;及粉体供给部,其向所述复数个粉体分级机供给具有粒度分布的粉体;及微粉回收部,其回收在所述复数个粉体分级机分别经分级过的微粉;及粗粉回收部,其回收在所述复数个粉体分级机分别经分级过的粗粉;以及控制部,其控制被供给至所述复数个粉体分级机的气体的流量,以使所述复数个粉体分级机中的分级点大致相
坐寸ο优选地,复数个粉体分级机分别具有:壳体,其于内部形成有大致圆盘形状的离心分离室、环状的粉体分散室及环状的粉体再分级室,该环状的粉体分散室位于离心分离室的一侧并与离心分离室配置在同轴上且与离心分离室连通,该环状的粉体再分级室位于所述离心分离室的另一侧并与离心分离室配置在同轴上且与离心分离室连通;及复数个导流叶片或复数个气体供给喷嘴,该复数个导流叶片以从离心分离室的外周以指定的角度往内部方向延伸的方式配置且用以使气体流入离心分离室的内部,该复数个气体供给喷嘴以指定的角度配置在离心分离室的外周部且用以供给气体至所述离心分离室的内部;以及复数个第I喷嘴,其用以分别对所述粉体分散室的内部喷出气体形成回旋气体流。复数个粉体分级机也可以分别具有用以向粉体再分级室的内部喷出气体形成回旋气体流的复数个第2喷嘴。控制部,优选为控制从复数个粉体分级机的导流叶片流入的气体的流量,或是控制从气体供给源供给至复数个粉体分级机的气体的压力或流量,以使所述复数个粉体分级机中的压力损失相等。粉体供给部可以是具有将粉体分配至复数个粉体分级机的粉体分配器的构成。另夕卜,粉体供给部也可以是具备以连通粉体分散室的方式形成于壳体且用以将粉体供给至粉体分散室内的喷射器的构成。此外,粉体供给部还可以是具备粉体分配器及喷射器二者的构成。优选地,复数个粉体分级机分别具有用以排出包含微粉的气体流的微粉排出口。微粉回收部具有与复数个粉体分级机的微粉排出口连接的共通的捕集器。另外,复数个粉体分级机可分别具有用以排出粗粉的粗粉排出口,粗粉回收部可具有:分别与复数个粉体分级机的粗粉排出口连接的复数个挡板装置;以及与复数个挡板装置连接的共通的回收容器。或者,复数个粉体分级机也可分别具有用以排出粗粉的粗粉排出口,粗粉回收部也可具有分别与复数个粉体分级机的粗粉排出口连接的复数个回收容器。发明效果根据本发明,由于控制部控制从复数个粉体分级机的导流叶片流入的气体的流量或是从气体供给源供给至复数个粉体分级机的气体的压力或流量,以使复数个粉体分级机中的分级点大致相等,所以能够使用复数个粉体分级机,以较高的处理能力对细微粒子进行分级。
图1是显示本发明实施形态的粉体分级装置的构成的示意图。图2是显示在实施形态中使用的分级装置本体的俯视图。图3是显示实施形态中使用的粉体分级机的内部构成的剖视图。图4是显示喷嘴制作尺寸不同时的粒子径与分级效率的关系的曲线图。图5是显示实施形态中的分级点与分级精度指数的关系的曲线图。图6是显示在其他实施形态中使用的分级装置本体与粗粉回收部的主视图。附图标记I分级装置本体2微粉回收部3、41粗粉回收部4粉体分级机5连接部件6微粉排出口 7微粉排出管8汇流管9压力感测器10粗粉排出口 11捕集器12抽吸送风机13挡板装置14、42回收容器15阀板16粉体分配器17粉体供给源18A、18B压缩气体供给源18C气体供给源19控制部21壳体22上部圆盘状构件23下部圆盘状构件24离心分离室25导流叶片26粉体分散室27喷射器28粉体导入口 29、34、36压缩气体导入口 30粉体再分级室31、32边缘部33第I喷嘴35第2喷嘴37压缩气体推入室
具体实施例方式以下,根据附图所示的较佳实施形态,详细地说明本发明。图1显示本发明实施形态的粉体分级装置的构成。该粉体分级装置具备:进行粉体分级的分级装置本体I ;以及连接于分级装置本体I的微粉回收部2及粗粉回收部3。分级装置本体I具有分别通过回旋气体流对粉体施予回旋运动而分级成粗粉和微粉的复数个粉体分级机4,这些粉体分级机4通过中空的大致圆板形状的连接构件5而相互地连结。在复数个粉体分级机4的微粉排出口 6分别通过微粉排出管7而连接有汇流管8,且在该汇流管8连接有微粉回收部2。在各微粉排出管7上配置有检测对应的粉体分级机4的出口压力的压力感测器9。另外,在复数个粉体分级机4的粗粉排出口 10连接有粗粉回收部3。微粉回收部2具有:连接于分级装置本体I的汇流管8的由袋式滤器等构成的捕集器11 ;以及连接于捕集器11的抽吸送风机12。另一方面,粗粉回收部3具有:分别连接于复数个粉体分级机4的粗粉排出口 10的复数个挡板装置13 ;以及连接于复数个挡板装置13的共通的回收容器14。挡板装置13具备能被旋转驱动并且能确保气密性的阀板15,将贮留于对应的粉体分级机4的粗粉排出口 10的粗粉间歇性地向收容器14排出。在分级装置本体I的复数个粉体分级机4,通过粉体分配器16连接有粉体供给源
17。粉体供给源17用以供给欲以本实施形态的粉体分级装置进行分级的具有粒度分布的粉体,而粉体分配器16将从粉体供给源17导入的粉体均等地分配至复数个粉体分级机4。另外,在分级装置本体I的复数个粉体分级机4,连接有用以供给压缩气体的压缩气体供给源18A及18B,以及用以供给压缩气体或气体的(压缩)气体供给源18C。此外,在分级装置本体I的复数个压力感测器9连接有控制部19,在控制部19连接有微粉回收部2的抽吸送风机12、粗粉回收部3的复数个挡板装置13、粉体供给源17及压缩气体供给源18A及18B以及气体供给源18C。
如图2所示,分级装置本体I具有4台粉体分级机4。这些粉体分级机4具有相同的内部构成。S卩,如图3所示,在壳体21内的上部,在中心轴C上隔开指定的间隔对向配置有上部圆盘状构件22和下部圆盘状构件23,且在这些圆盘状构件22及23之间划分形成有大致圆盘形状的离心分离室24,而在离心分离室24的圆周方向外周部,分别以指定的角度在内部方向延伸配置有复数个导流叶片25。各导流叶片25通过与中心轴C呈平行的转动轴而能够在上部圆盘状构件22和下部圆盘状构件23之间转动地轴支,并且通过使未图示的转动板转动而同时地改变全部的导流叶片25的转动角度,并以可调整相互地邻接的导流叶片25的间隔的方式所构成。另外,也可以取代在离心分离室24的圆周方向外周部配置复数个导流叶片25,而在离心分离室24的外周部以指定的角度配置复数个气体供给喷嘴,并且在这些气体供给喷嘴连接气体供给源18C,且从气体供给源18C通过这些气体供给喷嘴将气体供给至离心分离室24的内部。在壳体21内,以沿着离心分离室24的外周连通于离心分离室24的方式与离心分离室24在同轴上划分形成有环状的粉体分散室26。在图3中,朝向该粉体分散室26内配置有喷射器27。喷射器27具有粉体导入口 28和压缩气体导入口 29,且在粉体导入口 28连接有粉体分配器16,在压缩气体导入口 29连接有未图示的喷射器用压缩气体供给源。并且,在下部圆盘状构件23的外周部,以沿着离心分离室24的外周连通于离心分离室24的方式与离心分离室24在同轴上划分形成有环状的粉体再分级室30。在上部圆盘状构件22,连接确朝向离心分离室24的中央部开口的微粉排出口 6。另一方面,在壳体21的下端,形成有通过粉体再分级室30连通于离心分离室24的粗粉排出口 10。另外,在上部圆盘状构件22,在连通于微粉排出口 6的开口的周缘,形成有朝向离心分离室24突出的环状的边缘部31,而在与该边缘部31相对的下部圆盘状构件23的中央部,形成有朝向离心分离室24突出的环状的边缘部32。S卩,这些边缘部31及32隔着离心分离室24对向配置。在划分形成粉体分散室26的周壁,分别以与粉体分散室26内相对的方式排列有复数个第I喷嘴33,且在这些第I喷嘴33通过压缩气体导入口 34连接有压缩气体供给源ISA0同样地,在划分形成粉体再分级室30的周壁,分别以与粉体再分级室30内相对的方式排列有复数个第2喷嘴35,且在这些第2喷嘴35通过压缩气体导入口 36连接有压缩气体供给源18B。复数个第I喷嘴33分别以相对于环状的粉体分散室26的切线方向具有指定的角度的方式配置,同样地,复数个第2喷嘴35,分别以相对于环状的粉体再分级室30的切线方向具有指定的角度的方式配置。籍此,通过从第I喷嘴33、或第I喷嘴33及第2喷嘴35分别喷出压缩气体,而在粉体分散室26内及粉体再分级室30内形成朝同一方向回旋的回旋气体流。另外,在配置在离心分离室24的外周部的复数个导流叶片25的外周部,具有形成于中空的连接构件5的内部的压缩气体推入室37,且在压缩气体推入室37连接有压缩气体供给源18C。籍此,通过压缩气体推入室37从复数个导流叶片25之间推入压缩气体,可在离心分离室24内形成与粉体分散室26及粉体再分级室30的内部的回旋气体流朝相同的方向回旋的回旋气体流。进而,也可取代推入压缩气体的方式,而以从复数个导流叶片25之间将大气压的气体流入离心分离室24内的方式构成。另外,如上所述,也可取代配置导流叶片25,而通过从以指定的角度配置在离心分离室24的外周部的复数个气体供给喷嘴喷出压缩气体,而在离心分离室24内形成与粉体分散室26及粉体再分级室30的内部的回旋气体流朝相同的方向回旋的回旋气体流。其次,就实施形态的粉体分级装置的动作加以说明。事先通过控制部19使粗粉回收部3的复数个挡板装置13中的任一个均处于阀板15闭合的状态。首先,通过控制部19驱动微粉回收部2的抽吸送风机12,且在4台粉体分级机的每一个中,透过微粉排出口 6从离心分离室24内以指定的风量进行吸气,并且从压缩气体供给源18A及18B将压缩气体供给至各粉体分级机4的压缩气体导入口 34及36,然后从第I喷嘴33及第2喷嘴35喷出压缩气体,进而从压缩气体供给源18C将压缩气体供给至连接构件5的压缩气体推入室37,且从各粉体分级机4的复数个导流叶片25之间推入压缩气体。籍此,在各粉体分级机4的粉体分散室26内、离心分离室24内及粉体再分级室30内形成朝同一方向回旋的回旋气体流。在该状态下,当从未图示的喷射器用压缩气体供给源将压缩气体供给至各粉体分级机4的喷射器27的压缩气体导入口 29,并且从粉体供给源17透过粉体分配器16将粉体均等地分配供给至各粉体分级机4的喷射器27的粉体导入口 28时,粉体就会通过从压缩气体导入口 29供给的压缩气体以指定的流量进入粉体分散室26,并在此暴露于回旋气体流中并进行回旋运动,且在被分散的同时通过形成于上部圆盘状构件22的外周部的环状的间隙掉落在离心分离室24内。由于在离心分离室24内也形成有回旋气体流,所以从粉体分散室26掉落的粉体会在离心分离室24内回旋,且在此处接受离心分离作用。结果,通过形成于离心分离室24的中央部的环状的边缘部31及32残留粒径大的粗粉,而使具有分级点以下的尺寸的微粉与气体流一起从微粉排出口 6被抽吸并排出。因此,可从具有粒度分布的粉体中对微粉进行分级回收。如此回收的微粉中,极少含有超过分级点的粗粉。如此从各粉体分级机4的微粉排出口 6排出的微粉,通过微粉排出管7到达汇流管8,且在此处,从4台粉体分级机4排出的微粉汇流,并被捕集在微粉回收部2的捕集器11中。另外,来自对应各粉体分级机4配置在微粉排出管7的压力感测器9的检测信号被输入至控制部19。另一方面,在各粉体分级机4中,未从微粉排出口 6排出的粉体的残留部分,通过形成于下部圆盘状构件23的外周部的环状的间隙而从离心分离室24向粉体再分级室30掉落。在这样向粉体再分级室30掉落的粉体中,虽然多为不仅包含超过分级点的粗粉,还包含分级点以下的微粉,但是因为在粉体再分级室30内由于从第2喷嘴35的压缩气体的喷出而形成有回旋气体流,微粉可随回旋气体流返回到离心分离室24内。籍此,微粉就可从粗粉中有效地去除,而从微粉排出口 6排出。
在接受以上的微粉再分级室30的再分级作用之后,超过分级点的粗粉从粉体再分级室30向粗粉排出口 10掉落。虽然粗粉会如此地掉落在各粉体分级机4的粗粉排出口 10,但是由于此时与各粉体分级机4的粗粉排出口 10连接的挡板装置13的阀板15均被关闭,所以通过阀板15阻止粗粉向回收容器14的排出。假设同时打开复数个挡板装置13的阀板15,就会经由这些复数个挡板装置13及回收容器14的内部而在复数个粉体分级机4的相互之间进行气体的流通,如比恐怕会使形成于各粉体分级机4内的回旋气体流扰动而降低分级精度。因此,控制部19仅驱动复数个挡板装置13中的一个挡板装置13,且仅在指定的时间打开其阀板15,并使经连接于该挡板装置13的粉体分级机4分级后的粗粉向回收容器14排出。然后,当经过指定的时间时,在挡板装置13的阀板15再次闭合以后,下次仅在指定的时间打开下一个挡板装置13的阀板15。籍此,经连接于下一个挡板装置13的粉体分级机4分级后的粗粉向回收容器14排出。接下来,同样地,依序逐个打开复数个挡板装置13的阀板15而使粗粉向回收容器14排出。如此,通过不同时地打开复数个挡板装置13的阀板15,而是依序逐个打开阀板15使粗粉排出,就不会带来分级精度的降低,而能够进行粗粉向回收容器14的回收。另外,只要可进行上述的控制,挡板装置13也可使用例如具有如百叶窗('> Y 〃夕一)的开闭构造的装置。如上所述,虽然可在4台粉体分级机4中分别进行粉体的分级,但是可根据来自对应这些粉体分级机4分别配置于微粉排出管7的4个压力感测器9的检测信号,通过控制部19算出各粉体分级机4的压力损失。然后,控制从压缩气体供给源18A、18B及气体供给源18C供给至各粉体分级机4的各气体的压力及/或流量,以使所算出的4台粉体分级机4的压力损失相等。另外,从压缩气体供给源18A、18B及气体供给源18C向喷射器27、压缩气体推入室37、配置在离心分离室24的外周部的气体供给喷嘴、第I喷嘴33及第2喷嘴35的气体供给、及各喷出气体的压力、流量的调整,虽然可个别地进行控制,也可控制这些中的一部分而将其他设为固定,但是控制第I喷嘴33的压力及/或流量,在分级点的调整方面尤为重要。一般而言,在形成回旋气体流对粉体施予回旋运动而分级成粗粉和微粉的分级机中,在分级机的尺寸相同的情况下,分级点依赖于回旋气体流的强度,且回旋气体流的强度与分级机的压力损失相关。因此,通过使4台粉体分级机4的压力损失相等,则形成于各粉体分级机4内的回旋气体流的强度就会变成相等,且可将各粉体分级机4的分级点均等化。结果,能够使4台粉体分级机4并行运转而一边提高处理能力,一边进行高精度的分级。具体而言,可调整各粉体分级机4的第I喷嘴33、或第I喷嘴33及第2喷嘴35的压力,或是分别使流量调整阀等流量调整器介于压缩气体供给源18A及18B和各粉体分级机4的压缩气体导入口 34及36之间,并通过这些流量调整器调整从各粉体分级机4的第I喷嘴33、或第I喷嘴33及第2喷嘴35喷出的压缩气体的流量,使4台粉体分级机4的压力损失相等。或者,也可通过控制部19改变各粉体分级机4中的复数个导流叶片25的转动角度,调整被推入各粉体分级机4的离心分离室24内的气体的流量,使4台粉体分级机4的压力损失相等。另外,也可通过分别介于未图示的压缩气体供给源和各粉体分级机4的喷射器27的压缩气体导入口 29之间的流量调整器来调整流入各粉体分级机4内的压缩气体的流量,以使4台粉体分级机4的压力损失相等。但是,在该情况下,通过改变从喷射器27的压缩气体导入口 29导入的压缩气体的流量,从粉体供给源17向各粉体分级机4的粉体供给量恐怕会产生变动。另外,即便使用具有相同构造的4台粉体分级机4,也恐怕会因制作公差而产生各部的尺寸不均等导致彼此的分级点不同。例如,第I喷嘴33的直径产生变化时的分级效率相对于粒子径的关系显示于图4。图中,■显示喷嘴直径1.3_、气体压力0.6MPa、气体流量626L/min时的曲线图,〇显示喷嘴直径1.4mm、气体压力0.6MPa、气体流量739L/min时的曲线图。可以得知即便气体压力相同,分级点也会因喷嘴直径及气体流量产生变化而大为不同。相对于此, 为喷嘴直径1.4mm、气体压力0.48MPa、气体流量619L/min时的曲线图。即便喷嘴直径从1.3mm变化至1.4_,也可通过调整气体压力和气体流量,来接近■所示的喷嘴直径1.3mm时的分级点。如此,即便制作尺寸不同,也可通过控制从压缩气体供给源18A、18B及气体供给源18C供给至各粉体分级机4的气体的 流量,来提高分级的精度。在此,在实施形态I的粉体分级装置中,当通过对相互地连结的4台粉体分级机4的每一个供给流量2kg/h的粉体而进行合计8kg/h的流量的粉体分级,且测量分级精度指数K对各种分级点的值时,可获得图5的O所示的结果。为了比较,仅以I台粉体分级机4进行流量2kg/h的粉体分级时的测量值以 来表示,而仅以I台粉体分级机4进行流量8kg/h的粉体分级时的测量值以■来表示。另外,分级精度指数K,可通过25 %分离直径D25对75 %分离直径D75的比来表示。gp,K = D25/D75。如从图5可知,通过实施形态I的粉体分级装置,若连结4台粉体分级机4对流量8kg/h的粉体进行分级的话,则可获得比仅以I台粉体分级机4对流量8kg/h的粉体进行分级时更高的分级精度。根据本实施形态I的粉体分级装置,由于可通过控制部19控制从压缩气体供给源18A、18B及气体供给源18C供给至各粉体分级机4的气体的流量,所以可在各粉体分级机4内形成稳定的回旋气体流,且能够较高精度地对例如粒径在Iym以下的次微米粒子进行分级。另外,作为粉体,可使用二氧化硅、碳粉等低比重物至金属、氧化铝等高比重物的各种粉体作为分级对象。另外,作为从压缩气体供给源18A、18B及气体供给源18C供给的气体,虽然可使用压缩空气,但是也可适应成为分级对象的粉体而使用例如惰性气体。另外,作为从粉体供给源17将粉体分配至各粉体分级机4的粉体分配器16,可使用例如利用回旋气体流分配粉体的类型的分配器等以往的各种分配器。并且,不一定要使用粉体分配器16,例如也可在各粉体分级机4的喷射器27的粉体导入口 28分别连结漏斗,并在这些漏斗内容纳粉体,通过喷射器27来供给。
在上述实施形态中,虽然是通过依序逐个打开复数个挡板装置13的阀板15,来防止复数个粉体分级机4之间的气体流通,但是若将一对阀板分别串联地配置并可在保持气密性的状态下进行粉体的排出的所谓双挡板连接于各粉体分级机4的粗口排出口 10的话,则可一边防止复数个粉体分级机4之间的气体流通,一边从复数个粉体分级机4同时地进行粗粉的排出。另外,也可使用如图6所示的粗粉回收部41。在该粗粉回收部41中,仅在各粉体分级机的粗粉排出口 10不用通过挡板装置而分别连接有专用的回收容器42。若形成这种构成,由于对应4台粉体分级机4的4个回收容器42是相互分离独立的,所以不会经由共通的回收容器的内部而在复数个粉体分级机4之间进行气体的流通。因此,能够从复数个粉体分级机4同时地进行粗粉的排出回收而不会带来分级精度的降低。在上述实施形态中,虽然是4台粉体分级机4相互地连结,但是并非限于4台,也可将2台、3台、或是5台以上的粉体分级机相互地连结使用。另外,在上述实施形态中使用的粉体分级机4中,虽然环状的边缘部31及32是隔着离心分离室24而相对地对向配置,但是也可仅形成这些边缘部31及32的其中之一。进一步,在上述实施形态中使用的粉体分级机4中,虽然是使用对向于粉体分散室26内的第I喷嘴33和对向于粉体再分级室30内的第2喷嘴35,但是例如也可省略第2喷嘴35。另外,也可不使用复数个导流叶片25,而使用以周壁构件来闭锁离心分离室24的圆周方向外周部的粉体分级机。
权利要求
1.一种粉体分级装置,其特征在于,具备: 复数个粉体分级机,其分别通过回旋气体流对粉体施予回旋运动而分级成粗粉和微粉;及 气体供给源,其向所述复数个粉体分级机分别供给用以形成回旋气体流的气体;及 粉体供给部,其向所述复数个粉体分级机供给具有粒度分布的粉体;及 微粉回收部,其回收在所述复数个粉体分级机分别经分级过的微粉;及 粗粉回收部,其回收在所述复数个粉体分级机分别经分级过的粗粉;以及 控制部,其控制被供给至所述复数个粉体分级机的气体的流量,以使所述复数个粉体 分级机中的分级点大致相等。
2.如权利要求1所述的粉体分级装置,其中,所述复数个粉体分级机分别具有: 壳体,其于内部形成有大致圆盘形状的离心分离室、环状的粉体分散室及环状的粉体再分级室,该环状的粉体分散室 位于所述离心分离室的一侧并与所述离心分离室配置在同轴上且与所述离心分离室连通,该环状的粉体再分级室位于所述离心分离室的另一侧并与所述离心分离室配置在同轴上且与所述离心分离室连通;及 复数个导流叶片或复数个气体供给喷嘴,该复数个导流叶片以从所述离心分离室的外周以指定的角度往内部方向延伸的方式配置且用以使气体流入所述离心分离室的内部,该复数个气体供给喷嘴以指定的角度配置在所述离心分离室的外周部且用以供给气体至所述离心分离室的内部;以及 复数个第I喷嘴,其用以分别向所述粉体分散室的内部喷出气体形成回旋气体流。
3.如权利要求2所述的粉体分级装置,其中,所述复数个粉体分级机分别具有用以向所述粉体再分级室的内部喷出气体形成回旋气体流的复数个第2喷嘴。
4.如权利要求1 3中任一项所述的粉体分级装置,其中,所述控制部控制从所述复数个粉体分级机的导流叶片流入的气体的流量,以使所述复数个粉体分级机中的压力损失相坐寸ο
5.如权利要求1 3中任一项所述的粉体分级装置,其中,所述控制部控制从所述气体供给源供给至所述复数个粉体分级机的气体的压力或流量,以使所述复数个粉体分级机中的压力损失相等。
6.如权利要求1 5中任一项所述的粉体分级装置,其中,所述粉体供给部具有将粉体分配至所述复数个粉体分级机的粉体分配器。
7.如权利要求1 6中任一项所述的粉体分级装置,其中,所述复数个粉体分级机分别具有用以排出包含微粉的气体流的微粉排出口。
所述微粉回收部具有与所述复数个粉体分级机的所述微粉排出口连接的共通的捕集器。
8.如权利要求1 7中任一项所述的粉体分级装置,其中,所述复数个粉体分级机分别具有用以排出粗粉的粗粉排出口, 所述粗粉回收部具有:分别与所述复数个粉体分级机的所述粗粉排出口连接的复数个挡板装置;以及与所述复数个挡板装置连接的共通的回收容器。
9.如权利要求1 7中任一项所述的粉体分级装置,其中,所述复数个粉体分级机分别具有用以排出粗粉的粗粉排出口,所述相粉回收部具有分别 与所述复数个粉体分级机的所述相粉排出口连接的复数个回收容器。
全文摘要
本发明提供一种能以较高处理能力将细微粒子进行分级的粉体分级装置。通过微粉回收部的抽吸送风机从复数个粉体分级机的各个进行吸气,并且从压缩气体供给源供给压缩气体至各粉体分级机,且从粉体供给源通过粉体分配器将粉体分配供给各粉体分级机,并在各粉体分级机进行粉体分级。从各粉体分级机的微粉排出口排出的微粉,经由微粉排出管及汇流管被捕集器所捕集,而超过分级点的粗粉,从各粉体分级机的粗粉排出口通过挡板装置而排出至回收容器。根据来自对应各粉体分级机的压力感测器的检测信号,通过控制部控制供给至各粉体分级机的压缩气体的流量,以使复数个粉体分级机的压力损失相等。
文档编号B07B11/04GK103201050SQ20118005396
公开日2013年7月10日 申请日期2011年10月14日 优先权日2010年11月16日
发明者小泽和三, 安藤康辅, 富永治稔, 救护胜, 佐藤大助 申请人:日清制粉集团本社股份有限公司