专利名称:分子生物学分析和诊断用的有源装置和方法
技术领域:
本发明涉及在进行有源生物学操作中有用的制造方法和装置。更具体地说。这些发明涉及这样的装置和这些装置的制造方法,这些装置包含对核酸的电泳输运、它们的杂交和分析特别适用的有源电极。
本申请是No.09/026,618(20.02.1998提出,题目为“分子生物学分析和诊断用的先进的有源电子装置及其制造方法(Advanced ActiveElectronic Devices for Molecular Biological Analysis and Diagnostics andMethods for Manufacture of same”)的申请的部分继续申请,它是No.08/753,962(04.12.1996提出,题目为“有源生物电子装置的层叠组件(Laminated Assembly for Active Bioelectronic Devices)”的申请的部分继续申请,它是No.08/534,454(27.09.1995提出,题目为“用于有源可编程矩阵器件的设备和方法(Apparatus and Methods for Active ProgrammableMatrix Devices)”,现发布为美国专利No.5,849,486)的部分继续申请,它是No.08/304,657(09.09.1994提出,修正题目为“包含电极的分子生物学诊断系统(Molecular Biological Diagnostic System IncludingElectrodes)”,现发布为美国专利No.08/271,882(1994年7月7日提出,修正题目为“分子生物学分析和诊断的电子精密控制方法(Methods forElectronic Stringency Control for Molecular Biological Analysis andDiagnostics)”,现被允许)的申请的部分继续申请,它是NO.08/146.504(1993年1月1日提出,修正题目为“分子生物学分析和诊断的有源可编程电子装置(Active Programmable Electronic Devices for MolecularBiological Analysis and Diagnostics”),现发布为美国专利No.5,605,662)的申请的部分继续申请,继续为申请No.08/725,976,题目为“聚合物的电子综合方法(Methods for Electronic Synthesis of Polymer)”,和申请No.08/709,358,1996年6月9日,题目为“有源生物学样本制备的装置和方法(Apparatus and Methods for Active Biological SamplePreparation)”,并涉及申请No.08/677,305(1996年9月7日提出,题目为“多重有源生物学阵列(Multiplexed Active Biological Array”),也涉及申请No.08/846,876(1997年1月5日提出,题目为“扫描光学检测系统(Scanning Optical Detection System)”,所有的似乎完全列出于此,本文一并参考。
本申请也涉及下列同一日期提出的申请,题目为“分子生物学分析和诊断用的包含聚集电极的先进有源电子装置(Advanced ActiveElectronic Devices Including Collection Electrodes)”,“分子生物学分析和诊断用的多部件装置(Multicomponent Devices for Molecular BiologicalAnalysis and Diagnostics”,“分子生物学分析和诊断用的多部件装置的制造方法(Methods for Fabricating Multicomponent Devices for MolecularBiological Analysis and Diagnostics)”,“包含波导的分子生物学分析和诊断装置(Devices for Molecular Biological Analysis and Diagnostics IncludingWaveguides)”,和“分子生物学分析和诊断用的先进的有源电路和装置(Advanced Active Circuits and Devices for Molecular Biological Analysisand Diagnostics”,所有这些在本文中一并参考。
分子生物学要核酸和蛋白的分析方面包含广泛的技术门类。大多数这些技术和操作形成临床诊断检验和测试的基础。这些技术包括核酸杂交分析,限制酶分析,基因序列分析,和核酸及蛋白的分离与提纯(见例如J.Sambrook,E.F.Fritsch,和T.Maniatis的《分子克隆实验室指南(Moecular CloningA Laboratory Manual》,第2版,Cola spring HarborLaboratory Press,Cold spring Harbor,New York,1989)。
大多数这些技术包括对大量样本进行许多次操作(例如滴管吸取,离心法,电泳)。它们常常是复杂而耗时的,并一般要求高精确度。由于感受性、特异性或复验性的不足,许多技术限制了它本身的应用。例如,这些问题已限制了核酸杂交分析的许多诊断上的应用。
对遗传或传染性疾病进行DNA(脱氧核糖核酸)杂交分析恰恰要一个完备的过程。概括地说,完备的过程可以分为若干步骤和子步骤。就遗传疾病而论,第一个步骤就是获得样品(血液或组织)。根据样本的类型,要进行各种预处理。第二个步骤是使细胞破裂或溶解,那时就使原生的DNA物质随着其他细胞成分一道释放。一般地,为除去细胞废质并进一步提纯原生的DNA,需要几个子步骤。这里,有几种进一步处理和分析的选择方案。一个方案就是使提纯的样本DNA变性,并以多种结构(斑点,微珠,微片等等)进行直接杂交分析。第二种方案叫做DNA即亦法(Southern blot)杂交,就是以限制酶破裂DNA,在电泳的凝胶上分离DNA碎片,吸附于膜滤器,然后用特定的DNA探针序列杂交印迹。这个步骤有力地减小了基因组DNA样本的复杂性,因而有助于改善杂交特性和感受性。不幸的是,这个操作费时又费力。第三个方案是进行聚合酶连锁反应(PCR)或其他扩增操作。PCR操作扩增(增加)靶DNA序列的数量(相对于非靶序列)。靶DNA序列的扩增,有利于解决基因组DNA分析中有关复杂性和感受性方面的问题。所有这些操作耗费时间,相对麻烦,并大大地增加了诊断测试的费用。在样本准备和DNA处理步骤之后,实际上的杂交反应被实现。最后,检测的数据分析将杂交活动转变为分析的结果。
样本准备和处理一般地已完成,与杂交、检测和分析的其他主要步骤是分开的。确实,各种子步骤包括样本准备和DNA处理,常常是作为单独的操作,而与其他子步骤分别完成的。更详细地来考虑这些子步骤,样本经过任何种手段已经获得,例如获得全血液、组织或其他生物学液体样本。就血液而言,样品被处理,除去血红细胞而留下所要的有核(白)细胞。这个过程通常是用浓度梯度离心分离的方法进行的。然后在有核细胞上进行细胞破裂和溶解,以释放DNA,比较合宜的是使用声处理,冰冻/融化或加以细胞溶解试剂的技术。然后,利用离心分离步骤,使原生的DNA从细胞的残质中分离出来。在杂交之前,双股DNA被变性为单股形态。利用包括加热(7Tm),改变盐浓度,加碱基(NaOH)或变性药剂(尿素,甲酰胺等)的技术,一般就可实现双股DNA的变性。
核酸杂交分析通常就是在相当大量的复合体非靶核酸中,用过量的DNA探针检测很小量的特定靶核酸(DNA或RNA(核糖核酸))。在样本准备时已采用了DNA复杂性降低的子步骤,以有助于检测低复制数(即,10,000至100,000)的核酸靶。利用聚合酶连锁反应(PCR)扩增靶核酸序列,可使DNA复杂性降低到某种程度。(见M.A.Innis等的《PCR协议方法和应用导引(PCR ProtocolsA Guide to Methods andApplications》,Academic press,1990)。扩增产生巨大数量的靶核酸序列,能改善序列直接探针杂交步骤,不过,扩增是漫长而又麻烦的操作过程,通常必须在独异于其他子步骤的基础上进行。扩增步骤的完成是很错综复杂的,且需要相对大的设备。
在整个处理过程中,实际的杂交反应是最重要的和核心的步骤之一。杂交步骤就是使备好的DNA样本与特定的报道探针接触,在一组最佳的条件下,使靶DNA序列发生杂交。杂交可以在若干结构的任何一种结构上进行。例如,多样本核酸杂交分析已经在滤器和固体支持结构上进行过(见G.A.Beltz等的《酶学中的方法(Methods in Enzymology)》,Vol.100,Part B,R.Wu,L.Grossman,K.Moldave,Eds.,Academic Press,纽约,第19章,266-308页,1985年)。一种结构叫做“斑点”杂交,就是使靶DNA不共价附着于滤器,它们实际上是被以放射性同位素示踪探针杂交。“斑点”杂交得到过广泛应用,曾开发过许多种类(见M.L.M.Anderson和B.D.Young,《核素杂交-实际途径(Nucleic Acid Hybridization-A PacticalApproach》),B.D.Hames和S.J.Higgins,Eds.,IRL Press,Washington,D.C.第4章,73-111页,1985年)。基因组突变的多重分析(D.Nanibhushan和D.Rabin,欧洲专利0228075,7月8日,1987年)和重叠克隆的检测与基因组图的建构(G.A.Evans,在1993年6月15日申请的美国专利5,219,726中)已经开发出来。
在微型结构的多重或矩阵装置(例如DNA芯片)上进行多重样本核酸杂交分析的新技术正在开发(见M.Barinage,第253期科学,1489页,1991年;W.Bains,第10期生物/技术,757-758页,1992)。这些方法通常是把特定的DNA序列附着在固态支持物的很小的特定区域内,例如DAA芯片的微腔。这些杂交结构是惯用的“斑点”和“夹层”杂交系统的微尺度类型。
微结构杂交能被用来进行“杂交排序”(SBH)(见M.Barinaga,第253期科学,1489页,1991年;W.Bains,第10期生物/技术,757-758页,1992)。SBH利用所有可能的n-核甙酸寡聚物(n-mers),在未知的DNA样本中识别n-meys,然后它们被根据算法分析列成一行,产生DNA序列(R.Drmanac和R.Crkvenjakov,南斯拉夫专利申请#570/87;R.Drmanac等,4 Genomics,114,1989;Strezoska等,88 Proc.Natl.Acad.Sci.USA 10089,1992;R.Drmanac和R.B.Crkvenjakov,美国专利5,202,231,四月13日,1993年)。
有两种结构可进行SBH。第一种结构就是在支持物上建立所有可能的n-mers矩阵,然后它被用靶序列杂交。第二种结构就是将靶序列附着在支持物上,然后它被所有可能的n-mers探测。
Southern(联合王国专利申请GB 8810400,1988,E.M.Southern等,13Genomics 1008,1992年)曾提出用第一种结构的DNA分析或排序。Southern曾利用PCR扩增的基因组DNA识别已知的单点突变。Southern也描述过为SBH在固态支持物上合成寡核甙酸阵列的方法。但是,Southern没有说过怎样为阵列上的每个寡核甙酸获得最佳的严格的条件。
同时,Drmanac等(第260期科学1649-1652页,1993年)曾在使用第二种结构为几个短的(116 bp)DNA序列排序。靶DNA被附着在膜支持物上(“斑点”结构)。然后每个滤器被与272示踪的10-mer和11-mer寡核苷酸杂交。广范围的严格条件被用来为每个n-mer探针获得特定的杂交;洗涤时间在5分钟到整夜之间变化,温度0℃至16℃。大多数探针要求在16℃洗涤3小时。滤器只得处于实验条件之间2至18小时,以便检测条交信号。总的假阳性杂交率为5%,不计单靶序列,减少的寡聚物理探针组,以及可得到的最严格条件的使用。
有一类检测和分析杂交活动的方法。根据用来为DNA探针示踪的报道组(荧光携带者,酶,放射性同位素等)类型,采用荧光的,比色法的或自体放射造影的方法进行检测和分析。通过观察和测量发射出来的辐射,例如荧光辐射或粒子发射,可得到有关杂交活动的信息。即使检测方法有很高的固有感受度,检测杂交活动还是困难的,因为有非特定束缚物质的存在背景。若干其他因素也降低了DNA杂交检验的感受度和选择性。
已经做出尝试要将某些处理步骤或子步骤组合起来。例如,各种微机器人系统已被提出来用于在支持材料上制备DNA探针阵列。如Beattie等(《1992圣地亚哥会议遗传识别(Genetic Recognition)》,1992年11月)使用微机器人系统将含有特定DNA序列的微滴,沉积到玻璃基片上的各个微机器人形成的样本腔内。
一般来说,现有技术的处理过程是极费人力和时间的。例如,PCR扩增处理耗费时间并给诊断检验增加了费用。在处理过程之中或过程之间都需要人介入的多重步骤之所以不是很满意的,就在于有污染和操作误差的可能性。再有,使用复合机械或复杂的机器人系统进行各别的处理,在花费和物理空间要求方面,常常都是受阻止的,除非有最大的实验室。
已有尝试在样本准备分析过程中增加总和样本输入。时常用的样本材料给出相对小的容积,所以希望能够改善的处理有样本的高效准备,样本的输运,样本的高效分析。在各种建议已经被提出的同时,有些系统在某些环境中还是有相对的优点。
还有另一个感兴趣的领域是相对大的阵列的电寻址。随着阵列相对扩大,系统的有效操作就要更多的考虑。基于系统的阵列与芯片外引脚或接触边界的电气连接之间的高效接口问题产生了。还有,与现有的实际芯片或阵列尺寸有关的一些约束,引起对夹附在芯片或基底上的元件选择以及它们的尺寸的考虑。通常说来,必须有各种不同的选择,以便在总体设计中提供有利点的实际最佳化。
在题目为“多重有源生物学矩阵(Multiplexed Active BiologicalArray)”的Kovacs的美国专利申请(No.08/677,305,1996年7月9日)中,提供了一个控制电极阵列的解决方案,每个电极或测试点位,使用不少于一个的单独专用连接,这份申请在这里并入,就像全部在这里提出。阵列由多元电极点位形成,典型的电有点位包括电极;偶联到电极的驱动元件,用于向电极施加电激励;偶联到驱动元件的本地存储器,用于接收和存储信号,这个信号指示施加于电极的电激励的幅度。多个实施例被披露,即通过行线和列线的共同作用,偶联一个数值信号存储在本地存储器中。这样,阵列中的不同电极上的数值可以是相互不同的。
在Fiaccabrino.G.C.等的“可单独寻址的微电极阵列(Array ofIndividual Addressable Microelectrodes)”(Sensors and Actuators B,18-19,(1994)675-677)中,n2个电极的阵列被连接至两个n引脚,加2个引脚,以便信号输出和成批偏置。行和列信号驱动系列连接的晶体管,以便向工作电极提供单独的数值。这个系统不能在不同的电位同时开关两个或更多的电极。
在Kakerow,R.等的“可单独寻址的微电极的单片感受器阵列(AMonolithic Sensor Array of Individually Addressable Microelectrodes)”(Sensors and Actuators A,43(1994)296-301)中,描述了一个用于测量化学和生物化学参数的单芯片感受器阵列。提供的是20×20可单独寻址的感受器单元阵列。感受器单元被感受器控制单元连续寻址。一个水平和一个垂直移位寄存器控制选择感受器单元。一次只选择一个感受器。因此,不能同时激励多个点位。
另一个有关的问题是在装置上施加导电溶液之前,对电子装置的测试能力。随着装置或芯片变得更加复杂,制造或处理误差一般是增加的,尽管电路系统的直观检查可以完成,但进一步的测试可确保操作装置提供给最终用户。
经过前面的讨论,问题就明晰了,已有过许多尝试为多步骤、多重分子生物学反应的处理,提供有效的技术。但是,由于上述原因,这些技术是“零碎”的,有限的,并且没有最佳化地加以解决。这些不同的途径不容易组合形成能进行完整的DNA诊断检验的系统。尽管这种系统需要长期认识,但此前没有提出过满意的解决方法。发明概要这里披露的是对用于生物学诊断的有源电子装置有用的制造方法和装置。特别是,各种布置或实施例(包括元件的选择)以有利的组合,被用来提供有用的装置。多样的结构、形状和电极的组合,与不同的适用信号(电压、电流)共同作用,其结果使生物学或其他带电物质的准备、输运、诊断和分析能有效地实现。对各种有利的协议也有所描述。
在第一个优选实施例中,用来进行有源生物操作的电子装置包括在组合中的支持基底,设置在基底上的微位置阵列,设置在基底上的第一收集电极,设置在基底上的第一和第二聚焦电极,第一和第二电极设置为至少部分地邻近微位置阵列,邻近阵列和第一和第二电极之间的距离,最好小于还处于阵列以外的另外区域内的第一和第二电极之间的距离,和设置在基底的对抗电极。在一个实现装置中,用的是“V”或“Y”的形状,它用于将带电的生物学物质聚焦到所希望的区域。比较合宜的是聚焦电极有一个最接近的端部被设置得靠近或邻近微位置阵列,而远端部分则离开阵列。第一和第二电极的最近端之间的距离,小于第一和第二电极的最近端之间的距离。
在这个实施例的操作中,含有被检查的DNA或其他生物学物质的溶液被提供给该装置,处于基底上面。作为常规的起始步骤,中心电极和返回电极被激励,以便将带电生物学物质输运并聚焦至中心区域内或其附近。在优选实施例中,中心电极和返回电极探询样本的相对较大的容积。一般地,收集电极和对抗电极在基底上的设置,应使电泳力线能足以穿越实际上是整个流体单元容积。举个例子,中心和返回电极可设置在流体单元的覆盖区附近。在另一个实施例中,返回电极实际上围绕流体的覆盖区,中心电极则设置在中心部位。在流体单元内对样本进行有效的探询,是一个所希望的结果。一旦样本已被校正,聚焦电极即可被操作,以使物质朝向微位置阵列集中或进一步聚焦。当物质从中心电极朝向阵列移动时,第一和第二聚焦电极之间空下来的空间,用于将被分析物和其他带电物质集中到较小的容积内。这样,可以实现从较大的中心电极区域到较小的微电极阵列区域的更高效率的物质输运。
在本发明的这个实施例的另一任选方案中,提供一个或多个输运电极,输运电极设置在基底上,并定位在第一收集电极和阵列之间。在优选的实施例中,至少有两个输运电极,另外,输运电极有不同的尺寸,比较好的是较大的与较小的比是2∶1。这样,收集电极对着的较大面积可逐渐地变小到装置分析区域附近的位置。这两点安排有助于从收集电极的较大面积的输运,而实施例的台阶特性减小了电流密度的失配。通过使用台阶,较好的单调台阶式的尺寸递减,可实现更有效的输运和减轻熔蚀。
在装置的又一个实施例中,用来进行生物学的操作的电极装置包括支持基底,设置在基底上的微位置阵列,阵列在区域内形成,这个区域包括第一侧和相对侧,设置在基底上邻近阵列的第一收集电极,和设置在基底上邻近阵列的第二收集电极,第一和第二收集电极至少一部分处于区域的相对侧。在优选实施例中,收集电极的面积至少有阵列区域的面积的80%。这样,样本可被收集在邻近包含微位置的较大面积上,DNA或其他带电生物学物质被从这里向该区域提供。
在这个装置所用的一种方法中,收集电极可首先收集物质,然后被安排为对所收集的物质加以排斥,因而将物质扫向包含阵列的区域。物质以波的方式遍布阵列输运,既可与无源阵列也可与有源陈列相互作用。换句话说,通过施加AC场,物质可遍布阵列区域移动,并有效地保持在那个位置。这个实施例证实了能重复杂交的性能,这里,物质向阵列移动并与阵列相互作用,此后它从区域移出,更可取的是被收集电极保持或在其他电极上,此后它向阵列移动,作可能不同的第二次相互作用。
在装置设计的又一实施例中,采用的是基本上同心的环形设计。在组合中,用来进行有源生物学操作的电子装置包括支持基底,设置在基底的环形区域内的微位置阵列,设置在基底上的阵列周围的第一对抗电极,设置在基底上的阵列内部的收集电极。在优选实施例中,第一对抗或返回电极可选择地被区断分割,使区断分割产生的路径成为通向阵列的电连接的路径。在这个实施例的又一个变形中,多个环被提供在阵列的周围。
在本发明的又一实施例中,部件的个数被减少,较合宜的是用五个部件,系统以倒装片结构实现,以便提供有源生物学诊断。装置的组合包括支持基底,它有第一和第二表面和通路,第一和第二表面之间的路径或孔允许液体流过基底,第一和第二表面中的至少一面支撑印刷电路线;第二基底包括至少第一表面,该第一表面适合于与第一基底的第一和第二表面的至少一面相对设置,并靠近通路之处定位,例如在通路下面,第二基底包括连接至微位置阵列的印刷电路线,阵列适合于接收经过通路、路径或孔的所述液流,导电互连,例如块,将支持基底的第二表面上的印刷电路线相连接,设置在支持基底的第二表面与第二基底的第一表面之间的密封胶,所述密封胶提供第一基底和第二基底旁侧和两者之间的流体密封,和选择的流体单元设置在第一基底的第一表面上。较好的是结构采用倒装片的方式,诊断芯片在操作取向的支持基底下面。这种设计特别有利于减少装置中的元件数目,提高制造的可靠性。
在又一个实施例中,用来进行有源生物学操作的电子装置包括具有第一和第二表面的支持基底,在第一和第二表面之间的通路,它允许液体流过基底,第二基底包括至少第一表面,第一表面适合于第一基底的第二表面相对设置,第二基底,它包括微位置阵列,阵列,它适合于接收所述流体,密封胶,被设置在支持基底的第二表面与第二基底的第一表面之间,照射源和波导,它有一个输入,适用于接收从源发来的光,以及一个输出,适用于直接照射阵列。在优选实施例中,照射源是激光,例如激光棒。这种装置可采用软(柔性)电路或电路板做基底。
在某些或全部实施例,采用新颖而有利的制造方法。这种方法特别有利于倒装片设计的实现。在这种结构中,有一个芯片装在基底的附近,基底包括一个穿过它的通路孔,该结构适用于接收流到基底上并经通路孔向下流至芯片的液体,这里,芯片的至少一部分包括未经密封胶覆盖的表面。密封胶的粘性和材料的选择可较好地形成有效的覆盖,基底和芯片之间良好的热接触和流体密封。在最优选的实施例中,方法可包括光固化的密封胶,它在施加过程中因光而被固化。具体地说,曝光是对基底上的该装置和经通路孔向下至芯片进行的。其次,可光固化的、可为芯的密封胶被施加于基底与芯片之间的界面。暴露结果光至少部分地固化了密封胶,由此预防密封胶流向不需密封的所述表面。最后,如果需要,密封胶可以被完全固化,例如通过热处理。
在又一个实施例中,系统或芯片包括带有电学重复的器件单元位置的多位置阵列。通常,阵列由行和列形成,最常用的是行和列的数目相等。多个器件单元的阵列各个器件单元,由选择器(例如一个或多个行选择器以及一个或多个列选择器)的动作来选择。选择器可以是存储器(例如移位寄存器),或解码器,或两者的组合。虽然可以使用芯片上的地址产生器,地址信息的输入端通常接收来自芯片外的地址。在优选实施例中,行选择器包括移位寄存器,即可以是一个结构,也可以是较宽的结构例如四线结构。在操作中选择寄存器被顺序装入指示选择或不选择器件单元的数值,并为这个单元输出数值(或数值的指示)。可选择地提供存储器,以保留这些数值以便从器件单元继续输出。
系统或芯片为有源生物学矩阵装置提供可选的预备电流和电压的,该装置适合于接收包含带电生物学物质的导电溶液。在一个方案中,器件单元的阵列被提供。每个器件单元通常包括行接触点和列接触点。行线布置在阵列内,行线被偶联到器件单元的行接触点。行选择器有选择地向行线提供行选择电压。再有,列线布置在阵列内,列线被偶联到阵列的列接触点。列选择器有选择地向列线提供列选择信号。器件单元被偶联到电源电压和电极,行选择信号和列选择信号用于选择从器件单元的电极输出的可变的电流。返回电极被偶联到一个电位并适合于接触导电溶液。在操作中,对一个或多个器件单元有选择地激活,在导电溶液中引起预备电流。
在器件单元的一个优选实施例中,采用对称的排列。第一列选择单位(最好是晶体管)和第一行选择单位(最好也是晶体管),串接在第一源(例如电压和/或电流源)与第一节点(通常是电流输出节点)之间。在优选实施例中,列选择晶体管在例如从行移位寄存器存储器来的门电压的作用下,可被精确地控制。比较好的是选择器件的控制能力可以彼此不同,例如在控制晶体管中变化沟道长度。沟道长度已被选择,为的是使行和列晶体管之间的增益或其他所希望的特性匹配。为此,长的沟道长度以合理的控制信号提供控制小电流的能力。因此,通过从行选择器和列选择器施加电位,所施加的电位送至控制门,在器件单元产生电流输出。
器件单元电路最好进一步包括第二列选择器件(最好是晶体管)和第二行选择单位(最好也是晶体管),串接在第二源(例如电压和/或电流源)和节点(通常是前面提到的节点即电流输出节点)之间。在优选实施例中,第一源是电源电位Vcc,第二源是参考电位,例如是“地”。这些节点最好是同一个节点,以便在第一列选择器件和第一行选择器件的Vcc与“地”,节点以及第二行选择器件和第二列选择器件之间,存在串接关系。返回电极可选择地偏置为第一源和第二源的电位之间的电位,例如Vcc/2。
在优选实施例的另一个方案中,包括有测试电路。通过在施加流体溶液之前进行测试,测试电路被用来保证电路的连贯性。第一测试晶体管跨越第一列选择和第一行选择晶体管。同样,第二测试晶体管跨越第二列选择和第二行选择晶体管。有选择的激励保证了电路的连贯性。换句话说,测试电路的功能可通过行和列晶体管的编程得以实现,例如开通第一和第二行选择,以及第一和第二列选择晶体管。
在本发明的又一个进一步的方案中,对测试部分提供的电流源是变化的。电流随时间的变化的例子可包括静态直流(即作为时间的函数无变化),方波,正弦波,或任何随时间变化的波形。在一个实施例中,作为时间的函数的无论是静态的或是变化的电流,被供给列选择电路,然后它们被以数字方式选择地提供给列线用于偶联被选电极。这种模拟和数字混合的技术,能有效地控制供给各个电极的电流的数值和波形。波形,例如电流波形,可在芯片内也可在芯片外产生。另外,整个电路系统的控制和操作,和/或信号例如电流波形的产生,可通过使用数字/模拟转换器,中央处理单元,通过使用存储这些数值的本地存储器,通过使用用于时标和各种波形的控制的时钟产生器,和通过使用数字信号处理器得以实现。
在本发明中的一个方案中,基于第一电流的电流控制的系统,被用来有效地控制第二电流。比较好的是采用电流镜象结构。电流源提供一个可变电流值,用在电压产生电路中。在优选实施例中,采用多个电流源在蕴含选择性的存储器有选择的控制之下,在它们的输出端求和。在节点上产生可变电压,最好是使用接收可变电流的电压分配器。节点上的可变电压被耦合到器件单元中的控制元件,控制元件最好在第一电压和输出节点之间提供可变电阻。可变控制元件因此提供一个可变电流输出。这样,相对较高值的第一电流可用来控制相对较低值的第二电流,第二电流在操作中被供给导电溶液,而导电溶液是为分子生物学分析和诊断的目的施加到电子装置中的。在一个实施例中,按32倍降低的一降低的电流可作为给装置的预备电流,这些电流是容易产生和控制的,还能形成有源生物学装置的有效操作所要求的大小的电流。
在这些发明的又一个方案中,各种装置可用各种捕获序列来修饰和覆盖。这种捕获序列可以相对地短,例如收集电极是复杂性简约的电极。另外,当希望进一步的特征和选择性时,可以用相对长的捕获序列。这些捕获序列最好可被包含在收集电极上,或中间输运电极上。
据此,本发明的一个目的是提供一种制造费用减少而又能获得小尺度微位置的有源生物学装置。
本发明的另一个目的是提供功能增多的装置。
本发明的进一步目的是提供能以比已知的现有技术少的部件而获得高度功能性和可操作性的装置。
本发明的进一步目的是提供比现有技术较容易制造的装置。
本发明的进一步目的是提供能消除或减少引脚限制或引出限制的电路和系统。
本发明的进一步目的是提供一种系统,它为用于分子生物学分析和诊断的有源电子装置提供精确的电流控制,并可与由控制系统产生的较大电流接口。
图1A和1B表示有源的、可编程的电子矩阵装置(APEX)的剖面(图1A)和透视图(1B)。
图2是本发明的实施例平面图,它采用涉及缺陷芯片的尺度各不相同的电极区域和聚集电极。
图3是本发明的实施例平面图,它采用中心电极和配对的反回电极,它在以波动或扫描方式超过微位置从而有效地输运带电生物学物质的方法中,是特别有用的。
图4是本发明的实施例平面图,它采用基本上为环形的布置,带有基本上设置在中央的中心电极。
图5A、5B和5C是倒装片系统的透视图,图5D是该系统的剖面图,图5A是表示系统的下侧,图5B表示包括样本室的倒装片结构顶部的透视图,图5C表示通路顶部透视的细节,图5D表示液流单元的剖视图。
图6A和6B分别表示一个实施例的倒装片系统的透视图和剖面图。
图7A和7B分别表示本发明的一个实施例的边缘照明系统的侧面图和平面图。
图8是微摄影图,表示用1300J/S光纤束光源以软性电路(软性聚酰亚胺卸去)遮蔽的Norland 83H闸的阻挡壁。
图9是多器件单元阵列系统的方块图。
图10A是图9系统可用的功能化的器件单元的电路图。
图10B是图9和图10A的电路的电压/定时图。
图10C是图9和图10A的电路的电流(作为时间的函数)图。
图11是可用于图9系统的器件单元部件级电路图。
图12是包含可用于图9系统的附加测试电路的器件单元部件级电路图。
图13是在有源电子装置中提供电流控制的电路示意图。
图14是电流镜象的部件级电路图。
图15是对于列选择电路的部件级电路图。
图16是对于行选择电路的部件级示意图。
图17是器件单元物理布局的平面图。
图18是20×20测试地点单元的部分布局的平面图。
图19是本发明的一个方案中的总体控制和测试系统的方块图。
图20是为连接有源生物学矩阵系统用的输入系统和探针插件之间互连的示意方块图。
图21是作为场整形和不用场整形时的特定的和非特定的杂交的函数的一杂交图。
图22是MFI/S的平均图,其相应于在图2实施例的不同集中,在50mM组氨酸中的RCA5 BTR报道的不同集中,表示洗涤后的特定的/非特定的键约束。
图23是电流线性化图,表示作为电流n(微安)的函数的电极电流输出(毫微安)。
图1A和1B表示本发明所使用的有源可编程电子矩阵(APEX)混合系统的简化方案。图1B是透视图,图1A是图1B在A-A′处剖开的剖面图。一般地,基底10支持电子可寻址微位置矩阵或阵列。为便于解释,各种微位置被标记为12A、12B、12C和12D。在各个电极12上配置渗透层14。渗透层允许相对小的带电小体从中输运,但减小或限制较大的带电小体的移动性,以避免较大的带电实体例如DNA在试验过程中轻易地接触电极12。当DNA直接接触电极12时,可能部分地由于电解反应所致的极大pH值,使DNA电化学变质,渗透层14可减小这种电化学变质。它还能使DNA至电极的强而非特定的吸附。吸附区域16配置在渗透层14上,并为靶物质提供特定的约束部位。吸附区域16被标记为16A、16B、16C和16D,与电极12A-D的标记相应。吸附区域16可以等效地与渗透层(例如12A)合并或整合,例如直接将吸附层包含在渗透材料中。
在操作中,贮器18包括吸附区域16上面的空间,含有希望的以及不希望的用于检测、分析或使用的物质。带电小体20例如带电DNA,被置位于贮器18内。在本发明的一个方案中,有源的、可编程的矩阵系统包括将带电物质20输运到任何特定的微位置12。当被激活时,微位置12引起任何带电的被机能化的特定约束小体20,朝向电极12的自由场电泳输运。例如,如果电极12A是正的而电极12D是负的,电泳力线22就会在电极12A和12D之间运行。电泳力线22引起具有净负电荷的带电约束小体20,朝向正电极12A输运。具有净正电荷的带电物质20,在电泳力作用下朝向带负电的电极12D运动。当带净负电的已机能化的特定约束小体20,在电泳力作用下运动而接触吸附层16A时,机能化的特定约束小体20变成共价地被吸附到吸附层16A。电极24可任选地设置在阵列的外面。电极24可任选地用作返回电极,中心电极,处置(清除)电极或其他。流体单元可被选择地提供在装置附近,用作流体容器。
图2是本发明的一个实施例的平面图,采用聚焦电极42、44和任选输运电极50、52、54。装置20包括基底32,它可以是足够刚性的、基本上不导电的材料,以支持在其上构成的元件。基底32可以是软性电路(例如,聚酰亚胺如杜邦卡普顿,聚酯,ABS或其他此类材料),印刷电路板或半导体材料,最好有绝缘覆盖层。连接器34偶联至印刷线36,它顺序偶联至系统的其他电气组成部分。这些部分可以是任何形式的导体如铜、金或技术人员已知的任何其他导体。好几个连接器34被表示为未连接至印刷线36或其他电气部分。技术人员很清楚,并非每个连接器都会被利用,例如在适用于与边缘连接器系统配对的系统中。另外,印刷线36根据制造那根印刷线36的需要,特别是电流需要,可以有不同的宽度。因此,某些印刷线36可以比较宽,例如那些偶联至聚焦电极42、44的印刷线,比那些偶联至阵列38内的微位置的印刷线要宽。阵列38优选结合图1A和1B所描述的形式。
第一收集电极40和对抗电极46被设置在基底32上。这些部分一般装配在流体单元58的印迹(如虚线所示)范围之内,并占据印迹范围相当大的百分比,较好的至少大体上为40%,更好的大体上为50%,最好的大体上为60%。对抗电极46(有时起返回电极的作用)和收集电极40最好设置在或靠近于流体单元印迹58的周围,并基本上外接(例为80%)印迹的周边。
通常,收集电极40和对抗电极46设置在基底32上,所以电泳力线可有效地跨越流体单元容积的大体上全部,例如80%或更多。一个例子是中心电极40和对抗电极46可设置在流体单元印迹58的周边附近。在另一个实施例中,它们可设置在流体单元印迹58的大体上相对的两端(见例如图3)。在又一个实施例中,对抗电极大体上外接流体的印迹,而在中央设置中心电极(见例如图4)。对流体单元印迹58相当大的百分比的覆盖及其位置,有助于对流体单元内容的有效电泳探询。
回到图2,聚焦电极42、44设置在基底32上,以助于将被收集在收集电极40上的物质聚集至阵列38。聚集电极42、44最好设置为镜象,“Y”或“V”的型式,开口端包围(至少部分地)收集电极40。如图所示,有两个对称的聚集电极42、44。可以使用一个聚集电极,或者使用两个以上聚集电极。如图所示,聚集电极42、44包括大体上平行的部分(邻近阵列)和倾斜部分(邻近输远电极50、52、54,任选地邻近收集电极40),倾斜部分以对称方式延伸包围输运电极50、52、54。换一种方式叙述,第一和第二电极的设置至少部分地邻近微位置阵列,邻近阵列的第一和第二电极之间的距离,小于还处于偏离阵列的区域中的第一和第二电极之间的距离。聚焦电极42、44可任选地包括设置在阵列38的与收集电极40相对一侧的部分。聚焦电极42、44最好偶联至印刷线36,这些印刷线比偶联至阵列38的引线36粗大,以允许承载有效的电流和电位。
输运电极50、52、54任选地被包括。图中表示随着它们向阵列38的接近,尺寸单调减小的电极。第一输运电极50比收集电极40相对地小,第二输运电极52比第一输运电极50相对小,第三输运电极54比第二输运电极52更加小。采用不同的尺寸可减小位置之间的电流密度失配,有助于减小或消除电流密度失配太严重时可能引起的熔蚀。较大的和较小的尺寸之比较好的大体上为2比1,更好的为3比1,甚至可以更大,比如4比1或更高。
下面是一个场可成形协议负偏置 正偏置 电流偏置时间对抗电极46 第一收集电极40 75μA30秒聚焦电极42、44(-0.2μA) 第一输运电极50 25μA90秒第一收集电极40聚焦电极42、44(-0.2μA) 第二输运电极52 5μA180秒第一输运电极50聚焦电极42、44(-0.2μA) 第三输运电极54 3μA420秒第一输运电极50第二输运电极52聚焦电极42、44(-0.2μA) 行3 1.5μA120秒第二输运电极52 (500nA/Pad)第三输运电极54聚焦电极42、44(-0.2μA) 行2 1.5μA 120秒第二输运电极52 (500nA/Pad)第三输运电极54聚焦电极42、44(-0.29A) 行11.5μA120秒第二输运电极52 (500nA/Pad)第三输运电极54
场成形协议的七个步骤用来有效地探询样本容积并校正阵列38上的物质,以便分析。在第一步骤中,通过对抗电极46上的物质,以便分析。在第一步骤中,通过对抗电极46的负偏置和第一收集电极40的正偏置,实现对样本容积的探询。对抗电极46和收集电极40的配置一般是靠近流体单元58的印迹的周围,可迅速有效地对样本容积进行探询。第二,随着被收集的物质接近收集电极40,这个电极被赋以负电荷,排斥感兴趣的物质,而第一输运电极50是正的,起吸引作用。排斥和吸引导致物质从收集电极40输运至第一输运电极50。另外,聚集电极42、44被偏置为负。这种负(排斥)偏置可在输运方向的横向提供一个力,因此,使溶液中的物质更向中心聚集。第三,当物质被收集在第一输运电极50时,这个电极被偏置为负(排斥),而第二输运电极52被偏置为正(吸引)。聚焦电极42、44可作负偏置,用来对带电物质产生一个排斥力,因而在它们的运动方向提供一个排斥力,因而在它们的运动方向提供一个横向分量,并将物质收集在较小的物理区域或容积内。第四,第二输运电极52可被偏置为负,同时任选地偏置第一输运电极50,从而将物质运离这些电极,并运至现在是正偏置的第三输运电极54。再说,聚集电极42,44可保留它们的负偏置。其后三个步骤可单独任选,如所述的那样,将物质输运至阵列38的各行或区域。
场成形协议包括电流和偏置时间。在这个实施例中,在电极尺寸和施加给它的电流量之间存在着反比例关系。再有,对收集电极40和输运电极50、52、54来说,在电极尺寸和偏置时间之间存在着反比例关系,就是说,电极尺寸越小,偏置时间越长。通过这个协议,各个装置的电流密度被保持为相对更均匀,任选地彼此大体相似。还有,随着来自一个给定电极的电流减小(相对于较大的电极),要求相对长的偏置时间,为的是在各个电极之间提供带电物质的有效量的运输。换一个说法,对带电物质的给定总量来说,可能要求较长的偏置时间,以便在较小电流下完成给定总量的物质输运。
图3是本发明另一个实施例的平面图。如图2那样,装置60包括基底60包括基底62,连接器64,印刷线66和微位置阵列68。对图2所示的解释等等可应用于其他图中的相应结构。再有,印刷线66从阵列68的左上部分已被截断,以使附图简化。去那些如附图右下部分的相应安排可以应用。例如相对宽的印刷线可使用于较大的电流载荷能力(如至第一收集电极70和第二收集电极72的印刷线66)。
图3不同于图2的地方包括第一收集70的设置至少部分地邻近阵列68。在图3的实施例中,第一收集电极70是斜方形的,它有一个邻近并平行于阵列68的一边的长底部70b,和最好比底部70b短一些的顶部70t,而侧部70s则向底部70b逐渐变宽(互相分开)。第二收集电极72设置在阵列68的另一侧,并具有类似的(虽然无必要相同)形状和尺寸。顶部72t最好短于底部72b,因此,侧部72s是不平行的并且斜着向阵列68而彼此分开。电极70、72可以选择具有不同的尺寸,例如第一电极70的面积比第二电极72的面积约小10%(可选约小20%)。输入端电极74和端电极76任选地设置在基底62上,在流体单元78的印迹之内。输入端电极74和端电极76可以是相同尺寸或不同尺寸。
在操作中,通过给第一和第二收集电极70、72两者之一施加或偏置对所收集的物质有吸引力的(通常是正的)电极性,对流体单元的内容进行探询。一旦被收集,物质将被从第一电极70朝向阵列68输运。物质可有效地被保持在阵列68上的适当位置,例如通过在电极70、72之间施加AC场,其频率比如在0.01至106Hz,更好的是在0.1至103Hz范围内。这样,物质可被输运至其他电极70、72,或者重复地再把物质从阵列68输运至电极70、72。作为选择,阵列68的微位置可以是激活的或不活泼的。
图4是环形中心电极实施例的平面图。装置80,基底82,连接器84,印刷线86和阵列88如前所述,不同的是阵列88被安排在中心。同心的返回电极90和中央的中心电极92(最好为圆形)共同作用于电极92上的集中的物质,使它跨越阵列92运动并定位在其上。像图2和3那样,印刷线已被表示为截断状态。
在图2、3和4的实施例中,捕获序列或探针可设置在装置上。最好它们至少是在收集或中心电极上。不同的序列随意地设置在不同装置上。例如图2的输运电极50、52和54上。举例如每个序列作为通往阵列的途径,可以是更为特殊的。
图5A、5B、5C和5D分别表示倒装片系统的底部,顶部,顶部暴露的通路128,和图5B在A-A′处剖开的系统侧视图。装置100包括具有第一表面104(任选称为顶面)和第二表面106(任选称为底面)的支持基底102,它可以是适合于支持和导通功能的材料,例如软性电路系统,印刷电路板,半导体材料或其他类似材料。接触点108引至印刷线110,它引至第二基底112。这个第二基底也可以称为倒装的芯片。这个第二基底任选地可以是芯片,系统或其上带有检验或其他诊断物质的支持体。接触部分,例如像焊块,导电聚合物,充银环氧树脂等的块形连接,在印刷线110和芯片或基底112之间提供电接触。密封胶设置在支持基底102的第二(底部)表面106和第二基底112的第一(顶部)表面114之间。一般地,支持基底102和第二基底的相对表面,通过包含密封胶而处于阻止液体接触的状态。输入端口120与样本室122可以是导通的关系,样本室再进一步引至检验室124,直至输出端口126。图5C表示基底102和贯穿它而形成的通路128的透视图。如图所示,通路128的横向宽度小于第二基底112的横向宽度。第二基底以虚线表示,在图5C中它设置在基底102的下面。
在优选实施例中,装置100以最小数量的部件构成,以减小费用,提高制造的简单性和可靠性或类似性能。一个实施例大体上用五个部件就可以实现。虽说用五个部件就可以制造装置,但仍可使用附加的部件,这些并不有损或改变发明的概念。所说的构成部件如下第一,支持基底102,具有第一表面104和第二表面106,以及在第一表面104和第二表面106之间的,允许液流经过基底102的通路128,第二表面106支持导电印刷线。第二,第二基底112,包括至少第一表面114,第一表面114适合于与第一基底的第二表面116相对设置,第二基底114包括连接至微位置阵列(见图1A和1B)的导电印刷线,阵列适合于接收经过通路128的所述液体。第三,连接支持基底第二表面106上的导电印刷线和第二基底第一表面114上的导电印刷线的导电块。第四,密封胶130,设置在支持基底102的第二表面106和第二基底的第一表面114之间,所述密封胶130在第一基底102和第二基底112旁边和两者之间提供液体密封。第五,流体单元任选地设置在第一基底的第一表面104上。虽然元件数目是可变的,但选择这五个元件是有利的。
在操作中,样本被提供至输入端口120并通往样本室122。样本室122可用来包容各种样本处理功能,包括但不限于细胞分离,细胞溶解,细胞组分分离,组成简约,扩增(例如PCR,LCR,酶技术),和/或变性。然后,样本流至检验室124。包含样本的溶液向下流经通路128(在图5B中的检验室124不易看清,但在图5C和5D中可以看出)。所形成的空间包含通路128,底部的边界是第二基底112,密封胶或粘合剂130在支持基底102的第二表面106和第二基底112的第一表面的面积形成闭塞。
在优选制造方法中,可光固密封胶是高超性能的,它被提供给支持基底102的第二表面106与第二基底的第一表面114之间的面积。光被通到通路128。阻挡壁被形成,阻挡密封胶向前进行,因此保持阵列,例如,18,基本上免于密封或粘连。(参看微照片图8,它显示出阵列的非密封区域,阻挡壁的固化前沿和器件外面部分的密封。)通过适当地确定通路128的横向宽度尺寸,通路128主要用作入射光的影孔板,该入射光用于固化密封胶。换句话说,密封胶可提供在支持基底102的第二表面106与第二基底112的第一表面114之间的面积上,应有一定数量并有粘度,以使密封胶不会流到阵列18。密封胶最终固化可根据需要进行,例如加热。
图6A表示倒装片系统的透视立体剖析图,图6B表示剖面图,该倒装片系统是相对根据本发明实现的。图6A和6B的系统包括边缘照射元件140,专门的样本室134设计,以及一种与图5A和5B和5C类似的“蝶式”输入和输出室设计。芯片或基底130具有第一表面130t和第二表面130b,至少第一表面上面或其中包括电气区域或印刷线132。尽管图6B剖面所示的实施例,表示印刷线132配置在芯片或基底130顶表面上,但电气区域可全部或部分地被包含在芯片或基底130内,例如通过半导体区域的保障。这些半导体区域可用激活的方式进行控制,以便提供芯片或基底130内有选择的连接。典型地,第一表面130t是这样的表面,在它上面可产生有源生物的相互作用。任选地,边缘照射元件140可配置邻近并基本上与芯片或基底130的第一表面130t共同。照射板140最好包括孔,通路或路线144,以允许电气互连156通至各处。如所能看到的,照射板140可直接配置在导电印刷线132上面,或者可直接固定于邻近的支持板150。导电印刷线132可被包括在基底或芯片130的第一表面130t上。导电元件136,例如焊料连接,铟块,导电聚合物或类似的,它可将基片130的导电通路132连接至接触印刷线154的导电部分。导电印刷线最好与导电元件156接触,例如导线,触须线,或其他的电接触,以便连接到电路的其余部分。密封胶180最好旋转在基底或芯片130与下一层150(例如柔性支持层)之间。
在图6B中,表示了左边的导电元件136,右边的密封胶180。很明显,另一个导电元件136(不在切割面内)被包括在内并提供基底130与印刷线支持层150之间的机械支持。另外,边缘照射层140包括端边142,它被配置为朝向基底或芯片130的上表面130t。边缘照射层140可终止在密封胶180的外面或里面。粘着层160被配置为邻近印刷线支持层150,并提供粘着接触到上层170。上层170任选地可包括路径,凹槽,或其他阻断,例如表示为入口176和出口176′。如图所示,粘着层160任选地可以是模切附着材料,例如这样一种材料,它包括在组装之前处于顶表面和底表面的脱模纸。这种材料的供应商包括3M公司或杜邦公司。如图6A所示,可模切粘着材料160可以被切割,以便形成室壁162、164的全部或一部分。如图所示,几何形状可以任何所希望的形状或流动单元的结构而被制成。
较好的是,提供一个顶部元件170。如图所示。顶部元件170大体上可在器件的剩余部分进行扩展。任选地,顶部元件170可在流体单元室的顶部形成窗孔172,或者其他的容器表面。在图6A和6B的结构中,通常期望测试位置的阵列通过顶部元件170可选地被进入,因此,希望由这样的材料制成顶部元件,它们对激励和发射射线基本上都是透明的。
图6A和6B表示流体单元的一种几何形状。在这种“蝶式”结构中,入口176与第一扩展区174相连接,其中,室的侧壁从第一尺度d开始并扩展,较好的是单调地扩展,最好是线性扩展到在靠近闭合流体单元室134的一处的尺度D。流体单元室134的区域由基本上平行的侧壁166来表征。较好的是,第一减少宽度区域被提供在流体单元区与输出之间。最好的是,减少区域可从宽度D′开始,最好在这里D′=D,并且减少到宽度d′,较好的是这里d′=d。如图6A和6B能看到的,入口室174的高度从高度H的入口减少至到流体单元室入口的较小高度h。较好的是,这种减少是单调的,而最好是线性的。
在优选实施例中,入口室高度h和宽度W这样选择,即提供一个基本上恒定的流体区域,也就是说,高度h和宽度W的乘积(h×W)基本上是恒定的。因此,如图6A和6B组合视图所示,在邻近入口的入口室部位,当高度h比较大时,宽度W就比较小。所以,在经过入口室向流体室前进时,随着宽度W的增大,高度h减少。较好的是,入口室基本上是同样的几何形状,并且最好是同样的流体区域常数。
图7A和7B分别是根据本发明实施例的边缘照射,倒装芯片系统的剖视图和平面图。在可能范围内,采用与图6A和6B一致的元件编号。支持基底150通常是平面的,并且包括第一表面150t和第二表面150b。通路128(阴影线表示模截)允许液体或溶液从支持基底150流至第二基底130,具体地说,流到第二基底130的第一表面130t。密封胶被提供在支持基底150的第二表面与第二基底130之间。密封胶180提供一种较好的液体紧密封,以便允许液流流至第二基底130。照射源190,例如激光棒,照射第二基底130上的阵列。较好的是,系统包括具有输入端146的波导140,它适用接收来自源190的照射,并提供通到输出端142的照射。波导140最好与支持基底150共面,并可以固定到它上面,例如被粘附于支持基底150的第二表面150b。可以包括电子器件192用于控制系统。任选地,安装电子元件的表面可以是基底130、150上的表面。液体194以与系统组合的方式被提供,以便由助于向第二基底130供给样本。
图9是多器件单元阵列的方块图。在优选实施例中,系统或芯片包括具有电气上重复的地点单元位置的一个多地点阵列210。通常,阵列由一些行和列形成,更典型的是相等数目的行和列,最典型的是行和列作正交排列。例如,可用这些技术形成的10×10,20×20或更多的阵列。器件单元阵列210的各个器件单元212,通过激活选择器,例如行选择器220和列选择器230进行选择。选择器220,230可以是存储器,例如移位寄存器存储器,或者译码器,或者两者的组合。地址信息输入端接收地址,这些地址典型地从基片外来,虽然也可以采用片内地址产生器。在优选实施例中,行选择器220包括移位寄存器,它可以是一线结构(×1),或者是比较宽的结构,例如四线结构(×4)。在操作上,选择寄存器被顺序装入指示选择或不选择器件单元212的数值,并任选地为这个单元输出数值。任选地,可提供存储器,用来保存这些值,以便从器件单元继续输出。
更详细地考虑图9,阵列210包括多个器件单元212。在优选实施例中,器件单元212可以行和列进行排列,在图9中,指定时相对于本文是水平排列的,而列相对于本文指定为垂直排列(尽管技术人员了解到,指定的行和列可以颠倒)。指定的行和列也可称作器件单元212的组或子组,例如行或列的一段,或者称作不是成直线地邻接的单元212的组或族。通常,器件单元212有m行和n列,典型的是m=n,m=2,3,4…。举个例子,器件单元212的5×5矩阵,器件单元的10×10矩阵和器件单元的20×20矩阵,分别提供总数为25,100和400个器件单元。
在图9中,示出器件单元212的不同等级的复杂性。最上部位表示的器件单元212以方块图单元来描述,而排列在图中心部位的器件单元212以较高的复杂性表示,同类的结构表示在图10,并做更详细的描述。应该了解,这些替换描述是为了揭示常规和变形,在典型的实现中,各个器件单元212的结构在给定装置中是相同的。
器件单元212通过至少激活一个行选择器220和一个列选择器230而被寻址。先以单一行选择器220和列选择器230开始进行详细描述,然后再描述附加的行选择器220′和列选择器230′的利用。行选择器220接收输入信息222,并在一根或多根行选择线224上输出行输出信号294(看图10A)。行选择线224上的选择信号被提供给器件单元212,并以此相互作用,例如通过行接触点226。如图所示,行线224的一部分安排在阵列210中心的器件单元212的左面,另一部分安排在右面。在典型的实现中,尽管行线224可采用任何材料的组合进行制作,但是,它们在电气上是连续的。例如,行线可以是一根连续的导电线(例如用导电多硅制成),或者一种组合结构,那里的导电段是通过较高导电材料(例如铝这样的金属)在电气上连接起来的。
列选择器230接收确定列选择的输入232,或者在优选实施例中,接收器件单元212的输出值(或相关值)。列选择器230偶联至一些列线234,它们用于向器件单元212提供列选择信号296a至296d。在优选实施例中,列选择器230可选择的状态多于两种(例如,四种状态296a至296d),较好地是电压状态,这些状态通过列线234被提供给器件单元212。列线234偶联至器件单元212,例如通过列接触点236。在优选实施例中,列接触点可以是晶体管,例如场效应晶体管的控制门(例如图11和12)。
如果需要激活器件单元212,第二行选择器220′,输入线222′,第二行线224′和第二线226′可被包括进来。类似地,可增加第二列选择器230′,它具有输入232′,并被偶联至第二或者补充的列线234′,列线依次地被偶联至第二列接触点236′。
如图所示,行选择器220,220′和列选择器230,230′可任选地包括使能输入端228,228′,或芯片选择端238,238′。这些信号的功能之一是在没有激活行线224,224′,或列线234,234′的情况下,允许输入信息222,222′,232,232′进入。再有,行选择器220,220′和列选择器230,230′可以包括输出229,229′,239,239′,它们可用作输出信息。在一种应用中,输出值可以是信号或者比特,例如,一串最高有效比特,指示输入数据已成功地加载到行选择器220,220′或列选择器230,230′,任选地,这个输出信息可用作触发使能信号或者芯片选择信号228,228′,238,238′。
在图9的细节层次中,行选择器220,220′和列选择器230,230′的任务是接收行和列输入信息222,222′,232,232′,并使用这些信息来选择一个或多个器件单元212,以及任选地提供这样的信号值,它指示器件单元212提从的电流(电位)水平。选择器220,220′,230,230′可取存储器形式,例如取移位寄存器存储器形式(细节可参看图15和16),或者取译码器形式,例如所要求的地址被提供作为输入信息,然后按那里的译码关系进行输出。对于本领域的技术人员来说,已知有能实现这种功能的许多电路。
电流源240,例如电流镜象结构,任选地接收电流源240和控制信号244(VCASP)。连线246,246′将从电流源240来的电流送到列选择器230和第二列选择器230′(如果有的活)。如图所示,连接线246,246′是分开的导线(标志“a”指示导线数等于a)。再有,可以提供一个或多个电流源242。如下面将要结合图10C描述的那样,电流的值可以是静态的,或者是随时间变化的(例如应用脉冲波形,正弦波形,方波,锯齿波等等)。通常,任何所希望的变化形都可被使用。
利用图9所示的结构,每个器件单元212可以在给定的时间内被激活。换句话说,某个器件单元212可被激活,而其他的器件保持不激活状态。举例来说,如果给定列以初值被选定,则与边行选择器220所选择的一行或多行相联结的列中的每个器件单元,在对应于列的电压电平的值上被激活。同一列中的其他器件单元仍然可被置于由偶联到第二列选择器230′相同或不同的电平上,那里与这些器件单元相联结一个或多个行线被第二行选择器220′所驱动。因此,在一列器件单元中,每个器件单元212可能要么被以与列选择器230相联结的,对应于列234上的信号的值所驱动,要么被与第二列选择器230′相联结的列上的值所驱动,或者不被驱动,不被联结,空浮或高阻抗态。类似地,其他的列可被置于所希望的输出电平。这样,器件单元的整个阵列可被置于所希望的或所设置的状态。“输出电平”和“所希望的状态”术语的使用,包括随时间的变化而变化信号。另外,在给定列234,234′中,可以加更多的值,例如通过进一步增加列选择器和被偶联至被选择的器件单元212的列线。
图10A示出一个器件单元212和返回电极250的示意方块图。在可能范围内,图10中的编号与图9所采用的编号相对应。可变电流控制元件260包括输入262,输出264和控制元件266。控制元件266被偶联至一条线,例如列线234,列线依次被偶联至列选择器230。选择开关270包括输入272,输出274和控制元件276。控制元件276被偶联至控制线,例如行线224。可变电流控制元件260的输出264,被偶联至选择开关270的输入272。选择开关270的输出274偶联至供给输出电流282(Iout)的节点280。第一电位284,例如Vcc被馈送给可变电流控制元件260的输入262。
在操作中,加到选择开关270的输入176的行线224上的信号,在节点280与可变电流控制元件260的输出264之间提供导电通路。加到列线234的信号值,即被偶联至可变电流控制元件260的输入266的信号,用于提供一个可变电流量,这个电流,流经串接于第一电位284与输出节点280之间的可变电流控制元件260和选择开关270。返回电极250用于电路总成,虽然将会明白,返回电极250还可以是其他的器件单元212。
在优选实施例中,可变电流控制元件260是晶体管,例如场效应晶体管,更具体地说是MOSFET。选择开关270较好地是晶体管,更好地是场效应晶体管,尤其是MOSFET。各种类型的专门器件都可采用,不管是C-MOS,N-MOS,CMOS,双极型,砷化镓,或者是别的,只要与系统的功能要求一致就行。另外,在优选实施例中,匹配的第二可变电流控制元件260′和第二开关270,偶联在第二电位284′和输出节点280之间。任选地,各种器件可以设计不同的沟道长度,以便实现对称配置。例如,CMOS器件中,P-沟道选择器件的沟道长度可以小于n-沟道器件,以补偿不同的电子/空穴的流动性。(例如80μV,126μ沟道长度)。相同的图示编号已在其右上角加了撇号。有关上述电路的讨论,适用于包括第二可变电流控制元件260’和第二选择开关270’的电路原理。
图10B表示随时间变化的信号例如器件单元212的控制信号。输出信号290的产生,表明数据进入选择器220,220′,230,230′的动作完成。然后输出信号290可用来触发或激活使能信号292。使能信号292依次可允许行选择信号294和列选择信号296A,296B,296C,296D,通至器件单元212。如所描述,单一的行选择信号294被提供,这个信号提供来选择最好有双态操作的电路270,270′。列选择信号296A,296B,296C,296D可以是不同的数值,最好是两种以上的数值,在优选实施例中至少是四种数值,然后它们被提供给可变电流控制元件260,260′的输入266,266′。如下面进一步解释的,这些值可以是静态的或动态的。
图10C描述可提供给电极的示范性的作为时间函数的电流(或电压)值。在一个实施例中,可提供不随时间变化的静态的直流(源的或吸收的)。虽然电流值是静态的,但将会明白,所利用的是选择(典型的是数字选择)是否允许这个电流去驱动电极,从而电极随着时间而有选择地被驱动。图10C中的第二种波形是方波。方波可以是单向电流或双向电流。可采用所希望的偏置。如图10C中的第三种波形所示,波形可以有周期性,有一个子分量波形包含在其中。图10C中的第四种波形是通常的正弦波。图10C中的第五种波形是锯齿波。将会明白,与本发明的目标和目的一致的任何波形,都可以结合本文所揭示的装置和方法而加以利用。通过提供波形,更具体地说是电流波形,它可以用数字选择(如通过激活图9中的行选择器220)而被有选择地控制,从而获得高度的灵活性和控制性。另外,提供给装置内的不同测试位置的波形不必是相同的。第一列可以加上静态的直流波形,第二列可以加上方波波形,而第三列有正弦波形加到由行选择器选择的该列中的位置,等等。
电流的波形可以在芯片内或芯片外产生。在实际装置中,波形可以通过使用数-模转换器,数字信号处理器,可变电流波形产生器,在片存储器而产生,全部都可在利用中央处理单元或其他微处理器控制形式的控制系统的控制之下选择。
图11和12是用作本发明的一个器件单元的驱动电路的示意图。图12特意地包括例如测试晶体管320,330这样的测试电路,而图11中是没有的。两个图的共同方面将在一起描述。
在单元212的一个优选实施例中,采用的是对称配置。第一列选择单元260(优选晶体管)和第一行选择单元270(也优选晶体管),在第一源284(例如电压和/或电流源)和节点280(典型的是电流输出节点)之间,是串接关系。在优选实施例中,列选择晶体管300可以用门电压例如来自列移位寄存器存储器(见图15)的门电压,进行精确的控制。较好的是,在控制能力方面选择单元260、260′是不同的,例如用改变控制晶体管的沟道长度。因此,通过将来自行选择地220,220′和列选择器230,230′的作用电位,加到控制门302,312,在器件单元产生电流输出282。
器件单元212还可包括第二列选择单元260′(优选晶体管300′)和第二行选择单元270′(也优选晶体管310′),它们在第二源284′(例如电压和/或电流源)和节点(典型的是前面涉及的节点280即电流输出节点)之间,以串接关系被使用。在优选实施例中,第一源284是供源电位Vcc,在第二源284′是参考电位,例如“地”。节点最好是同一节点280,以便在Vcc 284和地284′之间的第一列选择单元260和第一行选择单元270,节点280,以及第二行选择单元270′和第二列选择单元260′,存在串接关系。
在电路操作的又一形式中,或者说在图11所示电路的不同方式中,通过同时激活第一和第二行和列选择晶体管260,270,260′和270′中的每个晶体管,可对电路的连贯性进行测试。这时,源284和低电位284′是直接导通地被连接的。
在优选实施例的又一种方案中,包括测试电路原理。图12表示这类系统的示意图。第一测试晶体管320跨接第一列选择晶体管260和第一行选择晶体管270。类似地,第二测试晶体管330跨接第二列选择晶体管260′和第二列选择晶体管270′。选择性激活确保电路的连贯性。
尽管这里描述的电路原理可用能得到与本系统所希望的功能一致的任何已知技术来实现,但还是举出用CMOS电路原理实现的一种方式。在图11和12的电路的一种实现中,列选择器件260,260′包括相对长的沟道长度。这些相对大的场效应晶体管用来提供更精确的电流长度。举例来说,这个电路的实现采用具有6微米沟道宽度。较上部的列选择单元260(由VI_P_CSEL控制)的沟道长度是80微米,而较下部的列选择单元260′(由信号VIN_N_CSEL)的沟道长度是126微米。沟道长度和差异反映电子和空穴的流动性不同,且探求这两个器件的平衡。与之比较,图11和12中的其余器件有6微米的沟道宽度和4微米的沟道长度。器件单元212的另一种实现结构包括专门的用于行选择和列选择的串接选择晶体管,加上用于输出电平(电流或电压)选择的附加晶体管。更概括地说,任何能接收所提到的选择信息(例如行和列选择)与数值和/或极性信息,并产生所希望的电流或电位的电路,都可被使用。
图13表示本文所揭示本发明的很有用的电流控制系统图。在可能范围内,编号与其他的附图一致。电路用于接收输入电流340,该电流是有选择地可控制的,以便在节点342上产生电压,该电压依次被偶联至线234(表示为列线234),线234又被偶联至可变电流控制元件260的控制元件266。可变电流控制元件260,行选择开关270,第一供源电压284和输出电流节点280,与前面的叙述相同。类似地,电流控制电路可用于控制对称电路(例如图10中的元件260′和270′)。
输入电流340被供给控制元件344。每个给定角注的电流被提供给同样角注的控制元件344。控制元件344用于有选择地提供输出346的电流。如图所示,输出346的电流是节点348电流求和,这个电流根据开关或控制元件344a-d的状态可变化。一个分压器结构被提供,其中电位350给被偶联到节点342的电阻器352供电。利用将节点348的电流供给节点342,然后通过电阻器352的方法,可变电压在节点342被提供。任选地,电阻器352可以是器件例如晶体管,这个晶体管只在给节点348提供电流时导通。因此,在每个开关344a-d保持断开时,这个电路在活动中应当不会有电阻器352的任何导通状态(参看更详细实现的图15)。
图14表示系统所用的电流镜象部分的详细电路示意图。图14表示四个相同的电路,对一个电路进行说明,可适用于全部电路。电流节点400偶联至第一晶体管402和第二串接晶体管404,第二晶体管依次地连接到第一电位406(Vdd)。任选地,晶体管402,404被偏置到或连接到供源电压406。第二串接晶体管的控制栅408被连接到电流节点400。电流节点400也被连接到第一晶体管402的输出(源或漏极)。第一控制晶体管402的控制栅由信号412进行控制。信号412用作电流镜象的选择信号。选择信号412供给电流镜象,以产生来自电流节点400的有选择的预备电流,送给列选择电路。
图15是列选择电路的详细电路图(参看例如图9的列选择器230)。移位寄存器电路由一系列触发器420提供,第一触发器接收作为输入的输入信息(Q(0)),可任选地由反相器422进行反相。结合图9来说明,一个任选的输出229可由选择器,例如移位寄存器230提供。如图所示,两级被表示用作移位寄存器,每一级包括四位。在实现中,如果每列被指定为4位时,则器件单元的20×20矩阵或阵列的移位寄存器126将需要80位。输出430被提供作为去电流控制电路432的控制信号。如图所示,电流控制电路由并列行的第一晶体管434和第二晶体管436组成,它们是反向导通型,具有与信号430偶联的控制栅极信号430直接提供给第一晶体管436。在操作上,供给节点440的电流于是在信号430的控制下,有选择地通到输出节点442。输出节点442的电流与该列位置上的其他三个控制电路434的电流求和,求和在靠近节点496或在节点之前进行。
节点496所求和的电流被通到节点492,节点492可用作为列线434的电压抽头。逻辑门440(这里表示为NAND(“与门”)门)接收反相器的输出作为输入。反相器438的输出提供给NAND门440,在逻辑上它用作不同输入的逻辑OR(“或”)。因此,不同电流源的任何选择可用于激活由逻辑元件440控制的选通晶体管。
移位寄存器126包括多个串联的触发器420。数值信号被提供给反相器422作为输入,然后送到触发器420的D输入端。时钟信号(CM)和码片选择信号(CS)被提供。最后一个触发器420(图15最右边的)的输出被送到反相器,该反相器在节点424提供输出位。
图16表示移位寄存器450的分级图。触发器452接收输入454(Q(0)),这个输入,通过一个触发器的Q输出端,送到下一个触发器452的D输入端而被通到另一个触发器452。任选地,输出456提供从移位寄存器来的最高有效位指示(或其他的加载指示)。使能信号460被提供给逻辑门462作为输入(这里表示的是一个NAND(与非)门),该逻辑门还接收辅助触发器452的输出端(Q端)作为输入。逻辑门462的输出控制通过电路464,该通过电路464如果构成行选择信号468时,它有选择地通过信号466。这里提供的说明,可以应用到移位寄存器450中编号重复的那些级的电路。
图17表示器件单元的实现线路图。列线234,234′被表示为垂直地伸展,它偶联至列选择器(参看图9)。行线224,224′被表示为水平地伸展。供源电压线VDD 500和第二电压线202(VSS,例如“地”)通常被配置为平行于列线234,234′。可选择的测试控制线504,504′分别提供n测试和p测试电路的控制信号。行线224由导电元件506与控制极508相连接,该控制极置于沟道区域的下面。类似地,行线224′偶联至控制极508′,该控制板置于选择晶体管的沟道区域。列线234,234′电气上被偶联至置于沟道区域的控制板510,510′,于是它们分别被偶联至第一供源电压VDD 500和第二供源电压VSS 502。控制板510,510′底层的沟道长度是不同的,选择长度的不同,以便工作器件具有相类似的适用性能。由控制板508,508′控制的开关晶体管的输出,通过导电元件512提供给电极514。
图18是表示器件单元20×20阵列一个部分的平面图。图18表示全芯片的一部分,可以看出,诸如器件单元,移位寄存器,行和列解码器以及电流镜象电路这些结构,在整个芯片中一般是相同地重复。多个器件单元(图17中详细表示的)被包括在内。对抗或返回电极520较好地被配置在器件单元阵列周围。返回电极520较好地包围或环绕器件单元阵列。任选地,多个电极可以被利用,以包围这个阵列。在优选实施例中,4个L形电极托支阵列(一个的一角被示出),每个电极基本上托支阵列的1/4。这些电极可以被利用来除去不合乎需要的物质,也可有作转储或配置电极。行选择器220"(这样的标号与图9元件标号相对应)被配置在图18中的阵列电极520的右边。列选择器230"被配置在阵列和电极520的外部。电流镜象电路240"可选择地配置在芯片的拐角。芯片上的元件选择和安排被做得使器件功能度最佳。芯片所包含的元件(芯片是典型地可配置的元件)可允许功能度的本地控制,尽管器件费用增加。虽然不同排列是可能的,但图18所示的结构是20×20芯片的优选实施例。
图19是全系统的原理图。控制计算机530通过总线540与测试板532和探测卡534偶联。任选地,一个连接器例如R232连接器可被利用。探测卡534与实际的有源电子装置相对接。该装置的输出可提供给接收系统542,接收系统可包括模-数转换器,用以通过总线540向计算机系统530提供数字数据。
图20是图19测试板和探测卡的展开方块图。串连接口连接器550连接到通用异步接收发送器(UART)552,552与控制器554相连。而后,内部连接总线偶联到电流源556和电流吸收器558。不同的数-模转换器,例如转储DAC(数-模转换器)560和偏置DAC 562被提供。移位寄存器564与探测卡534相偶联。数-模转换器556可接收输出信号,例如来自探测卡534的输出信号。如果移位寄存器包括一个输出(参看图9中的输出229,229′,239,239′),移位寄存器回送568被提供。
图21表示利用图2的芯片的电子杂交图。这个图表示荧光的强度,以MFI/S作为列号的函数。被标注为列1,列2和列3的三个条形图用的是场成形的,并以左边的条形图表示特定的杂交,与贴近的右列非特定的杂交进行比较。标注为“标准”的上面三对标以列1,列2和列3的条形图,表示相同的系统,但没有场成形。在特定的与非特定的约束之间的区别,在“标准”情况下大大地小于利用场成形的情况。该序列是ATA5/ATA7/biotin,和10pMRCA5/BTR。
图22表示利用图2所示的系统进行试验的条形图。Y轴表示平均值MFI/秒,X轴表示不同浓度的不同行。尺度段的第一对表示50mM组氨酸中的RCA5 BTR报道者的浓度为50mM,并描绘了洗涤后的特定/非特定的约束。第一对表示行1和行2特定的约束(ATA5/RCA5)与非特定的约束(ATA7/RCA5)的比较,显示12∶1和50∶1的改善。中间一对条形图表示RCA5 BTR报道者的浓度50pM,显示特定的约束与非特定的约束信号强度的比是3.9∶1和4.9∶1。最后一对条形图表示RCA5 BTR报道者的浓度为1pM,显示特定的约束与非特定的约束的比是4.4∶1和4.0∶1。
图23表示电极毫微安的输出电流,随微安的输入电流变化的电流线性度。提供了图注,用来指示图中不同的线。
上述发明为便于明白和了解,采用了图例说明和举例的方法,相当详细地进行了叙述,但很明显,技术人员根据本发明的技术,在不脱离所附加的权利要求的精神和范围的情况下,可以做出某些改变和改进。
权利要求
1.一种用于进行有源生物学操作的电子装置,其中包括支持基底,被设置在基底上第一区域内的微位置阵列,被设置在基底上的第一收集电极,被设置在基底上的第一和第二聚焦电极,第一和第二电极有近端和远端,近端至少部分地被设置在微位置阵列的附近,邻近阵列的第一和第二电极的近端之间的距离,小于第一和第二电极的远端之间的距离,和被设置在基底上的至少一个对抗电极。
2.根据权利要求1所述的用于进行有源生物学操作的电子装置,其特征在于进一步包括至少一个输运电极,输运电极被设置在基底上,定位于第一收集电极和阵列之间。
3.根据权利要求2所述的用于进行有源生物学操作的电子装置,其特征在于具有至少两个输运电极。
4.根据权利要求3所述的用于进行有源生物学操作的电子装置,其特征在于输运电极具有不同的尺寸。
5.根据权利要求4所述的用于进行有源生物学操作的电子装置,其特征在于较大尺寸与较小尺寸相比至少是2∶1。
6.根据权利要求4所述的用于进行有源生物学操作的电子装置,其特征在于较大尺寸与较小尺寸相比至少是3∶1。
7.根据权利要求4所述的用于进行有源生物学操作的电子装置,其特征在于较大尺寸与较小尺寸相比至少是4∶1。
8.根据权利要求4所述的用于进行有源生物学操作的电子装置,其特征在于输运电极的尺寸一般地减小,直到贴近阵列。
9.根据权利要求8所述的用于进行有源生物学操作的电子装置,其特征在于尺寸上的减小是单调的。
10.根据权利要求2所述的用于进行有源生物学操作的电子装置,其特征在于至少一个输运电极小于第一收集电极。
11.根据权利要求10所述的用于进行有源生物学操作的电子装置,其特征在于收集电极与至少一个输运电极的面积的比,至少是4∶1。
12.根据权利要求1所述的用于进行有源生物学操作的电子装置,进一步包括捕获序列。
13.根据权利要求12所述的用于进行有源生物学操作的电子装置,其特征在于捕获序列设置在收集电极的附近。
14.根据权利要求12所述的用于进行有源生物学操作的电子装置,其特征在于收集电极是复杂性降低的电极。
15.根据权利要求1所述的用于进行有源生物学操作的电子装置,其特征在于进一步包括被连接至聚集电极的第二电源。
16.根据权利要求1所述的用于进行有源生物学操作的电子装置,其特征在于聚焦电极是负偏置的。
17.根据权利要求1所述的用于进行有源生物学操作的电子装置,其特征在于聚焦电极被以激活的方式偏置为零。
18.根据权利要求1所述的用于进行有源生物学操作的电子装置,其特征在于进一步包括流体单元。
19.根据权利要求1或2所述的用于进行有源生物学操作的电子装置,其特征在于对抗电极和第一收集电极被置用于探询流体单元容积内的成分。
20.根据权利要求19所述的用于进行有源生物学操作的电子装置,其特征在于该成分至少是50%。
21.根据权利要求19所述的用于进行有源生物学操作的电子装置,其特征在于该成分至少是70%。
22.根据权利要求19所述的用于进行有源生物学操作的电子装置,其特征在于对抗电极和收集电极基本上是沿着流体单元的印迹的整个周围设置的。
23.根据权利要求22所述的用于进行有源生物学操作的电子装置,其特征在于对抗电极和收集电极是沿着流体单元至少80%的周围设置的。
24.根据权利要求19所述的用于进行有源生物学操作的电子装置,其特征在于对抗电极和收集电极被设置在流体单元印迹的大体上相对的端上。
25.根据权利要求18所述的用于进行有源生物学操作的电子装置,其特征在于收集电极和对抗电极的面积与流体单元印迹的比例至少是40%。
26.根据权利要求18所述的用于进行有源生物学操作的电子装置,其特征在于收集电极和对抗电极的面积与流体单元印迹的比例至少是50%。
27.根据权利要求18所述的用于进行有源生物学操作的电子装置,其特征在于收集电极和对抗电极的面积与流体单元印迹的比例至少是60%。
28.根据权利要求18所述的用于进行有源生物学操作的电子装置,其特征在于流体单元包括一个入口。
29.根据权利要求18所述的用于进行有源生物学操作的电子装置,其特征在于流体单元包括一个出口。
30.一种利用权利要求1所述的用于进行有源生物学操作的电子装置分析生物学样本的方法,其特征在于包括步骤向装置提供样本,安置对所希望的带电生物学物质有吸引力的第一收集电极,从而将所希望的带电生物学物质聚集在收集电极上,将聚焦电极设置于一个电位,以便提供与在收集电极和微位置阵列之间的线路横截的力分量,和从收集电极向微位置阵列输运物质。
31.根据权利要求30所述的生物学样本分析方法,其特征在于聚焦电极被以激活的方式偏置。
32.根据权利要求31所述的生物学样本分析方法,其特征在于聚焦电极的激活偏置为零。
33.根据权利要求31所述的生物学样本分析方法,其特征在于偏置为负。
34.根据权利要求30所述的生物学样本分析方法,其特征在于还包括向输运电极提供与所希望的样本有关的、具有吸引力的偏置步骤。
35.根据权利要求30所述的生物学样本分析方法,其特征在于在所希望的样本已被提供到收集电极以后,输运电极被偏置为对所希望的样本有吸引力。
36.根据权利要求30所述的生物学样本分析方法,其特征在于输运电极被顺序地偏置。
37.根据权利要求30所述的生物学样本分析方法,其特征在于在所希望的物质已被收集到收集电极以后,收集电极被偏置为对所希望的样本有排斥力。
38.根据权利要求30所述的生物学样本分析方法,其特征在于还包括对吸引所希望的生物学物质的微位置阵列中的至少某些微位置,以激活的方式偏置的步骤。
39.一种在含有带电生物学物质的溶液上进行有源生物学操作用的电子装置,其中包括支持基底,被设置在基底上的微位置阵列,阵列在一个区域内,被设置在基底上的第一输运电极,被设置在基底上的第二输运电极,其特征在于第一和第二输运电极有不同的尺寸,和偶联至第一输运电极和第二输运电极的控制系统,以允许有选择地激活所述电极,从而实现带电生物学物质从所述第一输运电极至所述第二输运电极的输运。
40.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极和第二输运电极的面积的比至少是二比一。
41.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极和第二输运电极的面积的比至少是三比一。
42.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极和第二输运电极的面积的比至少是四比一。
43.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于第二输运电极比第一输运电极更贴近微位置阵列,并且,第二输运电极比第一输运电极面积小。
44.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于至少包括第三个输运电极,第三输运电极的尺寸不同于第一输运电极和第二输运电极这两个电极的尺寸。
45.根据权利要求44所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极,第二输运电极,第三输运电极被设置为,使它们的尺寸是单调地减小而接近阵列。
46.根据权利要求39所述的用于进行有源生物学操作的电子装置,进一步包括被设置在支持基底上的第一和第二聚焦电极,第一和第二聚焦电极是非平行的。
47.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于还包括流单元。
48.根据权利要求39所述的用于进行有源生物学操作的电子装置,其特征在于至少包括第一对抗电极和第一校正电极,被设置用来探询流体单元容积内的基本成分。
49.一种用于进行有源生物学操作的电子装置,包括支持基底,被设置在基底上的微位置阵列,被设置在基底上的第一收集电极,被设置在基底上的第一和第二聚焦电极,第一和第二电极至少部分地被设置在微位置阵列的附近,邻近阵列的第一和第二电极之间的距离,小于被设置在远离开阵列的另一区域中的第一和第二电极之间的距离,被设置在基底上的第一输运电极,被设置在基底上的第二输运电极,其特征在于第一和第二输运电极有不同的尺寸,偶联至第一输运电极和第二输运电极的控制系统,以允许有选择地激活所述电极,从而实现带电生物学物质从所述第一输运电极至所述第二输运电极的输运,和被设置在基底上的至少一个对抗电极。
50.一种用于进行有源生物学操作的电子装置,其中包括支持基底,被设置在基底上的微位置阵列,被设置在基底上的第一收集电极,被设置在基底上的第一和第二聚焦电极,第一和第二电极至少部分地被设置在微位置阵列的附近,邻近阵列的第一和第二电极之间的距离,小于在被设置在远离开阵列的另一区域中的第一和第二电极之间的距离,被设置在基底上的第一输运电极,被设置在基底上的第二输运电极,其特征在于第一和第二输运电极有不同的尺寸,和偶联至第一输运电极和第二输运电极的控制系统,以允许有选择地激活所述电极,从而实现带电生物学物质从所述第一输运电极至所述第二输运电极的输运,被设置在基底上的至少一个对抗电极,和流体单元,被设置在支持基底附近并包围收集电极和对抗电极,中心电极和控制电极被设置在流体单元的周围附近。
51.根据权利要求50所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极和第二输运电极被设置在所述第一和第二聚焦电极之间。
52.根据权利要求50所述的用于进行有源生物学操作的电子装置,其特征在于第一输运电极的定位,比第二输运电极距离微位置阵列更远,并且,第一输运电极比第二输运电极大。
53.一种用于进行生物学操作的电子装置,其中包括支持基底,被设置在基底上的微位置阵列,阵列在一个区域内形成,被设置在基底上邻近阵列的第一收集电极,和被设置在基底上邻近阵列的第二收集电极,并至少部分地在该区域的对面。
54.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极被设置在基本上相对的端部。
55.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于还包括适合于被支持在基底上的流体单元,并确定流体单元的印迹。
56.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极被设置在流体单元的印迹基本上相对的端部。
57.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的面积至少是所述区域面积的80%。
58.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的面积至少是所述区域面积的100%。
59.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的面积至少是所述区域面积的120%。
60.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于还包括捕获序列。
61.根据权利要求60所述的用于进行有源生物学操作的电子装置,其特征在于所述捕获序列被设置在收集电极的附近。
62.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于收集电极是复杂性降低的电极。
63.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于还包括聚焦电极。
64.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极的面积与流体单元的印迹的比例至少是40%。
65.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极的面积与流体单元的印迹的比例至少是50%。
66.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极的面积与流体单元的印迹的比例至少是60%。
67.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于流体单元包括一个入口。
68.根据权利要求55所述的用于进行有源生物学操作的电子装置,其特征在于流体单元包括一个出口。
69.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极是相同尺寸的电极。
70.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极和第二收集电极是不同尺寸的电极。
71.根据权利要求70所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的面积小于第二电极的面积。
72.根据权利要求70所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的面积至少大体上比第二收集电极的面积小10%。
73.根据权利要求53所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极的形状是梯形。
74.根据权利要求53和73所述的用于进行有源生物学操作的电子装置,其特征在于第二收集电极的形状是梯形。
75.根据权利要求73所述的用于进行有源生物学操作的电子装置,其特征在于所述梯形的底边邻近阵列,顶边被设置为远离阵列,并且,底边比顶边长。
76.一种利用权利要求53所述的用于进行有源生物学操作的电子装置,分析生物学样本的方法,其中包括步骤向装置提供样本,安置对所希望的带电生物学物质有吸引力的第一中心电极,从而将所希望的带电生物学物质聚集在中心电极上,安置对所希望的带电生物学物质有吸引力的、与第一中心电极有关的第二中心电极,从而将所述带电生物学物质从第一中心电极向第二中心电极输运,并且越过被设置在基底上的所述微位置阵列的至少一部分,从而发生带电生物学物质与阵列之间的相互作用。
77.根据权利要求76所述的利用有源生物学操作用的电子装置分析生物学样本的方法,其特征在于阵列被保持于电的无源状态。
78.根据权利要求76所述的利用有源生物学操作用的电子装置分析生物学样本的方法,其特征在于阵列被电激活,以促进阵列和带电生物学物质之间的相互作用。
79.根据权利要求76所述的利用有源生物学操作用的电子装置分析生物学样本的方法,其特征在于带电生物学物质以波动方式在阵列上运动。
80.根据权利要求76所述的利用有源生物学操作用的电子装置分析生物学样本的方法,其特征在于带电生物学物质在阵列上运动。
81.根据权利要求76所述的利用有源生物学操作用的电子装置分析生物学样本的方法,其特征在于带电生物学物质是以相对于基底的横向位置在阵列上运动并保持的。
82.一种用于进行有源生物学操作的电子装置,包括支持基底,被设置在基底上的微位置阵列,被设置在基底上的第一收集电极,和被设置在基底上的并被设置在阵列内部的对抗电极。
83.根据权利要求82所述的用于进行有源生物学操作的电子装置,其特征在于第一收集电极被分段。
84.根据权利要求82所述的用于进行有源生物学操作的电子装置,其特征在于围绕所述阵列提供了多个环。
85.根据权利要求82所述的用于进行有源生物学操作的电子装置,其特征在于还包括捕获序列。
86.根据权利要求85所述的用于进行有源生物学操作的电子装置,其特征在于捕获序列被设置在收集电极附近。
87.根据权利要求85所述的用于进行有源生物学操作的电子装置,其特征在于收集电极是复杂性降低的电极。
88.根据权利要求82所述的用于进行有源生物学操作的电子装置,其特征在于微位置是以环形方式排列的。
89.一种用于进行有源生物学操作的电子装置,其中包括基底,适用于容纳含有生物学物质的流体的流体单元,所述流体单元被所述基底支持,流体单元确定在所述基底上的印迹,被设置在所述基底上的多个电极,所述这些电极至少包括一返回电极和一收集电极,所述返回电极和收集电极处于流体单元印迹的周围,以便实质上探询流体单元全部的容积。
90.一种用于进行有源生物学操作的电子装置,其中包括支持基底,具有第一和第二表面,和第一与第二表面之间的通路,以允许液体流过基底,第二表面支持导电印刷线,第二基底,包括至少第一表面,第一表面适合于被设置为与第一基底的第二表面相对,第二基底包括连接至微位置阵列的导电印刷线,阵列适合于经过通路接收所述液体,电气互连,被设置在支持基底的第二表面上的导电印刷线和第二基底的第一表面上的导电印刷线之间,密封胶,被布置在支持基底的第二表面和第二基底的第一表面之间,所述密封胶在第一表面和第二表面侧旁及之间提供对流体密封。
91.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于支持基底是软性电路。
92.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于支持基底是电路板。
93.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于第二基底是半导体基底。
94.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于电气互连是导电块。
95.根据权利要求94所述的用于进行有源生物学操作的电子装置,其特征在于导电块是焊锡。
96.根据权利要求95所述的用于进行有源生物学操作的电子装置,其特征在于导电块是铟焊料。
97.根据权利要求94所述的用于进行有源生物学操作的电子装置,其特征在于导电块是导电聚合物。
98.根据权利要求94所述的用于进行有源生物学操作的电子装置,其特征在于导电块是充银环氧树脂。
99.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于密封胶是可光固化的聚合物。
100.根据权利要求99所述的用于进行有源生物学操作的电子装置,其特征在于可光固化的聚合物是水基的。
101.根据权利要求90所述的用于进行有源生物学操作的电子装置,其特征在于还包括边缘照射元件,被设置用于照射所述第二基底的所述第一表面。
102.一种用于分析含有带电生物学物质的溶液的系统,其中包括入口端,出口端,被连接至入口端的入口室,入口室在大体上垂直于流体方向的平面上具有横断面积A,并具有随离端口距离的变化而变化的高度和宽度,被连接至出口端的出口室,出口室在大体上垂直于流体方向的平面上具有横断面积A’,并具有随离端口距离的变化而变化的高度和宽度,入口室和出口室适用于相互之间的液体连通,入口室和出口室的特征在于它们具有基本上恒定不变的横断面。
103.一种制造倒装片结构的方法,这种结构有一个芯片被设置在基底的附近,基底有贯通那里的通路,结构适用于接收流至基底上的液,并使液体经过通路向下流至芯片,芯片的至少一部分包括没有被密封胶覆盖的表面,这种方法包括步骤将芯片固定于基底,在基底和芯片之间提供可光固化的可为芯的密封胶,使装置曝光到达基底,并经过通路向下到达芯片,曝光的结果至少部分地固化密封胶,而密封胶被预防流向所述不需密封胶的表面,以及完成密封胶的固化。
104.根据权利要求103所述的制造倒装片结构的方法,其特征在于密封胶是可光固化的。
105.根据权利要求103所述的制造倒装片结构的方法,其特征在于光是紫外线光。
106.一种用于进行有源生物学操作的电子装置,其中包括支持基底,其具有第一和第二表面,和第一与第二表面之间的通路以允许液体流过基底,第二基底,其至少包括第一表面,第一表面适合于被设置为与第一基底的第二表面相对,第二基底包括微位置阵列,阵列适用于接收所述液体。密封胶,其被布置在支持基底的第二表面和第二基底的第一表面之间,照射源,以及波导,其具有适用于接收来自源的照射的输入端,和适用于使照射对准阵列的输出端,波导基本上平行于支持基底,来自波导的射线照射阵列。
107.根据权利要求106所述的制造倒装片结构的方法,其特征在于照射源是激光器。
108.根据权利要求107所述的制造倒装片结构的方法,其特征在于激光器是激光棒。
109.根据权利要求106所述的制造倒装片结构的方法,其特征在于波导被固定于支持基底。
110.根据权利要求109所述的制造倒装片结构的方法,其特征在于波导是聚合物。
111.根据权利要求106所述的制造倒装片结构的方法,其特征在于照射源是激光器。
112.根据权利要求106所述的制造倒装片结构的方法,其特征在于提供多个波导。
113.根据权利要求106所述的制造倒装片结构的方法,其特征在于支持基底是软性电路。
114.根据权利要求106所述的制造倒装片结构的方法,其特征在于支持基底是电路板。
115.根据权利要求106所述的制造倒装片结构的方法,其特征在于还包括被设置在支持基底第一表面上的流体学结构。
116.根据权利要求106所述的制造倒装片结构的方法,其特征在于还包括支持基底和第二基底之间的焊接块。
117.一种用于多地点环境下生物学反应的有源电子控制系统,其中包括器件单元阵列,单元是以行和列设置的,行选择器,其处于阵列之外并有选择地被连接至阵列,用来对阵列的行有选择地寻址,列选择器,其处于阵列之外并有选择地被连接至阵列,用来提供输出值的指示,并对阵列的列有选择地寻址,输入端,其适用于接收器件单元选择信息,输入端被偶联至行选择器和列选择器,电流电路,其用来接收输入电流并将信号偶联至器件单元,在那里产生电流,和电源连接器,其适用于接收电源,该连接器向器件单元供给电源。
118.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于行选择器包括存储器。
119.根据权利要求118所述的用于对生物学反应进行有源电子控制的系统,其特征在于存储器是移位寄存器存储器。
120.根据权利要求119所述的用于对生物学反应进行有源电子控制的系统,其特征在于移位寄存器用的是一线(×1)结构。
121.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于行选择器包括解码器。
122.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于列选择器包括存储器。
123.根据权利要求122所述的用于对生物学反应进行有源电子控制的系统,其特征在于存储器是移位寄存器存储器。
124.根据权利要求123所述的用于对生物学反应进行有源电子控制的系统,其特征在于移位寄存器用的是一线(×1)结构。
125.根据权利要求123所述的用于对生物学反应进行有源电子控制的系统,其特征在于移位寄存器用的是四线(×4)结构。
126.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于列选择器包括解码器。
127.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于还包括可变电流波形产生器。
128.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于还包括电流镜象系统,用于接收第一值的电流并以第二值输出电流。
129.根据权利要求128所述的用于对生物学反应进行有源电子控制的系统,其特征在于第二值小于第一值。
130.根据权利要求129所述的用于对生物学反应进行有源电子控制的系统,其特征在于第二值至少比第一值小二十倍。
131.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于还包括多路转换器,用于交替选择行和列选择的输入。
132.根据权利要求117所述的用于对生物学反应进行有源电子控制的系统,其特征在于输入电流包含电流波形。
133.根据权利要求132所述的用于对生物学反应进行有源电子控制的系统,其特征在于电流波形是静态的直流波形。
134.根据权利要求132所述的用于对生物学反应进行有源电子控制的系统,其特征在于电流波形是方波。
135.根据权利要求134所述的用于对生物学反应进行有源电子控制的系统,其特征在于电流波形是不对称方波。
136.根据权利要求132所述的用于对生物学反应进行有源电子控制的系统,其特征在于电流波形是正弦波。
137.根据权利要求132所述的用于对生物学反应进行有源电子控制的系统,其特征在于电流波形是锯齿波。
138.一种用于控制有源生物学控制反应系统输出电流的电路,其中包括第一列选择晶体管,第一列选择晶体管适合于被列选择器控制,第一行选择晶体管,第一行选择晶体管适合于被行选择器控制,第一选择晶体管彼此串接并处于节点和第一电源之间,被连接至该节点的一输出,第二列选择晶体管,第二列选择晶体管适合于被列选择器控制,和第二行选择晶体管,第二行选择晶体管适合于被行选择器控制,第二选择晶体管彼此串接并处于节点和第二电源之间。
139.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于该输出被直接连接至节点。
140.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于第一行选择晶体管和第二行选择晶体管是CMOS晶体管。
141.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于第一和第二列选择晶体管是CMOS晶体管。
142.根据权利要求141所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于列选择晶体管的沟道长度大于行选择晶体管的沟道长度。
143.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于还包括跨接于第一电源和所述节点的第一测试晶体管。
144.根据权利要求143所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于第一测试晶体管适合于由测试信号控制。
145.根据权利要求143所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于还包括跨接于第二电源和所述节点之间的第二测试晶体管。
146.根据权利要求145所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于第一测试晶体管适合于被测试信号控制。
147.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其中,第一电源是Vcc。
148.根据权利要求138所述的用于控制有源生物学控制反应系统输出电流的电路,其特征在于第二电源是地。
149.一种用于在有源生物学阵列装置中提供电流的电路,这个有源生物学阵列装置适用于接收含有带电生物学物质的导电溶液,其特征在于该电路包括可变电流控制元件,其包括输入,输出,和适用于接收控制信号的控制元件,选择开关,具有输入,输出,和控制元件,输入被连接至可变电流控制元件的输出,从而在可变电流控制元件和选择开关之间提供串联连接,控制元件适用于接收第二控制信号,可变电流控制元件的输入之一和选择开关的输出被连接至第一电位,其他的适用于接触导电溶液,和返回电极,这个返回电极被连接至第二电位,并适用于接触导电溶液,因此,在存在导电溶液的情况下,返回电极和所述其他的可变电流控制元件的输入和选择开关的输出之间,被提供以电流。
150.根据权利要求149所述的电路,其特征在于可变电流控制元件是晶体管。
151.根据权利要求150所述的电路,其特征在于晶体管是金属氧化物半导体场效应晶体管。
152.根据权利要求149所述的电路,其特征在于选择开关是晶体管。
153.根据权利要求152所述的电路,其特征在于晶体管是金属氧化物半导体场效应晶体管。
154.根据权利要求149所述的电路,其特征在于可变电流控制元件的输入被偶联至第一电位,选择开关的输出适用于接触导电溶液。
155.根据权利要求149所述的电路,其特征在于选择开关的输出被偶联至第一电位,可变电流控制元件的输入适用于接触导电溶液。
156.根据权利要求149所述的电路,其特征在于还包括第二可变电流控制元件,其具有输入,输出,和控制元件,控制元件适用于接收第三控制信号,第二选择开关,其具有输入,输出,和控制元件,输入被连接至第二可变电流控制元件的输出,从而在第二可变电流控制元件和第二选择开关之间提供串联连接,控制元件适用于接收第四控制信号,第二可变电流控制元件的输入之一和第二选择开关的输出被连接至第三电位,其他的适用于接触导电溶液。
157.根据权利要求156所述的电路,其特征在于第二可变电流控制元件是晶体管。
158.根据权利要求157所述的电路,其特征在于晶体管是金属氧化物半导体场效应晶体管。
159.根据权利要求156所述的电路,其特征在于第一可变电流控制元件是第一掺杂质类型的元件,第二可变电流控制元件是相反的掺杂质类型的元件。
160.根据权利要求156或159所述的电路,其特征在于第二可变电流控制元件是P-沟道元件。
161.根据权利要求156所述的电路,其特征在于被选用的第一可变电流控制元件和第二可变电流控制元件具有类似的功能特性。
162.根据权利要求161所述的电路,其特征在于电路参数是器件增益。
163.根据权利要求156所述的电路,其特征在于提供以下列次序的串接第一电位,可变电流控制元件,选择开关,第二选择开关,第二可变电流控制元件,和第三电位。
164.根据权利要求156所述的电路,其特征在于是以下列元件次序是串接的第一电位,选择开关,可变电流控制元件,第二可变电流控制元件,第二选择开关,和第三电位。
165.根据权利要求156所述的电路,其特征在于是以下列元件是串接的第一电位,可变电流控制元件,选择开关,第二可变电流控制元件,第二选择开关,和第三电位。
166.根据权利要求156所述的电路,其特征在于是以下列元件是串接的第一电位,选择开关,可变电流控制元件,第二选择开关,第二可变电流控制元件,和第三电位。
167.根据权利要求150或156所述的电路,其特征在于所述电位是VDD。
168.根据权利要求167所述的电路,其特征在于所述电位是电源电位。
169.根据权利要求168所述的电路,其特征在于所述电源电压大致在0至10伏的范围内。
170.根据权利要求168所述的电路,其特征在于所述电源电压大致为5伏。
171.根据权利要求156所述的电路,其特征在于所述第二电位大致为所述电源电位的1/2。
172.根据权利要求156所述的电路,其特征在于第三电位是地电位。
173.根据权利要求172所述的电路,其特征在于第二电位在电源电位和地电位之间。
174.根据权利要求173所述的电路,其特征在于第二电位大致为所述电源电位的1/2。
175.根据权利要求149所述的电路,其特征在于控制信号是静态信号。
176.根据权利要求149所述的电路,其特征在于控制信号是方波信号。
177.根据权利要求149所述的电路,其特征在于控制信号是不对称的方波信号。
178.根据权利要求149所述的电路,其特征在于控制信号是正弦波信号。
179.根据权利要求149所述的电路,其特征在于控制信号是锯齿波信号。
180.一种用于在有源生物学阵列装置中提供电流的电路,这个有源生物学阵列装置适用于接收含有带电生物学物质的导电溶液,其特征在于所述电路包括具有输出的第一可变电流源,电压分配器,其具有适用于接收第一电位的输入和偶联至第一可变电流源的输出的第二输入,和适用于提供第二电位的输出节点,第二电位作为第一可变电流源输出的函数而变化,可变电流控制元件,其具有输入,输出,和控制元件,所述控制元件被偶联至适用于提供第二电位的节点,所述输入被偶联至第三电位,输入被偶联至适合于接触到电溶液的第一电极,和返回电极,返回电极被连接至返回电位,因而在存在导电溶液的情况下,电流可变地被提供在返回电极和第一电极之间。
181.根据权利要求180所述的电路,其特征在于第一可变电流源包括一开关电源。
182.根据权利要求181所述的电路,其特征在于第一可变电流源包括多个开关电流源。
183.根据权利要求182所述的电路,其特征在于开关电流源被存储器控制。
184.根据权利要求183所述的电路,其特征在于存储器是双态存储器。
185.根据权利要求184所述的电路,其特征在于双态存储器是触发器。
186.根据权利要求183所述的电路,其特征在于存储器包括移位寄存器。
187.根据权利要求180所述的电路,其特征在于电压分配器包括可开关的电阻元件。
188.根据权利要求187所述的电路,其特征在于可开关电压分压器包括串接晶体管。
189.根据权利要求188所述的电路,其特征在于串接晶体管受逻辑电路控制的。
190.根据权利要求189所述的电路,其特征在于逻辑电路接收存储器状态输出,作为输入。
191.根据权利要求189所述的电路,其特征在于如果任何一个存储器接通,逻辑电路控制在电压分配器中包含的电阻。
192.根据权利要求189所述的电路,其特征在于逻辑是“与非”门电路。
193.根据权利要求182所述的电路,其特征在于开关电流源的输出被求和。
194.根据权利要求180所述的电路,其特征在于第一电位等于第二电位。
195.根据权利要求194所述的电路,其特征在于第一电位和第二电位是电源电位。
196.根据权利要求180所述的电路,其特征在于还包括至少一个向第一可变电流源提供电流的电流镜象。
197.根据权利要求180所述的电路,其特征在于还包括测试晶体管,以便在第三电位和偶联至适用于接触导电溶液的第一电极的输出之间提供串联连接。
198.一种用于在有源生物学阵列装置中选择预备电流的系统,这个有源生物阵列装置适用于接收含有带电生物学物质,所述系统包括器件单元的阵列,每个器件单元包括行接触点和列接触点,行线,这些行线被偶联至阵列的行接触点,行选择器,所述行选择器被偶联至行线以提供行选择电压,列线,这些列线被偶联于阵列的列接触点,列选择器,这个列选择器被偶联至列线,以至在列线上提供两种以上列电压状态,器件元件,其被偶联至电源和电极,行选择电压和列电压状态提供从器件单元的电极输出的可变电流,和返回电极,其接至一个电位,并适用于接触导电溶液,因而在存在导电溶液的情况下,在包括返回电极的不同器件单元之间提供有电流。
199.根据权利要求198所述的系统,其特征在于返回电极是阵列的一个器件单元。
200.根据权利要求198所述的系统,其特征在于行选择器包括存储器。
201.根据权利要求200所述的系统,其特征在于存储器包括移位寄存器存储器。
202.根据权利要求201所述的系统,其特征在于移位寄存器采用的是一线(×1)的结构。
203.根据权利要求198所述的系统,其特征在于行选择器包括解码器。
204.根据权利要求198所述的系统,其特征在于列选择器包括存储器。
205.根据权利要求204所述的系统,其特征在于存储器包括移位寄存器存储器。
206.根据权利要求205所述的系统,其特征在于移位寄存器存储器器件单元的每列包含多位。
207.根据权利要求206所述的系统,其特征在于器件单元的每列至少有四位。
208.根据权利要求198所述的系统,其特征在于器件单元还包括一第二行接触点和多个第二行线。
209.根据权利要求198所述的系统,其特征在于还包括第二行选择器。
210.根据权利要求198所述的系统,其特征在于器件单元还包括一第二列接触点和多个第二列线。
211.根据权利要求198所述的系统,其特征在于还包括第二列选择器。
全文摘要
用于实现有源生物学操作的制造方法和装置,利用各种不同的结构收集并向微位置阵列提供带电物质。在一个实施例中,装置包括聚焦电极,以有助于引导并将物质从收集电极输运至阵列。较好的是采用一个或多个中间输运电极,最好在收集电极和阵列之间的尺寸单调地减小,为的是减小电流密度失配。在另一个方案中,在装置上面采用流体单元,以提供包含待分析物质的容量。在另一个实施例中,提供的是同心的环形设置。披露了各种倒装片实施例。
文档编号B01L3/00GK1296525SQ99805003
公开日2001年5月23日 申请日期1999年2月11日 优先权日1998年2月20日
发明者唐纳德·E·阿克利, 保罗·D·斯旺森, 斯科特·O·格雷厄姆, 伊丽莎白·L·马瑟, 蒂莫西·L·勒克莱尔, 威廉·F·巴特勒 申请人:内诺金有限公司