酸气体的改进吸附的利记博彩app

文档序号:10474938阅读:596来源:国知局
酸气体的改进吸附的利记博彩app
【专利摘要】本申请公开了一种从液体或气体除去酸气体污染物的方法,包括:提供被选自一种或多种碱金属化合物、一种或多种碱土金属化合物或这些化合物的混合物浸渍的活化氧化铝吸附剂;使得含有酸气体污染物的液体或气体与活化氧化铝吸附剂接触以充足地吸附在液体或气体中的酸气体污染物,从而降低液体或气体中的酸气体污染物含量,其中氧化铝吸附剂是从聚集的煅烧氧化铝粉末形成的,并具有大于500埃的孔的水银孔体积是至少0.10cc/g。
【专利说明】酸气体的改进吸附 发明领域
[0001] 本发明涉及通过在氧化铝吸附剂上选择性吸附酸气体从液体或气体料流除去酸 气体的方法。
[0002] 发明背景
[0003] 酸气体是在材料例如石油烃中不需要的杂质,因为多种这些气体例如C0S和H2S是 硫源,所以是潜在的大气污染物。C0S和H 2S也是工业方法的不需要的污染物,例如当在石油 衍生的可聚合烯烃例如丙烯中存在此污染物时导致聚合催化剂中毒。酸气体可以作为污染 物引入这些方法中,初始存在于进料中,或它们可以在处理过程中由于分子筛催化的二氧 化碳与硫化氢或其它硫化合物之间的反应而形成。例如,酸气体可以存在于天然气料流中, 并且除了作为污染物之外,酸气体例如〇^、出3、0)2、032、3〇2、11(:1、册和!^还会腐蚀天然气 管道、管道设备和其它化学加工设备。
[0004] 根据方法和所需的产物纯度,可以要求在原料中的C0S水平降低到按重量计低于1 份/百万份(ppmw),有时降低到按重量计低于100份/十亿份(ppbw)的水平。在数ppmw范围内 的C0S浓度不能有效地通过分馏从石油进料例如丙烯分离出来,这是因为C0S的沸点与丙烯 沸点相差仅仅3.4 °C。
[0005] Khelghatian的美国专利No. 3,315,003公开了从烃除去COS的方法,其中首先使得 烃与液体例如单乙醇胺接触,这洗涤烃以除去酸气体,例如H2s和co 2和一部分cos。然后,烃 进行蒸馏。在数次的随后蒸馏之后,液体塔底产物用钠石灰处理以除去任何剩余的cos。
[0006] 但是,另外,通过蒸馏分离cos的方法是极为昂贵的,这是因为蒸发基本上全部液 体所需的能量成本。所以,希望提供从有机液体除去cos杂质的其它方法。
[0007] 已经建议通过催化水解从烃除去⑶S,从而形成!125,例如使用氧化铝作为催化剂。 Freve 1等的美国专利No. 3,265,757公开了水解在液体烃中所含的C0S,其中使得液体烃和 水的混合物在20-50°C的温度下与具有高表面积的含有0.15-3重量%钠或钾的碱性活化氧 化铝接触。但是,专利权人声称如果氧化铝是干燥的,则不会出现水解反应。他们建议在反 应之前用不含离子的水润湿氧化铝催化剂,或者使得不含离子的水和液体烃的混合物从催 化剂床通过,直到在氧化铝上累积足量的水以允许进行水解反应。但是,虽然此方法确实除 去了 C0S(通过将C0S转化成H2S),但是并没有从烃除去硫,而是仅仅变成硫化合物的形式, 此化合物仍然必须随后通过其它工艺步骤从烃除去。
[0008] 在关于相同类型反应的后续专利中,Polleck等的美国专利No.4,491,516教导了 如果水与C0S之间的比率在1-10摩尔水/摩尔C0S、优选1.5-6摩尔水/摩尔C0S的范围内时或 约30%的烃饱和度时,C0S与水在氧化铝上的水解反应的反应速率可以大幅度提高,其中上 限都提供了较少量的水。
[0009] Brownell等的美国专利No.4,455,446公开了通过在氧化错上含硫化钼的催化剂 上进行水解从丙烯除去cos的方法。专利权人声称水解反应可以在气相或液相中进行,其中 用于液相的温度为35-65Γ。水的量也必须是要水解的C0S的化学计算量的至少两倍。
[0010] Harris等的美国专利No. 4,391,677描述了一种从富含1-丁烯的进料脱硫的方法, 所述进料含有含硫杂质例如H2S、COS和CH3SH。此方法包括使得进料流从保持在脱硫条件下 并含有至少一种脱硫介质的脱硫区域通过,所述脱硫介质能吸附或吸收出3、0)5和CH3SH或 将它们转化成高沸点含硫化合物。经过如此处理的进料流现在基本上不含H 2s、cos和CH3SH, 然后将此进料流通入蒸馏区,并且作为塔底产物作为含高沸点含硫化合物且富含2-丁烯的 料流回收。脱硫区包括活化氧化铝床以及随后的氧化锌床。据说活化氧化铝能在20-lOOOppm水的存在下将COS水解成H 2S,并部分地除去H2S和甲基硫醇。据说氧化锌除去了未被 氧化铝床除去的所有H2S和甲基硫醇。
[0011]也可以通过在沸石吸附剂上吸附从液体烃除去⑶S。C ο 11 i n s的美国专利N 〇 . 3, 654,144公开了通过在特定改性沸石Α吸附剂上吸附以除去C0S,所述吸附剂含有沸石Α的碱 金属阳离子形式,其已经与碱土金属阳离子、优选钙离子进行离子交换达到约20至约100当 量百分比的程度。
[0012] Innes的美国专利N〇.4,098,684描述了除去C0S和其它硫化合物的方法,其中将它 们从各自含有13X分子筛的沸石和具有孔径为4埃的沸石A筛子的双床通过。据说商购13X沸 石用于除去存在的任何H2S和硫醇。据说13X筛对于C0S的吸附能力小。13X沸石描述为三维 网络,其中互相连通的晶内空隙可以到达孔开口,这允许分子具有至多10埃的临界尺寸,并 且具有化学通式:〇. 83. . 0.05Na20/l. OOAI2O3/2.48. . 0.038Si02。分子筛床可以通过使 得热的基本不能吸附的吹扫气体在约177-316Γ的温度下从这些床通过而再生。
[0013] 虽然沸石材料已经作为吸附剂用于从液体烃除去含硫化合物例如C0S,但是发现 具有笼型结构的沸石在环境温度下具有低吸附速率,所以对于在这种温度下处理液体而言 是不可行的。
[0014] 所以,十分希望提供从液体或气体除去包含含硫杂质例如C0S的酸气体的方法,优 选在不存在水的情况下,其中使用具有高吸附特性且能在不显著损失吸附容量的情况下再 生的氧化铝吸附剂。也希望使用氧化铝吸附剂从液体或气体除去与cos不同的酸气体达到 最小ppm水平。
[0015] Liu的U. S. 4,835,338提供了改进的从液体烃除去羰基硫化物的方法,其中在含有 活化氧化铝吸附剂的吸附介质上吸附,然后在达到吸附容量之后再生活化氧化铝。活化氧 化铝吸附剂用选自一种或多种碱金属化合物、一种或多种碱土金属化合物或任何两种或多 种这些化合物的混合物的化合物进行预处理;然后用于从烃吸附羰基硫化物;然后使得气 体从吸附剂通过以进行再生。公开了有用的活化氧化铝是具有粒径为1/4英寸至100目(150 微米)的商购产品。在实践中,氧化铝粒子是通过将5微米氧化铝粉末聚集成适用于吸附工 艺的更大粒子形成的。
[0016] 发明概述
[0017] 本发明的目的是提供一种改进的从液体或气体除去酸气体的方法,包括在含有活 化氧化铝的吸附介质上吸附酸气体,吸附介质已经预先用选自一种或多种碱金属化合物、 一种或多种碱土金属化合物或其混合物的化合物进行预处理。发现如果氧化铝吸附剂是从 聚集的氧化铝粉末形成并且在用碱金属和/或碱土金属化合物处理之后具有大于500埃的 孔的水银孔体积是至少〇.l〇 CC/g,则能实现改进的对于酸气体的吸附容量。
[0018] 本发明的详细描述
[0019] 本发明包括一种改进的通过在活化氧化铝吸附剂上吸附以从液体或气体除去酸 气体、例如上述包括氧硫化碳(cos)的酸气体的方法。当达到吸附剂容量时,可以进行和实 现吸附剂的再生。用于本发明方法中的活化氧化铝吸附剂包含活化颗粒氧化铝,其具有约 1/4〃至约100目的粒径范围(U.S. Series)。这些粒子是从平均粒径为约1-10微米的聚集氧 化铝粉末形成的。形成的氧化铝粒子具有至少〇.45cc/g的总水银孔体积,通常是至少 0 · 50cc/g,优选是至少0 · 60cc/g,更优选是至少0 · 70cc/g。
[0020] 所需的氧化铝粒子的孔体积可以通过多种方法实现,包括使得平均粒径为约1-4 微米的氧化铝粉末进行聚集。如果使用较大的氧化铝粉末例如大于4微米,则烧尽添加剂可 以与粉末一起聚集。烧尽添加剂被除去和/或在随后的煅烧期间碳化。
[0021] 适合用于本发明的原料包括假勃姆石、三水铝石、三羟铝石和任何其它形式的氧 化铝,它们经过合适处理能获得具有氧化钠浓度为0.10-2.5重量% (基于1100°C煅烧)、L0I (通过在400-1100°C下加热检测的羟基含量)为2.0-9.0重量%且表面积为100-5001112/^ (BET)的吸附剂。
[0022]本发明的原料可以具有粒径为75微米或更大的粒子。这些粒子应当研磨到约1-10 微米的粒径以获得特别有利的吸附剂。可以使用本领域技术人员已知的任何研磨技术。 [0023] 一旦氧化铝原料具有约1-10微米的平均粒径,氧化铝就通过在高温下暴露简短时 间进行快速活化。用于这种快速活化的方法是本领域公知的。一种特别有用的技术可以参 见美国专利No . 2,915,365。根据此专利的公开内容,将氧化铝注入在高于300°C、例如300-1000°C的气体温度下高度加热的气体料流(例如空气)。在氧化铝与热气体之间的接触时间 可以小于1分钟,例如在1/10秒到数秒的范围内,优选接触时间是2-3秒。氧化铝在活化之后 是γ相或无定形相或其混合物的形式。
[0024] 在本发明的一个优选实施方案中,快速活化的氧化铝在水的存在下形成(聚集)球 体,然后通过本领域技术人员公知的任何方法再活化。一种获得优良活化氧化铝的方法是 使得老化的氧化铝在300-800°C温度下暴露10分钟至约4小时的时间,典型的条件是在350-450°C温度下暴露15分钟至2小时的时间。合适的最终活化,例如粉末活化,在开发具有低 L0I和高表面积的吸附剂方面是重要的。
[0025] -般而言,烧尽添加剂是基于碳的材料。烧尽添加剂的例子包括糖、淀粉以及木质 素或谷粉,例如木材、小麦、玉米、黑麦等。也可以使用水溶性聚合物,例如聚氧化乙烯、聚乙 稀醇等。
[0026] 活化氧化铝优选用一种或多种碱金属化合物、一种或多种碱土金属化合物或其混 合物按照约0.01-15重量%、优选约1.0-8.0重量%、更优选约2.0-8.0重量%和最优选约 3.0-6.0重量%的量浸渍,其中重量%是基于经浸渍的氧化铝吸附剂总重量计的经浸渍的 碱金属或碱土金属作为氧化物的重量百分比计算的。碱金属化合物或碱土金属化合物优选 将包含具有可分解的阴离子的材料,使得在浸渍之后在氧化铝中没有留下不需要的其它物 质。这些碱金属/碱土金属化合物的例子包括例如钠、钾、锂、钙和镁的氢氧化物、碳酸盐和 硝酸盐。
[0027] 活化氧化铝可以用碱金属/碱土金属化合物浸渍,其中将活化氧化铝在含有溶解 的碱金属/碱土金属化合物的水溶液中浸泡至少约5分钟至1小时或更长的时间,然后经浸 渍的氧化铝在300-450°C下干燥和再活化1-2小时。如果需要的话,可以使用多于一个的浸 渍和干燥循环。如果需要的话,也可以将化合物通过喷涂等方法施用到活化氧化铝上。
[0028] 如果经处理的吸附剂具有总水银孔体积为至少0.4cc/g,通常是至少0.45cc/g,优 选至少0.5cc/g,更优选至少0.55cc/g,则经过浸渍和再活化的氧化铝吸附剂得到改进。另 外,如果经处理的吸附剂具有大于500埃的孔的孔体积为至少0. lcc/g,通常是至少0.15cc/ g,优选至少0.30cc/g,更优选至少0.40cc/g,则能显著改进酸气体的吸附。
[0029]改进的活化氧化铝吸附剂能处理含有杂质浓度高达200ppm的酸气体的气体或液 体,并将此浓度降低到低于lppm。因为从含有这些杂质的液体或气体除去C0S或其它酸气体 的操作主要经由吸附进行,所以存在或不存在任何特定量的水分对于此工艺操作而言不是 关键的。但是,因为发现吸附剂对于酸气体的容量与存在的水量成反向变化,所以优选在存 在尽可能少的水的情况下操作。也应当注意的是,对于成功操作而言,吸附过程并不必须存 在水。
[0030] 在一个优选实施方案中,从液体或气态烃料流中除去酸气体杂质。要提纯的烃料 流可以首先从干燥床例如分子筛或二氧化硅等通过,从而在使得烃料流从吸附剂通过之前 除去存在的大多数(如果不是全部)的水分,避免了上述讨论的吸附容量的降低。要通过本 发明吸附剂除去的污染物是酸气体,或溶解在液体中的酸气体,其包含cos、H 2S、c〇2、CS2、 302、!〇、冊、冊6其中这些料流的主要成分主要由乙烯、丙烯、丁烷或各种烯烃的混合物、 天然气、从生物质衍生的合成气、氢气、氮气或空气组成。料流的主要成分可以是气态或液 体形式。
[0031] 如果在烃料流中存在水分,则一部分酸气体可以通过水解转化成其它反应产物, 它们可以然后被吸附到经过碱金属浸渍的活化氧化铝吸附剂上。如果需要的话,这些被吸 附的反应产物然后与被吸附的酸气体一起在随后的吸附剂再生操作中被除去。
[0032] 吸附方法可以在环境温度下进行,但是如果方便的话也可以使用15-100°C的温 度,例如如果被污染的液体或气体处于来自在先工艺的此温度下,并且不需要在从吸附剂 通过之前进行加热或冷却。
[0033] 吸附可以有利地在填充塔中进行,但是也可以使用保持吸附剂与被酸气体污染的 进料之间接触的任何其它便利形式。从吸附剂通过的进料的流速应当足够慢以允许足够的 接触时间,从而酸气体从进料按照需要被吸附到经过碱金属/碱土金属浸渍的活化氧化铝 上。实际的接触时间将根据吸附剂的粒径而变化。
[0034]经过碱金属/碱土金属浸渍的活化氧化铝对于含硫的酸气体的吸附容量是通过监 控来自吸附剂的流出物的硫含量检测的。在达到其吸附容量之前,流出物将含有小于lppm 的硫。在这种监控显示已经达到吸附容量之后,即流出物的硫含量升高,吸附剂可以通过使 得受热气体例如空气、烃气体、氮气或其它惰性气体从吸附剂通过进行再生。受热气体优选 被加热到约100_300°C的温度,更优选约150-250°C,最优选约250°C,并且以约l-10cc/min 的速率从吸附剂通过,直到在其上被吸附的显著量的硫被除去。显著量是被吸附硫的约40 重量%或更高。这可以容易地通过分析在吸附剂中的硫残余量来测定。再生气体从吸附剂 通过的流动方向可以是与进料流相同的方向,例如当吸附剂填充在塔中时,或者再生气体 可以按照与进料的正向流动相反的方向从吸附剂通过。对于其它酸气体的吸附容量可以通 过检测其它阴离子性物质例如C1、F等的公知方式检测。
[0035]以下实施例用于更好地理解本发明方法。 实施例
[0036] COS吸附剂如下所述制备。如下所述,将吸附剂置于相应的床中并经受下述的快速 老化和穿透试验的试验条件。
[0037]试验条件:
[0038]快速老化(快速再生)
[0039] 每个床用78克的吸附剂负载。吸附剂床然后进行吸附、再生和冷却的循环。这三个 步骤重复进行总共35次。在第35次循环结束时,每个床在270°C下按照0.5slpm的流速再加 热2小时,然后冷却到环境温度。在快速老化的吸附步骤期间,向床在35°C温度和SOpsia压 力下按照8.7slpm的流速加入在氮气中的450ppm C0S达到35分钟。在再生步骤期间,床处于 15psia压力和270°C温度下,并且加入与吸附步骤呈逆流方向的流速为0.5slpm的氮气进 料。在快速老化的冷却步骤期间,床处于15psia压力和35°C温度下,并且加入与吸附步骤呈 逆流方向的流速为0.5s lpm的氮气进料。
[0040] 穿透试验:
[0041 ] 在这些床完成快速老化试验之后,进行穿透试验。在此试验期间,向这些床在35°C 下按照6.45slpm的流速加入在氮气中的75ppm⑶S。这些床操作一定时间以使床出口处的 C0S达到进料条件。
[0042] 实施例1:
[0043] 将15克的成孔剂与85克的粒径为约5微米的快速煅烧氧化铝粉末混合以制备珠 粒。此材料使用盘式聚集技术形成珠粒,并筛分成7X14 Tyler目。然后将此材料在842°F下 煅烧2小时。活化的材料然后在9.8重量% NaOH溶液中浸泡20分钟,并将材料再次在572° FT 活化2小时。所得的材料具有6重量%的他2〇含量。
[0044] 实施例2:
[0045]将实施例1所得的材料按照快速老化工序所述进行快速老化。在老化之后,将实施 例1所得的材料在穿透试验中进行测试。此材料在640分钟内穿透成2ppm的C0S和在880分钟 内穿透成25ppm的C0S。
[0046] 实施例3:
[0047] 通过将约5微米的氧化铝粉末研磨成约1.5微米的粉末以制备珠粒。此氧化铝粉末 使用盘式聚集技术形成珠粒,并筛分成7X14 Tyler目。然后将此材料在700°F下煅烧2小时。 活化的珠粒然后在9.8重量%Na0H溶液中浸泡20分钟,并将珠粒再次在盘式活化器中在 572° F下活化2小时。所得的材料具有6重量%的如0含量。
[0048] 实施例4:
[0049]将实施例3所得的材料按照快速老化工序所述进行快速老化。在老化之后,将实施 例3所得的材料在穿透试验中进行测试。此材料在640分钟内穿透成2ppm的C0S和在880分钟 内穿透成25ppm的C0S。
[0050] 实施例5(对比):
[0051] 珠粒是通过将约5微米的氧化铝粉末快速活化、然后将活化粉末使用盘式聚集技 术形成珠粒制备的。珠粒被筛分成7X14 Tyler目。然后将此材料在760°F下煅烧2小时。活化 的材料然后在9.8重量% NaOH溶液中浸泡20分钟,并将此材料再次在盘式活化器中在572° F 下活化2小时。所得的材料具有4重量%的他2〇含量。
[0052] 实施例6(对比结果):
[0053] 将实施例5所得的材料按照快速老化工序所述进行快速老化。然后,将此材料在穿 透试验中进行测试。此对比材料在250分钟内穿透成2ppm的C0S和在497分钟内穿透成25ppm 的 C0S〇
[0054] 实施例7(对比):
[0055] 珠粒是通过将约5微米的氧化铝粉末快速活化、然后使用盘式聚集技术形成珠粒 制备的。珠粒被筛分成7X14目。然后将此材料在760°F下煅烧2小时。活化的材料然后在12重 量%他0!1溶液中浸泡20分钟,并将此材料再次在572° F下活化2小时。所得的材料具有6重 量%的他2〇含量。
[0056] 实施例8(对比结果):
[0057]将实施例7所得的对比材料按照快速老化工序所述进行快速老化,然后在穿透试 验中进行测试。此材料在300分钟内穿透成2ppm的C0S和在500分钟内穿透成25ppm的C0S。
[0058] 实施例9:
[0059] 从实施例1所得材料的孔体积是在浸泡之前通过水银孔对称法使用 Micromeritics仪器检测的。此材料的总孔体积是0.63cc/g。大于500埃的孔的孔体积是 0.61cc/g〇
[0060] 实施例10:
[0061] 从实施例3所得材料的孔体积是在浸泡之前通过水银孔对称法使用 Micromeritics仪器检测的。此材料的总孔体积是0.72cc/g。大于500埃的孔的孔体积是 0.29cc/g〇
[0062] 实施例11:
[0063] 从实施例5和7所得对比材料的孔体积是在浸泡之前通过水银孔对称法使用 Micromeritics仪器检测的。每种材料的总孔体积是0.38cc/g。大于500埃的孔的孔体积是 0.llcc/g〇
[0064] 下表1总结了上述试验的结果。
[0067] 实施例12
[0068] 检测从实施例1、3、5和7所得的材料在浸渍和活化之后的孔体积。实施例1的材料 在浸渍和活化之后具有总孔体积为〇. 56g/cc,并且大于500埃的孔具有孔体积为0.15g/cc。 实施例3的材料在浸渍和活化之后具有总孔体积为0.59g/cc,并且大于500埃的孔具有孔体 积为0.41g/cc。对比例5的材料在浸渍和活化之后具有总孔体积为0.36g/cc,并且大于500 埃的孔具有孔体积为0.07g/cc。对比例7的材料在浸渍和活化之后具有总孔体积为0.34g/ cc,并且大于500埃的孔具有孔体积为0.04g/cc。
[0069]
【主权项】
1. 一种通过吸附从液体或气体除去酸气体污染物的方法,包括: 使得含有酸气体污染物的液体或气体与被0.1-15重量%金属化合物浸渍的活化氧化 铝吸附剂接触,基于在所述化合物中作为氧化物的金属与所述经浸渍的吸附剂之间的重量 比率计,所述金属化合物选自一种或多种碱金属化合物、一种或多种碱土金属化合物或这 些化合物的混合物,从而吸附在液体或气体中的酸气体污染物达到足以降低液体或气体中 的酸气体污染物含量的时间;和 其中所述经浸渍的氧化铝吸附剂具有大于500埃的孔的水银孔体积是至少O.lOcc/g。2. 权利要求1的方法,其中所述经浸渍的金属化合物是作为金属氧化物相对于所述经 浸渍的吸附剂计的约1.0-8.0重量%。3. 权利要求2的方法,其中所述经浸渍的金属化合物是作为金属氧化物相对于所述经 浸渍的吸附剂计的约2.0-6.0重量%。4. 权利要求1的方法,其中在所述活化氧化铝吸附剂中浸渍的金属化合物中的金属基 本上由钠组成。5. 权利要求1的方法,其中所述液体或气体是烃料流。6. 权利要求5的方法,其中所述烃料流是烯烃料流。7. 权利要求5的方法,其中所述烃料流是天然气料流。8. 权利要求1的方法,其中所述氧化铝吸附剂是通过使得平均粒径为1-10微米的煅烧 氧化铝粉末进行聚集而形成的。9. 权利要求1的方法,其中所述氧化铝吸附剂是通过使得平均粒径为1-4微米的煅烧氧 化铝粉末进行聚集而形成的。10. 权利要求8的方法,其中所述煅烧氧化铝粉末具有在从大于约4.0微米至10微米范 围内的平均粒径,并且与烧尽添加剂一起聚集成珠粒,所述珠粒进行煅烧以除去所述添加 剂。11. 权利要求10的方法,其中所述烧尽添加剂是基于碳的材料。12. 权利要求6的方法,其中所述烯烃是乙烯和/或丙烯。13. 权利要求1的方法,其中所述经浸渍的吸附剂具有总水银孔体积为至少0.40cc/g。14. 权利要求1的方法,其中所述经浸渍的吸附剂具有总水银孔体积为至少0.5cc/g。15. 权利要求1的方法,其中所述经浸渍的吸附剂具有大于500埃的孔的水银孔体积为 至少 0.15cc/g。16. 权利要求1的方法,其中所述经浸渍的吸附剂具有大于500埃的孔的水银孔体积为 至少 0.30cc/g。17. 权利要求1的方法,其中包括使得活化氧化铝吸附剂进行再生以除去在其上所吸附 的显著量的酸气体污染物。18. 权利要求17的方法,其中所述活化氧化铝吸附剂是通过使得受热气体从吸附剂通 过进行再生的。19. 权利要求1的方法,其中所述酸气体是选自COS、H2S、C02、CS2、S0 2、HC1、HF和HBr。20. 权利要求19的方法,其中所述酸气体是COS、H2S、CS2或S02。21. 权利要求8的方法,其中所述氧化铝吸附剂在浸渍之前具有总水银孔体积为至少 0.45cc/g〇22. 权利要求8的方法,其中所述氧化铝吸附剂在浸渍之前具有总水银孔体积为至少 0.5cc/g〇23. 权利要求8的方法,其中所述氧化铝吸附剂在浸渍之前具有总水银孔体积为至少 0.6cc/g〇24. 权利要求1的方法,其中所述液体或气体是从生物质形成的合成的液体或气体。25. 权利要求24的方法,其中所述酸气体含有硫。
【文档编号】B01D53/02GK105828910SQ201480069045
【公开日】2016年8月3日
【申请日】2014年12月12日
【发明人】D·穆尼, W·多朗, G·热兹科斯基, D·赖纳特森
【申请人】巴斯夫公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1