选择性氧化有机化合物的方法

文档序号:4934732阅读:785来源:国知局
专利名称:选择性氧化有机化合物的方法
发明的领域本发明一般涉及氧化有机化合物的方法,更具体地说,本发明涉及使用过氧化氢在二氧化硅改性的二氧化钛/含有二氧化硅的催化剂存在下氧化可氧化的有机物的方法,以及使用二乙氧基硅烷和钛酸乙酯的共聚物制备催化剂的方法。
发明的背景催化氧化方法对于许多商业化学品是重要的方法,例如许多烯烃的环氧化的商业方法已经在本领域公开,一种这样的方法包括在催化量的某些可溶性过渡金属化合物(例如钼,钨,钒的环烷酸盐)存在下有机氢过氧化物和烯烃的反应,该方法的某些缺点包括同时产生来自氢过氧化物的醇,回收可溶性的金属催化剂及该反应对水敏感。
克服了某些上述缺点的多相催化剂也已经被公开,USP №3,923,843请求保护一种烯类不饱和化合物的环氧化方法,包括在液相中,于催化剂存在下使该化合物和有机氢过氧化物反应,催化剂包括无机硅化合物,并且化学结合钛的氧化物或氢氧化物。该催化剂在使用前用有机硅烷化试剂处理,如实施例所表明,当和未处理成硅烷化形式的催化剂比较时,环氧化物的选择性从约3%增加到15%,两种类型催化剂的活性大约相同。
过氧化氢经常用来作为生产有机化学品的氧化剂,各种有机化合物都可以用过氧化氢氧化,例如烯烃可以使用这种试剂氧化为环氧化物(环氧乙烷)。
很多钛硅酸盐被报道用作氧化催化剂,例如C.B.Khouw等人公开了使用硅酸钛的烷烃和烯烃的催化氧化反应(“使用硅酸钛的烷烃和烯烃的催化氧化研究”,Journal of Catalysis 149,195-205(1994))。这种催化剂使用有机氢过氧化物作为氧化剂,在100℃以下用于选择性地氧化正辛烷。无水对于催化活性是必须的。
因此需要一种能够使用含水过氧化氢,而不使用有机氢过氧化物,以便提供安全有效地氧化有机化合物的方法。本发明满足了这种要求,并且克服了本技术领域存在的某些缺点。本发明的其它目的和优点参考本文其后的详细描述对于本领域的技术人员会是很明显的。
发明的概述本发明提供一种氧化有机化合物的方法,包括于催化有效量的不溶性催化剂存在下,在反应区域使可氧化的有机化合物和过氧化氢接触,催化剂包括二氧化硅和至少一种过氧化氢活化的金属氧化物,该催化剂用硅烷化试剂处理,其中被处理的催化剂的活性和未处理的催化剂比较至少提高了2倍。
在本发明的方法中,优选的有机化合物选自以下各组(a)环状烯烃或下式的烯烃R1R2C=CR3R4,其中R1,R2,R3和R4每个独立地是-H;烷基,其中烷基有1-16个碳原子;烷基芳基,其中烷基芳基有7-16个碳原子;环烷基,其中环烷基有6-10个碳原子;或烷基环烷基,其中烷基环烷基有7-16个碳原子;以及所述的烯烃任意地含有卤原子(例如Cl,Br,F和I);(b)下式的环酮
其中n是2-9的整数;(c)式C6H5R5的化合物,其中R5是-H,-OH,C1-C3直链饱和或不饱和烃基;-CO2H;-CN;-COCm,其中m是1-6的整数;-OCm,其中m是1-6的整数;NR6R7,其中R6和R7独立地是-H,C1-C3烷基;(d)下式的脂环族烃R8R9CH2,其中R8和R9一起形成链(-CH2-)p,其中p是4-11的整数;(e)下式的脂肪族烃CqH2q+2,其中q是1-20的整数;(f)下式的醇R10R11CHOH,其中R10和R11独立地是-H;烷基,其中烷基有1-16个碳原子;烷基芳基,其中烷基芳基有7-16个碳原子;环烷基,其中环烷基有6-10个碳原子;或其中的R10和R11一起形成含有4-11个-CH2-基团的环烷基,或有7-16个碳原子的烷基环烷基。
本发明还提供制备分子筛催化剂的方法,包括通过将催化剂和二乙氧基硅烷和钛酸乙酯的共聚物接触合成含有硅和钛的氧化物的催化剂,形成一种分子筛催化剂。
优选实施方案的详细说明过氧化氢活化的金属,例如包括银,钴,铯,镁,铁,铜,钼,钨,钒,钛,铬及它们的混合物,含有上述金属的金属硅酸盐能够用R.Neumann等人描述的同样方法制备(“金属氧化物(TiO2,MoO3,WO3)取代的硅酸盐干凝胶作为用过氧化氢氧化烃类的催化剂”,Journal of Catalysis166,pp206-217(1997))。
本发明优选的金属是四面体配位的钛,含有四面体配位的钛的金属硅酸盐包括以下分子筛结构硅酸盐-1(TS-1),硅酸盐-2(TS-2),浮石-β,ZSM-48和MCM-41的氧化硅类似物(见R.Murugavel和H.W.Roesky,“钛硅酸盐作为氧化催化剂在合成和应用方面的最新进展”,Angew.Chem.Int.Ed.Engl.,36,№.5,pp477-479(1997),钛硅酸盐,它们的合成,作为氧化催化剂应用的探讨)。
在一个实施方案中,结晶的硅酸钛被用作催化剂,多孔结晶硅酸钛(TS-1)的制备记载于USP №.4,410,501中,其内容作为本文的参考。TS-1相应于式xTiO2(1-x)SiO2,其中x在约0.0005到约0.04之间。TS-1显示出能够催化许多反应,包括以下选择性氧化反应芳香化合物水解反应,烷烃氧化和烯烃环氧化反应,氧化反应使用稀的(40%或更少)含水过氧化氢进行,反应一般在100℃或更低及大气压下进行。
本发明方法制备的某些分子筛催化剂的实例包括有MFI,MEL,M41S,MOR和BEA类型结构的材料,有M41S结构的材料在A.Corma,Chem.Rev.,97,pp.2373-2419(1997)中描述,特别是2386页。其它分子筛结构被W.M.Meier等人描述于“浮石结构类型图集”(“Atlasof Zeolite Structure Types”)4thed,published in Zeolites,17,№s.1/2(1996))中。
无定型的二氧化钛/二氧化硅共沉淀物(TiO2对SiO2的重量比为0.0005∶1和0.5∶1之间)也是上述氧化反应的催化剂。该材料可以买到或者用D.C.M.Dutoit等人所述的方法制备(“二氧化钛-二氧化硅混合氧化物”,Journal of Catalysis 164,pp433-439(1996))。
按照本发明,通过使用硅烷化试剂涂敷改性催化剂来改进催化剂的活性,具体地说,为了提高活性,可以用各种技术涂敷氧化催化剂。例如将催化剂样品暴露于大气中,并且在原硅酸四乙基酯(TEOS)中浸渍2小时,然后将样品过滤,于室温干燥过夜(样品然后在氮气流中于550℃加热3小时);前处理可以用一种或一种以上的含有至少选自硅,铝,硼和磷的一种元素的的化合物,大量沉淀在氧化催化剂的外表面上完成,至少沉淀0.05%重量的元素。
含硅的化合物是目前优选的用于硅烷化的涂敷剂,其它合适的硅烷化试剂(除TEOS以外)包括有机硅烷,有机硅胺和有机硅氮烷。合适的硅烷的实例包括氯三甲基硅烷((CH3)3SiCl),二氯二甲基硅烷((CH3)2SiCl2),溴氯二甲基硅烷((CH3)2SiBrCl),氯三乙基硅烷((C2H5)3SiCl)和氯二甲基苯基硅烷((CH3)2Si(C6H5)Cl)。合适的硅氮烷的实例包括1,2-二乙基二硅氮烷(C2H5SiH2NHSiH2C2H5),1,1,2,2-四甲基二硅氮烷((CH3)2SiHN HSiH (CH3)2),1,1,1,2,2,2-六甲基二硅氮烷((CH3)3SiNHSi(CH3)3),1,1,2,2-四乙基二硅氮烷((C2H5)2SiHNHSiH(C2H5)2)和1,2-异丙基二硅氮烷((CH3)2CHSiH2NHSiH2CH(CH3)2)。
优选的硅烷化试剂包括硅氮烷和N,O-双(三甲基甲硅烷基)-三氟乙酰胺(CF3C(OSi (CH3)3)=NSi(CH3)3)。当使用时,这两种试剂不像有机硅烷那样产生腐蚀性的卤化氢。
氧化催化剂的硅烷化可以用各种方法进行,包括上述的方法。例如可以在大约室温到大约450℃下将催化剂颗粒和液体硅烷化试剂混合,另外也可以将催化剂颗粒加热到约100℃至约450℃,然后和热的硅烷化试剂蒸气气流接触,硅烷化能够以分批的方式或半连续或连续的方法完成。
硅烷化试剂和催化剂表面反应所需的时间依赖于温度和使用的试剂,较低的温度需要较长的时间,一般从约0.1-48小时是足够的。
虽然对使用的硅烷化试剂的用量没有限制,按照实际情况,可以相信用量可以是全部催化剂组合物重量的约1%到约1000%。可以用硅烷化试剂处理催化剂一次或几次。
本发明的方法可以氧化各种有机化合物,优选的有机化合物如上述“发明的概述”中所举出。
本发明方法中使用的烯类可以是任何有至少一个乙烯基不饱和官能团(即碳-碳双键)的有机化合物,可以是环状的,支链的或直链的烯烃。烯烃和过氧化氢反应产生环氧化物(环氧乙烷)。烯烃也可以含有芳基如苯基,优选烯烃是含有2-20个碳原子的脂肪族化合物,烯烃中可以有多个双键,例如二烯烃,三烯烃和多个不饱和键底物,双键可以在烯烃的末端或中间位置,并且可以形成环状结构的一部分,如环己烯。另外合适的有机化合物的非限制性实例包括不饱和脂肪酸或其酯或齐聚的或聚合的不饱和化合物如聚丁二烯。
烯烃也可以任意含有以下官能团如卤化物,羧酸,醚,羟基,硫代,硝基,氰基,酮,酰基,酯基,氨基或酸酐。
优选的烯烃包括乙烯,丙烯,丁烯,丁二烯,戊烯,异戊烯和己烯。
烯烃的混合物也可以被环氧化,得到的环氧化物的混合物能够以混合物形式使用或者分离为各种环氧化物。
本发明方法特别优选的烯烃包括式R1R2C=CR3R4的烯烃,其中R1,R2,R3和R4每个独立地选自H,C1-C12直链,饱和或不饱和基团。
用于本发明方法的环酮包括环戊酮,环己酮,环酮用就地产生的过氧化氢处理产生内酯。例如环戊酮被转化为戊内酯,环己酮被转化为己内酯。在氨存在下环己酮被转化为环己酮肟。
式C6H5R5的化合物(其中R5选自“发明概述”中定义的基团)和过氧化氢反应产生苯酚,例如苯酚本身被转化为氢醌,甲苯被转化为邻苯二酚。
本发明方法中使用的式R8R9CH2(其中的R8和R9一形成选自(-CH2-)p的链,p是4-11的整数)的脂环烃包括环己烷和环十二烷,式R8R9CH2的脂环烃和过氧化氢反应产生酮和醇。例如环己烷被转化为环己醇和环己酮的混合物,环十二烷被转化为环十二醇和环十二酮的混合物。
本发明方法中使用的式CqH2q+2的脂肪族烃(其中q是1-20的整数)包括己烷和庚烷,式CqH2q+2的脂肪族烃和过氧化氢反应产生醇和酮。
式R10R11CHOH的醇(其中R10和R11如上述定义)包括2-丁醇,环己醇和环十二醇,这些醇分别被氧化成2-丁酮,环己酮和环十二酮。
在本发明的其它实施方案中,通过使下式的环酮(其中n是2-9的整数)
和过氧化氢及氨在液相中,于本发明的催化剂存在下进行反应,然后回收产品可以制备肟。
反应也可以在有机溶剂中进行,某些优选的有机溶剂是烃类如己烷,苯,二氯甲烷,乙腈,低级脂肪醇,酮和二恶烷,二甲基甲酰胺和二甲亚砜及它们的混合物。使用的优选的溶剂是反应的底物和产品均能够很好被溶解的溶剂。
反应一般在大约0℃到大约200℃进行,优选约25℃到约150℃,反应压力一般为约1大气压到约100大气压。
氧化产品通过常规技术从产品混合物中回收,例如分馏,萃取和重结晶。
无需进一步讨论,可以相信根据以上的描述,本领域的技术人员能够将本发明利用到更完美的程度。因此举出以下的实施例仅仅是为了阐明本发明,不以任何方式限制本发明的其它方面。除另有说明以外,所有百分比均是重量百分比。
实施例催化剂A的制备异丙氧基钛(28.4g)和异丙醇(IPA,30ml)混合,加入于IPA(10ml)中的乙酰基丙酮(10.01g),所得溶液被加热到回流1小时,然后冷却,真空下除去IPA,所得固体重新溶于IPA中,制备100ml,该溶液含有1摩尔钛。
一部分上述溶液(25.0ml)和四甲基原硅酸酯(TMOS,45.66ml)及IPA(44ml)混合,搅拌下往其中滴加浓盐酸溶液(2.4ml),水(29.2g)和IPA(30ml)。于室温搅拌该混合物5分钟,再加入IPA(168ml),于室温及搅拌下熟化胶状的混合物64小时,稍稍变稠。
溶胶-凝胶于40℃,3500psig(24.2MPa)下用超临界二氧化碳萃取5小时,所得飞扬的黄色粉末如下述煅烧400℃氮气中1小时,600℃空气中5小时。
催化剂A是X射线非晶的。催化剂A2的制备除了凝胶混合物熟化90小时以外,和制备催化剂A的方法相同。催化剂B的制备往催化剂A(0.508g)中加入N,O-双(三甲基甲硅烷基)三氟乙酰胺(即CF3C(OSi(CH3)3)=NSi(CH3)3或BSTFA;1.0g)和甲苯(7.96g)的混合物,室温搅拌混合物2小时,过滤,固体用甲苯洗涤,空气干燥。催化剂B2的制备往催化剂A(1.02g)中加入BSTFA(1.05g)和甲苯(7.87g)的混合物,室温搅拌浆状的混合物2小时,过滤,固体用甲苯洗涤,空气干燥。催化剂C的制备制备50%NaOH水溶液(9.066g),烘制的SiO2(20g)和H2O(98g)的均匀的浆状物,搅拌1/2小时,加入十二烷基三甲基铵溴化物(51.39g)于H2O(74.5g)中的溶液,搅拌混合物1小时,得到透明的胶,将该胶于特氟隆瓶子中于100℃煮5天,该物质在空气中如下述煅烧每分钟5℃升到250℃,每分钟2℃升到550℃,该温度下保持4小时,冷却。
所得固体有分子筛MCM-41的X-射线衍射图。
被煅烧的干燥的MCM-41(3.5g)于甲苯(75ml)中用0.427gTYZORGBATM(有机钛酸盐)处理。搅拌下,被处理的MCM-41甲苯浆状物加热回流过夜,冷却,过滤,用甲苯洗涤,干物质如下述煅烧每分钟5℃升到550℃,该温度下保持4小时,冷却。
在X-射线衍射(XRD)或紫外/可见光谱分析中没有明显的脱钛矿或其它TiO2相。催化剂D的制备往催化剂C(0.482g)中加入BSTFA(1.08g)和甲苯(8.97g)的混合物,室温搅拌浆状的混合物2小时,过滤,固体用甲苯洗涤,空气干燥。催化剂E的制备制备十六烷基三甲基铵溴化物(6.44g),25%四甲基氢氧化铵水溶液(26.98g)和H2O(324.2g)的溶液,于15分钟内滴加Gelest PSITI -019(二乙氧基硅烷-钛酸乙酯的共聚物;20.0g),室温搅拌混合物4天,过滤,洗涤,干燥的该物质表现出中孔材料的XRD,没有TiO2相。
如下述煅烧每分钟1℃升到550℃,该温度下保持4小时,冷却。催化剂F的制备往催化剂E(0.527g)中加入BSTFA(1.04g)和甲苯(8.94g)的混合物,室温搅拌混合物2小时,过滤,固体用甲苯洗涤,空气干燥。催化剂G的制备按照USP 4,410,501所述类似方法制备0.123g钛硅酸盐(titanosilicalite,Ti∶TiO2的重量比为1.9%),往其中加入BSTFA(0.486g)和甲苯(3.96g),室温搅拌2小时,过滤固体,用甲苯洗涤,空气干燥。
实施例1 1-辛烯的环氧化往催化剂B(50mg)中加入3%过氧化氢水溶液(1.09g)和1-辛烯(2.05g),室温搅拌混合物,24小时后GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率18%)。
实施例2 1-辛烯的环氧化往催化剂B2(98mg)中加入3%过氧化氢水溶液(1.03g)和1-辛烯(2.14g),室温搅拌混合物,24小时后GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率11%)。
实施例3 顺式环辛烯的环氧化往催化剂B2(91mg)中加入10%过氧化氢水溶液(1.05g)和顺式环辛烯(2.44g),室温搅拌混合物,24小时后GC分析表明存在环辛烯氧化物(以过氧化物计算产率33%)。
比较实施例A 1-辛烯的环氧化往催化剂A(41mg)中加入3%过氧化氢水溶液(1.02g)和1-辛烯(2.02g),室温搅拌混合物,24小时后GC分析表明有微量的1,2-环氧辛烷存在(以过氧化物计算产率小于0.2%)。
比较实施例B 1-辛烯的环氧化往催化剂A2(118mg)中加入3%过氧化氢水溶液(1.04g)和1-辛烯(2.11g),室温搅拌混合物,24小时后GC分析表明有微量的1,2-环氧辛烷存在(以过氧化物计算产率小于0.6%)。
比较实施例C 顺式环辛烯的环氧化往催化剂A2(100mg)中加入10%过氧化氢水溶液(1.01g)和顺式环辛烯(2.43g),室温搅拌混合物,24小时后GC分析表明没有生成环辛烯氧化物。
实施例4 1-辛烯的环氧化往催化剂D(46mg)中加入3%过氧化氢水溶液(1.02g)和1-辛烯(2.04g),室温搅拌混合物,24小时后GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率22%)。
比较实施例D 1-辛烯的环氧化往催化剂C(48mg)中加入3%过氧化氢水溶液(1.04g)和1-辛烯(2.07g),室温搅拌混合物,24小时后GC分析表明有微量的1,2-环氧辛烷存在(以过氧化物计算产率小于0.1%)。
实施例5 1-辛烯的环氧化往催化剂F(53mg)中加入3%过氧化氢水溶液(1.10g)和1-辛烯(2.11g),室温搅拌混合物,24小时后GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率25%)。
实施例6 1-辛烯的环氧化往催化剂G(0.102g)中加入1-辛烯(2.11g)和10wt%过氧化氢水溶液(1.02g)和,室温搅拌24小时后GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率23%)。
实施例7 顺式环辛烯的环氧化往催化剂G(硅烷化的TS-1,49mg)中加入10%过氧化氢水溶液(1.04g)和顺式环辛烯(2.21g),室温搅拌混合物,24小时后GC分析表明存在环辛烯氧化物(以过氧化物计算产率1%)。
比较实施例E 1-辛烯的环氧化往催化剂E(67mg)中加入3%过氧化氢水溶液(1.04g)和1-辛烯(2.05g),室温搅拌混合物,24小时后GC分析表明有微量的1,2-环氧辛烷存在(以过氧化物计算产率小于0.5%)。
比较实施例F 1-辛烯的环氧化往如上述催化剂G(硅烷化前)制备的0.101g钛硅酸盐(titanosilicalite)中加入1-辛烯(2.06g)和10wt%过氧化氢水溶液(1.05g),室温搅拌混合物24小时后,GC分析表明以90%的选择性存在1,2-环氧辛烷(以过氧化物计算产率6%)。
比较实施例G 顺式环辛烯的环氧化往催化剂G(硅烷化前,55mg)中加入10%过氧化氢水溶液(1.08g)和顺式环辛烯(2.63g),室温搅拌混合物,24小时后GC分析表明没有生成环辛烯氧化物。
实施例8用于实施例8-10中的钛前体是Gelest二乙氧基硅烷-钛酸乙酯共聚物(在Gelest目录中#=PSITI-019)[(C2H5O)2SiO][(C2H5O)2TiO],19.1-19.6% Si;2.1-2.3% Ti,原子比Si∶Ti约等于15)。中孔SiO2/TiO2的碱性合成将十六烷基三甲基铵溴化物(6.44g)溶解于四甲基氢氧化铵(26.98g)中,于激烈搅拌下滴加PSITI-019前体(20.0g),25℃搅拌混合物3天加17小时,过滤产品,用蒸馏水洗涤(1L),在空气中加热煅烧白色的干燥固体每分钟升温1℃到550℃,维持4小时,冷却。
用XDR在3.2nm处的峰证实长范围的中孔序列,UV/可见光谱表明存在游离的及低聚的Ti,红外960-1cm处的强吸收带帮助进一步表明有网状的Ti,样品中的高Ti含量(Si∶Ti=8)大概是因为存在低聚的Ti物质。
实施例9中孔SiO2/TiO2的酸性合成将十六烷基三甲基铵溴化物(3.22g)溶解于稀HCl中(36.6g浓盐酸加148.5g水),于激烈搅拌下滴加PSITI-019前体(10.0g),25℃搅拌混合物3天加17小时,过滤产品,用蒸馏水(1L)洗涤,在空气中加热煅烧白色的干燥固体每分钟升温1℃到550℃,维持4小时,冷却。
用XDR在45nm处的峰证实长范围的中孔序列,UV/可见光谱表明仅仅存在游离的Ti(205nm处的单吸收带),红外968cm-1处的吸收带帮助进一步表明有网状的Ti,元素分析表明Si∶Ti=264,比碱性合成得到的产品更高。
实施例10TS-1的合成四乙基原硅酸酯(15.4g)加入到PSITI-019前体(4.61g)中,于25℃及激烈搅拌下将40%的四丙基氢氧化铵水溶液(19.34g,TPAOH)滴加到清澈的烷氧化物的混合物中,不多于15分钟以后,混合物胶化为硬而脆的物质,通过加入其余的TPAOH将其粉碎并且分散,在约1小时中,在搅拌和加入水(140.5g)期间几乎所有的固体都被溶解。最后清澈的溶液被过滤到特氟隆的瓶子中,封闭,放入100℃烘箱中,5天加18小时后停止合成,过滤,洗涤,干燥的物质于520℃煅烧10小时。
X-射线衍射分析表明得到充分结晶的MFI结构,UV/可见光谱在206nm处的单光谱带表明四价Ti的存在,红外971cm-1处的吸收带进一步表明有网状的Ti。
虽然如上述记载了本发明特定的实施方案,本领域的技术人员应该明白,在不脱离本发明精神和实质内容的情况下,本发明可以有许多改进,替换或重组。作为本发明的范围,除了前述的说明书以外,参考以下的权利要求书。
权利要求
1.一种氧化有机化合物的方法,包括于催化有效量的不溶性催化剂存在下,在反应区域使可氧化的有机化合物和过氧化氢接触,催化剂包括二氧化硅和至少一种过氧化氢活化的金属氧化物,该催化剂用硅烷化试剂处理,其中被处理的催化剂的活性和未处理的催化剂比较至少提高了2倍。
2.按照权利要求1的方法,其中的有机化合物选自以下各组(a)环状烯烃或下式的烯烃R1R2C=CR3R4,其中R1,R2,R3和R4每个独立地是-H;烷基,其中烷基有1-16个碳原子;烷基芳基,其中烷基芳基有7-16个碳原子;环烷基,其中环烷基有6-10个碳原子;或烷基环烷基,其中烷基环烷基有7-16个碳原子;以及所述的烯烃可任意地含有卤原子,例如Cl,Br,F和I;(b)下式的环酮
其中n是2-9的整数;(c)式C6H5R5的化合物,其中R5是-H,-OH,C1-C3直链饱和或不饱和烃基;-CO2H;-CN;-COCm,其中m是1-6的整数;-OCm,其中m是1-6的整数;NR6R7,其中R6和R7独立地是-H或C1-C3烷基;(d)下式的脂环族烃R8R9CH2,其中R8和R9一起形成链(-CH2-)p,其中p是4-11的整数;(e)下式的脂肪族烃CqH2q+2,其中q是1-20的整数;(f)下式的醇R10R11CHOH,其中R10和R11独立地是-H;烷基,其中烷基有1-16个碳原子;烷基芳基,其中烷基芳基有7-16个碳原子;环烷基,其中环烷基有6-10个碳原子;或其中的R10和R11一起形成含有4-11个-CH2-基团的环烷基,或其中有7-16个碳原子的烷基环烷基。
3.按照权利要求1的方法,其中过氧化氢活化的金属选自银,钴,铯,镁,铁,铜,钼,钨,钒,钛,铬及它们的混合物。
4.按照权利要求1的方法,其中过氧化氢活化的金属是四面体配位的钛。
5.按照权利要求1的方法,其中的催化剂是结晶的硅酸钛。
6.按照权利要求1的方法,其中的硅烷化试剂选自有机硅烷,有机硅胺和有机硅氮烷。
7.按照权利要求1的方法,其中的硅烷化试剂是硅氮烷或N,O-双(三甲基甲硅烷基)-三氟乙酰胺。
8.按照权利要求1的方法,该方法在有机溶剂中进行。
9.制备分子筛催化剂的方法,包括通过将催化剂和二乙氧基硅烷和钛酸乙酯的共聚物接触合成含有硅和钛的氧化物的催化剂,形成一种分子筛催化剂。
10.按照权利要求9的方法,其中形成的分子筛催化剂选自有以下牌号的催化剂MFI,MEL,M41S,MOR和BEA。
全文摘要
公开了一种氧化有机化合物的方法,在含有二氧化硅-改性的二氧化钛/二氧化硅催化剂存在下,使用过氧化氢氧化可氧化的有机物。还公开了使用二乙氧基硅烷和钛酸乙酯的共聚物制备催化剂的方法。
文档编号B01J31/12GK1278808SQ98811049
公开日2001年1月3日 申请日期1998年11月12日 优先权日1997年11月14日
发明者P·R·辛格, G·P·特肖, 小J·N·文茨, K·R·奥莱瓦恩 申请人:杜邦药品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1