一种用褐铁矿制备Fe/C复合多孔结构材料的方法
【专利摘要】本发明公开了一种用褐铁矿制备Fe/C复合多孔结构材料的方法,其特征在于:Fe/C复合多孔结构材料是以褐铁矿和生物质粉体为原料,经混合、成型后,再在还原气氛下热解和还原反应得到,其主要物相为生物质炭和零价铁。本发明的Fe/C复合多孔结构材料具有高开放孔隙率、高磁化率、高吸附性和高生物化学活性,是具有生物活性和吸附性能的廉价生物载体材料,在微污染水净化中的应用具有很大前景,特别适合用于富营养化水体同步脱氮处理中。
【专利说明】
一种用褐铁矿制备Fe/C复合多孔结构材料的方法
一、技术领域
[0001]本发明涉及褐铁矿矿石和生物质的资源化利用,属于矿物加工、生物质利用和环境工程材料领域。
二、【背景技术】
[0002]我国褐铁矿型铁矿石资源丰富、分布广泛,远景储量达百亿吨。不同地区的褐铁矿矿石虽然成分有很大的差别,但共同的特点是:脉石矿物含量高、种类多、组成复杂、颗粒细小,主要包括伊利石、伊蒙混层矿物、石英、方解石、白云石、玉髓等;铁的主要矿物针铁矿颗粒细小、无磁性,大多数矿物粒径都在亚微米甚至纳米尺度,导致选矿加工困难,至今该类铁矿没有得到合理利用。如何利用好该类矿产资源是迫切需要研究解决的问题。
[0003]我国每年生产各种秸杆大约10亿吨,农林产品及以生物质为原料的工业企业也产生数以亿吨计的加工残余物。随着农村经济发展和生活水平提高,导致秸杆在全国范围内大量过剩。每到收获季节,秸杆焚烧造成了严重的大气污染,同时也存在严重的火灾隐患和航空飞行安全问题。对秸杆等农产品废弃物进行资源化利用已经成为全国各地政府环境综合治理的当务之急。生物质能源化利用有如下几种途径;热解气化、热解液化、直接燃烧、成型燃烧、成型碳化等。热解气化目前遇到热解气中焦油净化的难题;热解液化存在制得的液体燃料热值低、成分复杂的问题;直接燃烧存在锅炉积碳的问题。目前成型燃烧和成型碳化受到广泛关注。
三、
【发明内容】
[0004]本发明是为避免上述现有技术所存在的问题,提供一种用褐铁矿制备Fe/C复合多孔结构材料的方法,旨在同时实现褐铁矿和生物质的再利用。
[0005]本发明解决技术问题,采用如下技术方案:
[0006]本发明用褐铁矿制备Fe/C复合多孔结构材料,其特点在于:将褐铁矿粉体和生物质粉体按照质量比1:0.5?15混合造粒,然后在还原气氛下经650?900°C热解和还原焙烧15?60min,再在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。
[0007]其中,所述的褐铁矿主要矿物组成为:针铁矿、赤铁矿、磁铁矿、黏土矿物和石英,铁的品位在30-55%;
[0008]所述生物质为:各种农作物秸杆,木材加工废弃物锯末、刨花,庭院和绿化修整的枯枝树叶,或农产品加工产生的固体残渣。
[0009]本发明用褐铁矿和生物质制备Fe/C复合多孔结构材料,具体是按如下步骤进行:
[0010](I)将褐铁矿矿石破碎、筛分,获得粒径不大于0.1mm的褐铁矿粉体;将生物质破碎成粒径不大于5_的生物质粉体;
[0011 ] (2)将褐铁矿粉体和生物质粉体按照质量比1: 0.5?1:15混合均匀,获得混合料;
[0012](3)用成型机将所述混合物料成型为直径4-12_的棒状颗粒物;
[0013](4)将所述棒状颗粒物在还原气氛下于650?900 °C热解和还原焙烧15?60min,再在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。
[0014]上述还原气氛为含有氢气或一氧化碳的气氛。
[0015]本发明用褐铁矿和生物质制备Fe/C复合多孔结构材料,其有益效果体现在以下几个方面:
[0016]1、褐铁矿和生物质粉体混合物挤出成型,生物质在挤出成型的胚料中具有粘结作用,使成型胚料具有较高的颗粒强度,无需添加粘结剂;在还原气氛下650?900°C热解和还原反应过程中,褐铁矿矿石中作为杂质组分的粘土矿物等与生物质中的钾钠化学反应,具有增强烧结、提高颗粒强度的作用。
[0017]2、在还原气氛下生物质的热解气化,一方面可以提高材料的孔隙率和比表面积,获得多孔结构的材料,另一方面热解还原气体H2、C0、挥发性有机物与沉积铁矿石中铁反应转变为零价铁。生物质既是材料的致孔剂,又是铁的还原剂,还是形成生物炭的前驱体。
[0018]3、选择褐铁矿矿石,既利用了低品位铁矿资源,又利用了褐铁矿矿石资源的矿物学特性。经研究发现,褐铁矿中的主要矿物针铁矿属于纳米针状晶体,具有较高的还原反应活性,还原产物零价铁也具有较低的结晶度和较高的反应活性。
[0019]4、褐铁矿中的化学氧不仅具有增强生物质热解气化的作用,还具有催化生物质热解气化过程中焦油裂解的作用,可以消除热解气体中的焦油。
[0020]5、褐铁矿粉体与生物质粉体混合物经过挤出成型、还原气氛下热解反应,不仅铁矿物还原形成的零价铁与生物碳化形成的生物炭紧密复合,而且材料具有特定的粒径、开放的大孔空隙、孔隙体积大、强磁性、高比表面积、良好的吸附性和化学反应活性。
[0021]6、褐铁矿粉体与生物质粉体的混合物经过挤出成型、还原气氛下热解反应,不仅赤铁矿还原形成的零价铁与生物质碳化形成的生物炭紧密复合,而且材料具有特定的粒径、开放的大孔空隙,且孔隙体积大、磁性强、比表面积高、吸附性和化学反应活性好,在微污染水净化中的应用具有很大前景,特别适合富营养化水体同步脱氮处理中应用。
四、【附图说明】
[0022]图1为实施例1所制备的Fe/C复合多孔结构材料的粉末X射线衍射图谱,显示其中主要物相为单质铁;
[0023]图2和图3为实施例1所制备的Fe/C复合多孔结构材料SEM图像,其中图2可以看出生物质碳化形成的孔结构特征,图3可以看出褐铁矿相变形成纳米铁的形貌特征。
五、【具体实施方式】
[0024]实施例1
[0025]本实施例按如下步骤制备Fe/C复合多孔结构材料:
[0026](I)选择铁品位48.9 %的褐铁矿矿石样品,将其破碎、过0.1mm筛,获得褐铁矿粉体;将油菜秸杆破碎、过Imm筛,获得秸杆粉体;
[0027](2)按照质量比1:3称取褐铁矿粉体和秸杆粉体并拌合均匀,获得混合料;
[0028](3)把上述混合料加入螺杆挤出成型机料斗内,挤出成型为直径5mm的棒状颗粒物;
[0029](4)将成型的棒状颗粒物在管式炉中氢气气氛下于750°C焙烧25min,然后在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。
[0030]图1为本实施例所制备的Fe/C复合多孔结构材料粉末的X射线衍射图谱,表明原始样品中的杂质石英保持不变,铁氧化物被生物质还原为单质铁。产物中单质铁含量为57%,生物炭的含量为16%。
[0031 ]图2、图3为本实施例所制备Fe/C复合多孔结构材料SEM图像,图2可以看出生物质炭化形成的孔结构特征,图3可以看出褐铁矿相变形成纳米铁的形貌特征。
[0032]实施例2
[0033]本实施例按如下步骤制备Fe/C复合多孔结构材料:
[0034](I)选择铁品位40.31%的褐铁矿矿石样品,将其破碎、过0.1mm筛,获得褐铁矿粉体;将油菜秸杆破碎、过Imm筛,获得秸杆粉体;
[0035](2)按照质量比1:5称取褐铁矿粉体和秸杆粉体并拌合均匀,获得混合料;
[0036](3)把上述混合料加入螺杆挤出成型机料斗内,挤出成型为直径5mm的棒状颗粒物;
[0037](4)将成型的棒状颗粒物在管式炉中氢气气氛下于650°C焙烧30min,然后在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。
[0038]经XRD分析,结果表明原始样品中的杂质石英保持不变,其中的铁氧化物被生物质还原为单质铁。产物中单质铁含量为33%,生物炭的含量为28%。产物磁化率为11250S1、比表面积为73.4m2/g。
【主权项】
1.一种用褐铁矿制备Fe/c复合多孔结构材料的方法,其特征在于: 将褐铁矿粉体和生物质粉体按照质量比1:0.5?15混合造粒,然后在还原气氛下经650?900°C热解和还原焙烧15?60min,再在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。2.根据权利要求1所述的方法,其特征在于: 所述生物质为:农作物秸杆,木材加工废弃物锯末、刨花,庭院和绿化修整的枯枝树叶,或农产品加工产生的固体残渣。3.根据权利要求1所述的方法,其特征在于:所述褐铁矿中铁的品位在30-55%。4.根据权利要求1所述的方法,其特征在于,具体是按如下步骤进行: (1)将褐铁矿矿石破碎、筛分,获得粒径不大于0.1mm的褐铁矿粉体;将生物质破碎成粒径不大于5_的生物质粉体; (2)将褐铁矿粉体和生物质粉体按照质量比1:0.5?15混合均匀,获得混合料; (3)用成型机把所述混合料成型为直径4-12mm的棒状颗粒物; (4)将所述棒状颗粒物在还原气氛下于650?900°C热解和还原焙烧15?60min,再在无氧气氛下自然冷却至室温,即获得以生物质炭和零价铁为主要物相的Fe/C复合多孔结构材料。5.根据权利要求1或4所述的方法,其特征在于:所述还原气氛为含有氢气或一氧化碳的气氛。
【文档编号】B01J20/28GK105833850SQ201610326862
【公开日】2016年8月10日
【申请日】2016年5月13日
【发明人】邹雪华, 陈天虎, 刘海波
【申请人】合肥工业大学