专利名称:从盐水溶液中回收有机碱的吸附方法
本申请是共同未决的、序号为08/291,635申请的后续部分。
本发明涉及从盐水溶液中回收胺、胺盐、胍、鈲盐及其它们的混合物的方法。更具体地讲,本发明涉及回收这类化合物的方法,即从由双酚和光气生成聚碳酸酯的界面缩聚反应或用多种邻苯二甲酰亚胺取代双酚盐的反应的副产物盐水溶液中回收这类化合物。
在生产聚碳酸酯的界面聚合中,双酚和苯酚链阻聚剂的混合物在界面聚合条件下、在有机溶剂存在下、以及在有效量的有机胺或胺盐或其混合物的催化剂存在下进行光气化。双酚作为碱金属盐存在于水相中,它与光气由溶于有机相的适宜催化剂催化光气化。适宜的有机溶剂包括诸如二氯甲烷、氯仿、四氯化碳、二氯乙烷、三氯乙烷、四氯乙烷、二氯丙烷和1,2-二氯乙烯之类的氯代脂族烃,诸如氯苯、邻二氯苯和多种氯甲苯之类的取代芳烃。最好是用氯代脂族烃,尤其是二氯甲烷。
用于这些反应的相转移催化剂的有效量为反应混合物中双酚或其盐摩尔数的0.05-10.00%(摩尔),推荐的相转移催化剂范围为大约0.1%至大约0.7%(摩尔)。使用助催化剂时,助催化剂的用量为大约加入混合物中的双酚摩尔数的0.001%至大约1.0%(摩尔)。
在光气化之前,可使用足够的碱金属氢氧化物,以将聚碳酸酯反应混合物的pH提高至10.5,以使某些双酚和链阻聚剂溶于水相中。水合碱金属氢氧化物或水合碱土金属氢氧化物可用来使光气化混合物的pH维持在大约7至大约12.5之间,最好是10-12。可以使用的某些碱金属氢氧化物和碱土金属氢氧化物是氢氧化钠、氢氧化钾和氢氧化钙。最好是用氢氧化钠和氢氧化钾,特别是氢氧化钾。
双酚的光气化可以在多种分批反应器或连续反应器中进行。这类反应器是例如分批或连续流动的搅拌釜反应器。包括的其它反应器是搅拌柱连续反应器和循环环式连续反应器。
在光气化反应期间及其终止时,水相与有机相的体积比的范围可以是0.2-1.1。反应温度的范围大约为15-50℃。使用推荐的诸如二氯甲烷之类的有机液体时,反应可在35-42℃回流进行。反应可以在大气压下进行,尽管需要时可以使用低于或高于一大气压的压力。
在光气化期间,混合物例如通过搅拌子或其它常规设备搅拌。光气化速率变化的范围可以为每分钟每摩尔双酚大约0.02-0.2摩尔光气。
根据所需的聚碳酸酯的分子量,使用的苯酚链阻聚剂的比例可以为双酚总摩尔数的1-8%(摩尔)。某些链阻聚剂是苯酚、叔丁基苯酚、对枯基苯酚和这些酚类的氯甲酸酯。
聚碳酸酯生成反应的水相含有来自既控制反应pH又为反应产物的双酚碱金属盐以及来自可溶性氯甲酸酯水解产物的碱金属盐。因此,该水相的特征为盐水,一般具有相当高的离子强度,通常至少为10%(重量)氯化钠。
在界面缩聚反应中用作催化剂的胺、胺盐或其混合物可以既溶于水相又溶于有机相。因此,将有机相在聚碳酸酯聚合物回收后按常规循环时,胺、胺盐或其混合物在催化剂或催化剂混合物的浓缩过程中可能耗尽。也就是说,使用的催化剂在两个液相中都有一定的溶解度。因此当生产进行时,胺或胺盐催化剂溶于有机相之外而溶于盐水相中。这导致不必要地丧失昂贵的催化剂组分。另外,胺或胺盐催化剂的出现使得盐水在胺或胺盐通过某些适宜的方法从盐水中提取后,才能适用于许多甚至包括简单的稀释和处理的其它用途,迄今为至一般的方法不是能量加强提取蒸汽蒸馏就是液-液提取。
聚醚酰亚胺制备中的一个步骤是在二羟基芳族化合物的碱金属盐和单体或聚合的硝基取代芳族化合物或卤代芳族化合物(一般为单邻苯二甲酰亚胺或双邻苯二甲酰亚胺)之间的、在甲苯等作为有机溶剂的有机体系中进行的无水取代反应。适宜的有机溶剂包括甲苯和氯苯。通常将相转移催化剂(典型的是卤化季铵或六取代卤化鈲)以相似的方式用于生成聚碳酸酯的反应中。进一步的处理包括一个用强碱水溶液洗涤的步骤,导致生成盐水副产物,它含有相转移催化剂和相当高浓度的至少一种诸如氯化钠、溴化钠或硝酸钠之类的盐。
美国专利4,297,220描述了包括与二乙烯基苯交联的苯乙烯聚合物的多种悬浮聚合物的制备,并且简短地建议将它们作为“有机流体的吸附剂”使用。相反地,美国专利4,729,834将这类聚合物与某些交联(甲基)丙烯酰胺有机化合物吸附剂进行比较。这些专利中的任何一个都没有涉及从高浓度的盐水溶液中取出有机碱。而且,4,729,834认为使用温度梯度是重要的,使得在较高温度下发生吸附而不是解吸。
因此,需要提供一种方法,从盐水溶液中取出胺、取代的鈲以及它们的盐和其混合物。也需要能够将其中的催化剂种类以能够作为催化剂进行循环和再使用的方式回收。
本发明提供一种方法,用来将选自氮碱和磷碱及其盐的化合物(下文有时总称为“有机碱”),通过将所述的化合物吸附到吸附树脂上,从具有高离子强度的水溶液中回收,藉此纯化所述化合物。用另一种水溶液将吸附的化合物从树脂上洗脱下来。更具体地讲,本发明提供将这类化合物或其混合物回收和循环的方法,这些化合物或其混合物在生产聚碳酸酯的界面缩聚反应中和/或在用酰亚胺取代双酚盐以生产单体或聚合的醚酰亚胺的反应中用作相转移催化剂。
其中一个方面,本发明是从水溶液中吸附有机碱的方法,该水溶液具有相当于5-40%(重量)氯化钠的离子强度并含有一种或多种所述的有机碱。吸附方法包括将所述的水溶液与非离子交换吸附剂聚合物树脂接触,藉此通过将其吸附到所述树脂上,使所述的水溶液在该有机碱的浓缩中贫化。
另一方面,本发明是将吸附于吸附性聚合物树脂的有机碱解吸的方法,包括用能有效地将所述有机碱从中除去的有效量的溶剂洗涤所述树脂,由此将所述有机碱溶于所述溶剂中。
再一方面,本发明既包括上述吸附步骤又包括解吸步骤的方法。
本发明优选用于一种或多种铵、胺盐、取代的鈲、取代的鈲盐或其混合物的吸附、解吸和回收。本发明更优选用于一种或多种单独存在或者作为混合物的所述有机碱的吸附、解吸和回收。本发明最优选用于其吸附、解吸和回收。
“胺盐”是指伯、仲、叔和季铵离子的离子盐,这些化合物和鈲盐是含氮化合物。可通过本发明回收的推荐化合物是叔铵和季铵以及六取代的鈲盐。这些优先是从催化剂的选择和用于上述反应的助催化剂中自然产生的。因此,根据具体的原材料和所需的产物以及诸如动力学、溶解度、位阻因素和聚合度之类的条件,使用不同的催化剂体系。在不同情况下,最好用一种催化剂体系可能优于另一体系。
用于这些反应的催化剂出现本发明减轻的生产管理的困难。高分子量胺及其盐除在生产中起催化剂的作用外,还倾向于起表面活性剂的作用,阻碍例如聚合物乳剂的分散,因此,一般不愿让它继续存在。当低分子量胺及其盐用作催化剂时,产生的有机铵盐的高溶解度使得大多数不能有效地从水溶液中分离铵化合物的物质严重损失。通过提供这类胺或胺盐的回收方法,可以更有利地应用推荐的低分子量胺或胺盐相转移催化剂或助催化剂,因为由水溶性引起的损失减到最小。
可用作相转移催化剂或助催化剂的某些盐是(R1)4Q+X-和(R1)3N+-(CH2)nN+-(R1)3(X-)2其中R1各自独立地是C1-10烷基,Q是氮或磷,X是卤素或-OR2而R2是H、C1-18烷基或C6-18芳基。诸如三乙胺之类的叔胺也起催化剂的作用。这些有机胺和有机膦以及它们的盐等适合于通过本发明方法从盐水溶液中回收。
同样适合的鈲盐包括具有下式的六取代化合物[(R3)2N]3C+X-其中R3是C1-6伯烷基或两个R3与连接氮原子一起形成饱和杂环基。这类化合物可以通过三步骤方法由具有通式(R3)2NH的仲胺制备。第一步是将所述仲胺光气化,生产四取代脲;第二步是将四取代脲进一步光气化,生成氯化三氯甲脒,也称为“Vilsmeier盐”;第三步是使Vilsmeier盐再与仲胺反应,产生六取代氯化鈲。
本发明方法最好使用迄今已公开的、在此并入作为参考的上述美国专利4,297,220中所述的作为有机流体的适宜吸附剂的非离子树脂。与该专利所述的、将有机流体相互分离的方法相反,本发明方法是从水合介质中选择性地将有机碱吸附于不含离子交换位点的树脂上。更具体地讲,本发明提供一个方法,其中从具有高离子强度的含水性介质中吸附有机碱,并且用含有低离子强度的水溶液洗涤树脂,回收有机碱。
本发明方法与上述美国专利中公开的吸附-解吸方法的区别在于,本吸附-解吸过程是通过离子强度而不是温度来推动的。因此,在吸附时不必使用比解吸更高的温度,尽管不排除有温度梯度的情况。
本方法在两个反应中有具体申请。第一是如所述的通过双酚A(即所知的2,2-双(4-羟苯基)丙烷)与光气的界面缩聚反应,其中在所述的界面过程中起相转移催化剂作用的是胺或胺盐或其混合物,通过本发明方法的回收再循环和再使用。第二是诸如双酚A二钠盐之类的双酚盐与诸如4-硝基-N-甲基邻苯二甲酰亚胺、4-氯-N-甲基邻苯二甲酰亚胺或1,3-双[N-(4-氯苯二甲酰亚氨基)](也称为2,2’-(1,3-亚苯基)双[5-氯-1H-异吲哚-1,3(2H-二酮)])之类的硝基取代酰亚胺或卤代酰亚胺以产生双酰亚胺或聚醚酰亚胺的反应。
在本发明方法中推荐使用的吸附剂是单烯不饱和单体和聚偏乙烯单体的悬浮共聚物。可以选择聚合条件,特别是选择溶剂和沉淀剂,以生产具有相当高比表面积以及有用的微多孔率的助催化剂。这种高比表面积连同微多孔率产生吸附位点较高的可达性,由此提供高质吸附剂。具有高比表面积的物质倾向于具有提供吸附推动力的表面功的功能。表面的化学组成一般影响优先吸附的分子类型。这种现象提供吸附纯化适宜底物的基础。上述助催化剂适用于有机相的纯化。
特别推荐的吸附剂是诸如苯乙烯、丙烯酸乙酯和甲基丙烯酸甲酯之类的芳族单体和/或丙烯酸系单体的高度交联的悬浮聚合物。一般通过加入诸如二乙烯基苯之类的二乙烯基共聚单体获得交联。推荐应用的二乙烯基共聚单体的比例有时可高达70-80%(摩尔)。这种一般类型的聚合物是商售的,例如Rohm & Haas生产的商品名为“XAD-4”和“XAD-7”的聚合物。
本发明包括一个方法,其中将含有有机碱并含有大约5-40%(重量)的如NaCl的溶解盐盐水,即将具有高离子强度的盐水与上述树脂接触。其它盐,典型的诸如硝酸钠之类的硝酸盐可基于摩尔对摩尔,代替所有或部分NaCl。
本发明的主要特征是高离子强度的所述盐水可用作将所述有机碱吸附到树脂上的推动力。另外,在吸附步骤期间水的上述应用可用作从树脂上解吸碱的推动力。
树脂一般出现在至少一个吸附柱中,盐水向下通过吸附柱。有机碱吸附于树脂上,产生的纯化盐水现在可以进行电解,以产生氯或其它卤素而无有害的氮三卤代化合物的生成,按生产用水或含有或不含有任何可能必需的盐配料的盐水进行稀释和安全处理或再循环。
用纯水或含有相当低盐含量即低于从盐水中将有机碱吸附到树脂上的离子强度的盐水洗涤吸附的树脂,解吸有机碱。洗涤可以是逆流,但一般最好是与吸附期间盐水通过的方向并流。树脂的洗涤过程使吸附的有机碱解吸,并再生树脂使其可再次使用。因此,本方法的一个实施例是一个循环方法,其中吸附有机碱,然后用水洗进行解吸,本方法也将树脂再生,以用于下一个吸附-解吸循环。
本发明包括有效地将溶于盐水中的有机碱吸附于聚合物树脂上的生产功能的多种组合和排列。例如,两个或多个吸附柱可以与适宜的转换阀同时使用,使得一个吸附柱以一种吸附模式运行时,一个或多个其它吸附柱以解吸和/或再生模式运行。这种生产构造的优点是允许连续生产而无需中断流至含树脂吸附柱的含盐水有机化合物流。使用流程的选择很大程度上取决于界面聚合或其它再生含盐水有机碱的源过程是否以分批模式或连续模式运行。在分批模式的情况下,从生产工程和经济的观点考虑,最好是单个的吸附反应器。相反,连续生产则需要容许连续地从盐水中除去有机污染物的并联吸附列。
我们也意识到在本方法中可以进行工艺上认可的修改,以适应从醚酰亚胺产物流中回收鈲盐。
根据用于合成反应的催化剂类型,本发明方法可用两个推荐实施例中的一个。一般用于界面生产或醚酰亚胺生产的相转移催化剂是胺盐或鈲盐。由于这些盐以可离子化形式或离子形式存在,它们在生产的不同加工流的有机相和水相之间的分配,往往与有机溶剂或水溶液的离子强度和溶于这些溶液的溶质有关。
相反,使用混合催化剂体系或二元催化剂体系(这些体系既利用有机季铵盐作为相转移催化剂又利用非质子化的叔胺作为助催化剂)时,更重要的是考虑与氢离子浓度即pH值有关的叔胺成分的溶解度。pH值大于7时,叔胺倾向于作为溶剂化的游离胺存在于水溶液中。当pH值范围为7-14时,有机叔胺的高亲脂特性提供吸附于吸附树脂上的推动力。因此,用于解吸回收吸附于吸附树脂上的混合催化剂的洗涤水pH应该低于7,即在酸性范围内。洗涤水溶液的酸性条件使吸附的叔胺胺质子化,将其转化为铵盐,由此使其更溶于水相。
与上述美国专利4,729,834公开的相反,通过提高解吸溶剂的温度可以方便地进行解吸。在水作为解吸溶剂的情况下,通过将溶剂温度从大于20℃提高到大于90℃提高季铵盐和吸附的叔胺的回收率。
因此,根据用于合成反应的催化剂类型,可使用两种吸附-解吸模式。第一种模式与pH无关,而第二种模式利用酸性水溶液洗涤或将吸附的助催化剂和相转移催化剂从吸附树脂上解吸。
以下实施的还原实例为本发明的说明。所有百分比都是以重量计算的。
实例1在内部高25cm、内径为2.7cm、体积为143.13cc的柱内加入97g“XAD-4”(含有大约70-80%(摩尔)二乙烯基苯单元的非离子交换吸附剂苯乙烯-二乙烯基苯悬浮共聚物)。柱子装有部分水,从柱顶加入树脂。柱子装满时,将水从柱底排出,以防溢流。用湿树脂装满柱子后,将柱子两端安装紧,以限制填充物的膨胀。
然后,在24℃用蠕动泵通过柱子抽掺杂560wppm氯化甲基三丁基铵(MTBA)的20%水溶液的合成盐水。将盐水以20ml/min的速率(每小时8.4倍柱体积或柱床体积的空间速度)抽过装有树脂的柱子。
监测柱洗脱液以确定吸附效率和吸附的完成。在大约6kg盐水通过柱时,观察到定义为在洗脱液中探测出1wppm相转移催化剂时的穿透。
实例2用掺杂280wppm MTBA的合成盐水重复实例1的步骤。在12kg盐水流过柱后,观察到穿透。
实例3用掺杂112wppm MTBA的合成盐水重复实例1的步骤。在28kg盐水流过柱后,观察到穿透。
实例4用含有13.5%盐浓度的合成盐水重复实例1的步骤。在6kg盐水流过柱后,观察到穿透。
实例5重复实例1的步骤,但合成盐水用商售双酚A界面聚合的水相的反应盐水替换,该反应盐水含有NaCl、低水平酚、二氯甲烷和碳酸盐以及掺杂560wppm MTBA,柱温为20℃。大约8kg盐水溶于流过柱后观察到穿透。
实例6实例5使用的柱子的再生,可通过停止盐水流并用去离子水逆流洗涤来完成。然后,柱子用不含催化剂的、含有1000wppm二氯甲烷(1g二氯甲烷/1000g盐水)的商售反应盐水进行洗脱。在16kg盐水流过柱子后,观察到穿透。二氯甲烷的吸附引起柱子的膨胀。
将掺杂560wppm MTBA的相似盐水通过柱子,在8kg盐水流过柱子后,观察到穿透。
实例7实例5使用的柱子再生后,使用同样的盐水,但另外加入1000wppm三乙胺。盐水溶液的pH大约为10.5。在3.4kg该双掺杂盐水流过柱子后,观察到MTBA的穿透。MTBA和三乙基胺都吸附到柱上。
实例8重复实例5的步骤,将额外的盐水通过柱子,监测洗脱液中MTBA的水平。结果列于下表。
盐水(kg)洗脱液MTBA(水平,wppm)81.1693.0210 11.711 13.912 79.113 14314 16315 23616 39517 42718 47619 45920 464实例9重复实例1的步骤,但用“XAD-7”(与“XAD-4”相似但含有甲基丙烯酸甲酯单元而非苯乙烯单元非离子交换吸附共聚物)填充柱子,合成盐水含有17.6%浓度的NaCl并掺杂480wppm MTBA。在2.8kg掺杂的盐水流过柱子后,观察到穿透。
实例10MTBA从实例1-6使用的XAD-4树脂中的回收在所有情况下几乎相同。用纯水在20℃、以流速为4ml/min(空间速度为1.58ml/hr)、逆流通过含树脂的柱子。在洗涤期间,从柱上洗出的头70g水中观察到少量的MTBA。当洗涤水从柱子洗出时,MTBA的水平迅速升至大约30,000wppm的最大值。使用1,000g洗涤水可以回收大约90%吸附于柱上的MTBA。在1,000g洗涤水通过柱子后,洗涤水中MTBA的水平大约为1,000wppm。
在80℃重复水洗涤,从柱上洗出的洗涤水中MTBA的峰值是46,000wppm。另外,在1,000g洗涤水通过柱子后,洗涤水中MTBA的量为大约1000wppm。
实例11在按实例9中制备的几乎饱和的树脂上进行实例10的解吸步骤。洗涤水中MTBA的峰浓度按洗涤水温度的函数变化。在20℃MTBA峰浓度是50,000wppm,而在80℃,为141,000wppm。
实例12用实例5-6的树脂重复实例10的解吸步骤。MTBA以与实例11观察到的相似的方式进行解吸,但当二氯甲烷也解吸时,树脂收缩。
实例13以正常解吸相同的方式,从实例9含有加入的三乙胺的吸附树脂上,用纯水回收MTBA。然而,随后用也含560wppm MTBA的盐水吸附不能处理预期的8kg盐水。纯水洗涤明显不能除去所有吸附的三乙胺。用pH低于大约5.5的微酸性水溶液洗涤确实除去残余的吸附三乙胺。在pH高于大约9.5时,游离三乙基胺可很好地吸附于树脂上。
实例14用纯水以流速为2ml/min(空间速度为0.79ml/cc/hr)洗涤实例11使用的树脂。观察到的MTBA的峰浓度为11,000wppm。用200ml水洗涤,基本上回收所有吸附的MTBA。
总结实例1-14实例1-3证明穿透取决于盐水中出现的季铵盐的浓度,暗示树脂固定的吸附容量。实例4证明,季铵盐在树脂上的吸附与盐水的盐浓度无关。实例5-6表明,当诸如二氯甲烷的其它有机物吸附于柱上时,季铵盐的吸附并不因此受抑制。实例7表明,在盐水中加入其它氮化合物按比率降低树脂吸附季铵盐的能力。实例8证明,甚至在穿透后,树脂仍保持吸附能力。实例9证明使用另一树脂的吸附。实例10证明逆流解吸。实例11证明,随着洗涤水温度的增加,解吸效率提高。实例12证明,因诸如二氯甲烷之类的有机化合物的吸附产生的树脂膨胀并不干扰解吸。实例13证明,通过使用酸性水洗涤解吸可方便地回收胺盐和叔胺混合物。实例14证明使用另一树脂的解吸。
实例15与实例1相似的、用相同树脂填充的柱子以相同的方式,用来将溴化六乙基鈲从含有914g水、247g硝酸钠、9.14g 50%氢氧化钠水溶液、9.08g溴化六乙基鈲和700μl甲苯的合成盐水中除去。然后在20℃以20ml/mm导入1升合成盐水。随后在不同阶段和不同稀释率,用甲基橙-硼酸显示剂对洗出液进行量热分析。在600ml观察到穿透。在20℃用去离子水进行解吸。
权利要求
1.从具有相当于5-40%(重量)氯化钠强度水平和含有一种以上有机碱的水溶液中吸附所述有机碱的方法,包括将所述水溶液与非离子交换吸附性聚合物树脂接触,藉此通过将其吸附于所述树脂上,使所述水溶液在所述有机碱的浓缩中贫化。
2.权利要求1的方法,其中所述有机碱包括胺。
3.权利要求1的方法,其中所述有机碱包括胺盐。
4.权利要求1的方法,其中所述有机碱包括胺与胺盐的混合物。
5.权利要求1的方法,其中所述有机碱选自叔铵盐和季铵盐。
6.权利要求1的方法,其中所述有机碱含有鈲盐。
7.权利要求1的方法,其中所述树脂是芳族单体或丙烯酸系单体与二乙烯基共聚单体的悬浮聚合物,使用的所述二乙烯基共聚单体的比例为大约70-80%(摩尔)。
8.将吸附于非离子交换吸附性聚合物树脂上的有机碱解吸的方法,包括用大量的可有效地从中移出所述有机碱的溶剂洗涤所述树脂,从而使所述有机碱溶于所述溶剂中。
9.权利要求8的方法,其中溶剂是水。
10.权利要求9的方法,其中所述有机碱包括胺。
11.权利要求9的方法,其中所述有机碱包括胺盐。
12.权利要求9的方法,其中所述有机碱包括胺与胺盐的混合物。
13.权利要求9的方法,其中所述有机碱选自叔铵盐和季铵盐。
14.权利要求9的方法,其中所述有机碱包括鈲盐。
15.权利要求9的方法,其中所述树脂是芳族单体或丙烯酸系单体与二乙烯基共聚单体的悬浮聚合物,使用的所述二乙烯基共聚单体的比例为大约70-80%(摩尔)。
16.有机碱的吸附和解吸方法,包括从具有相当于5-40%(重量)氯化钠强度水平并含有一种或多种所述的有机碱的水溶液中,通过将所述水溶液与非离子交换吸附性聚合物树脂接触吸附有机碱,藉此通过将其吸附到所述树脂上,使所述水溶液在所述有机碱的浓缩中贫化;和通过用大量的可从中有效地移出所述有机碱的溶剂洗涤所述树脂,由此将所述有机碱溶于所述溶剂中而将所述有机碱解吸。
17.权利要求16的方法,其中溶剂是水。
18.权利要求17的方法,其中所述有机碱包括胺。
19.权利要求17的方法,其中所述有机碱包括胺盐。
20.权利要求17的方法,其中所述有机碱包括胺和胺盐的混合物。
21.权利要求17的方法,其中所述有机碱选自叔铵盐和季铵盐。
22.权利要求17的方法,其中所述有机碱包括鈲盐。
23.权利要求17的方法,其中所述树脂是芳族单体或丙烯酸系单体与二乙烯基共聚单体的悬浮聚合物,使用的所述二乙烯基共聚单体的比例为大约70-80%(摩尔)。
全文摘要
本发明的吸附方法使用诸如苯乙烯之类的单烯不饱和单体和诸如二乙烯基苯之类的聚亚乙烯基单体的非离子交换吸附性聚合物,从高离子强度的水溶液中吸附诸如胺、胺盐和鈲盐之类的有机碱。可以用解吸方法来回收所述有机碱,而且所述吸附性树脂可以再生。
文档编号B01D15/04GK1170699SQ97109750
公开日1998年1月21日 申请日期1997年4月28日 优先权日1996年5月1日
发明者P·D·费尔普斯, J·J·卡林吉, L·I·弗芬瓦斯, E·P·波登, D·L·兰赛 申请人:通用电气公司