氮氟掺杂钛酸钡光催化剂及其在可见光下降解有机染料中的应用的利记博彩app

文档序号:11875962阅读:697来源:国知局
氮氟掺杂钛酸钡光催化剂及其在可见光下降解有机染料中的应用的利记博彩app与工艺
本发明涉及钛酸钡光催化剂及其应用领域,具体地涉及一种氮或/和氟掺杂钛酸钡光催化剂的制备及其在有效利用可见光降解有机染料中的应用。
背景技术
:近年来,我国染料工业快速稳步发展。据不完全统计,我国每天排放的印染废水约为300~400万吨,年排放量约为6.5亿吨。同发达国家相比,我国纺织印染业的单位耗水量是发达国家的1.5~2.0倍,单位排污总量是发达国家的1.2~1.8倍。随着水资源危机的加剧,如何合理而有效地处理废水,使其变废为宝,是环境污染控制及综合利用能源的重要研究课题。BaTiO3是一种半导体材料,具有较大的禁带宽度(3.3eV),可以在很宽的范围内调节其介电性能和导电性能,以电、磁、光、热和力学等性能及其相互转换为主要特征。由于半导体能带的不连续性,电子(e-)和空穴(h+)的寿命较长,它们能够在电场作用下或通过扩散方式运动,与吸附在BaTiO3表面上的H2O和O2等光电子俘获剂发生作用,形成·O2-、·O-,经过质子化作用后成为氢氧自由基(·OH),而空穴(h+)则将吸附在BaTiO3表面的OH-和H2O氧化成具有强氧化性的·OH。反应生成的原子氧、·OH都有很强的化学活性,使有机污染物氧化分解。同时空穴(h+)本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解。但在实际应用中存在以下缺点:(1)光生载流子的复合率高,量子效率低,影响BaTiO3光催化效率;(2)难以处理量大且浓度高的废水和废气,难以实现光催化分解水制氢的产业化等。技术实现要素:本发明的目的是提供一种氮或/和氟掺杂钛酸钡光催化剂,通过非金属元素掺杂改性之后,非金属元素取代氧空位,进而使钛酸钡的禁带宽度变窄,从而改善钛酸钡的光催化活性,有效地拓宽光谱响应范围。本发明的另一目的是提供氮/氟掺杂钛酸钡光催化剂在可见光作用下,有效降解有机染料的方法。本发明采用的技术方案是:氮氟掺杂钛酸钡光催化剂,制备方法如下:依次将二氧化钛、氢氧化钡和水置于微波消解罐中,然后加入氨水或/和氢氟酸,超声分散,密闭消解罐,置于微波消解仪中,于压力0.5-1.5MPa,微波功率100-300W下,反应10-40min,自然冷却到室温,过滤,沉淀洗涤至中性,干燥,得到氮氟掺杂钛酸钡光催化剂。优选的,上述的氮氟掺杂钛酸钡光催化剂,氮和氟的掺杂量为:N与Ti的摩尔比为0.125%~1.000%,F与Ti的摩尔比为0.125%~1.000%。更优选的,N与Ti的摩尔比为0.500%,F与Ti的摩尔比为0.500%。上述的氮氟掺杂钛酸钡光催化剂在可见光下降解有机染料中的应用。方法如下:1)调节有机染料的初始浓度为5.0~25.0mg/L;优选的,调节有机染料的浓度为10.0mg/L;2)加入上述的氮氟掺杂钛酸钡光催化剂0.5~2.5g/L;优选的,加入量为2.0g/L;3)可见光功率为105~315W,照射时间为2.0~10.0h;优选的,可见光功率为315W,照射时间为6.0h。本发明的有益效果是:本发明对BaTiO3进行了氮或/和氟掺杂改性,采用微波水热合成法制备了N-BaTiO3、F-BaTiO3、N-F-BaTiO3纳米粒子催化剂,通过氮氟掺杂改性显著地提高了BaTiO3催化降解有机染料的降解率。从而改善光催化性能,具有很好的应用前景,促进光催化技术的发展和应用。附图说明图1是实施例1制备的氮氟共掺杂钛酸钡光催化剂的XRD图。图2是不同条件下酸性橙II溶液的UV-vis光谱。具体实施方式实施例1氮氟掺杂钛酸钡光催化剂(一)氮掺杂钛酸钡光催化剂N-BaTiO3称取0.6311g二氧化钛和2.4921g八水合氢氧化钡后,置于微波消解罐中,再加入10mL去离子水,Ba/Ti的摩尔比为1。加入2.5mL浓度为0.0158mol/L的氨水(N与Ti的摩尔比为0.500%),在超声波清洗器中超声1min,将微波消解罐密闭,放置于微波消解仪中,在压力1.5MPa,功率300W下,微波照射30min,进行合成反应。自然冷却到室温,将沉淀物用去离子水洗去表面杂质,在中等转速下用离心机分离,去除上清液后,沉淀放入真空烘箱中,在70℃下干燥12h,得到N-BaTiO3颗粒。(二)氟掺杂钛酸钡光催化剂F-BaTiO3称取0.6311g二氧化钛和2.4921g八水合氢氧化钡后,置于微波消解罐中,再加入10mL去离子水,Ba/Ti的摩尔比为1。之后加入2.5mL浓度为0.0158mol/L的氢氟酸(F与Ti的摩尔比为0.500%),在超声波清洗器中超声1min,将微波消解罐密闭,放置于微波消解仪中,在压力1.5MPa,功率300W下,微波照射30min,进行合成反应。合成反应完成后,自然冷却到室温,将沉淀物用去离子水洗去表面杂质,在中等转速下用离心机分离,去除上清液后,放入真空烘箱中,最后在70℃下干燥12h,得到F-BaTiO3颗粒。(三)氮氟共掺杂钛酸钡光催化剂N-F-BaTiO3称取0.6311g二氧化钛和2.4921g八水合氢氧化钡后,置于微波消解罐中,再加入10mL去离子水,Ba/Ti的摩尔比为1。加入2.5mL浓度为0.0158mol/L的氨水和2.5mL浓度为0.0158mol/L的氢氟酸(N与Ti的摩尔比为0.500%,F与Ti的摩尔比为0.500%),在超声波清洗器中超声1min,将微波消解罐密闭,放置于微波消解仪中,在压力1.5MPa,功率300W下,微波照射30min,进行合成反应。合成反应完成后,自然冷却到室温,将沉淀物用去离子水洗去表面杂质,在中等转速下用离心机分离,去除上清液后,放入真空烘箱中,最后在70℃下干燥12h,得到N-F-BaTiO3颗粒图1为制备的N-BaTiO3,F-BaTiO3和N-F-BaTiO3的XRD谱图。从图中可以看出,2θ≈45°处明显地出现了没有分裂的{200}的特征峰,与标准的立方形钙钛矿一致,这说明BaTiO3的主要晶型为立方相。XRD图中氮、氟的存在对BaTiO3的晶格结构没有产生影响。BaTiO3的衍射峰没有发生异常的现象,所以含量较低的氮和氟元素单掺杂和共掺杂对BaTiO3的晶型结构都没有太大影响。通过对XRD图谱分析处理后,得到制备的N-BaTiO3,F-BaTiO3,N-F-BaTiO3的晶粒尺寸分别为17.84,18.63和14.22nm,N-F-BaTiO3晶粒尺寸最小,因此,通过微波水热制备的N-F-BaTiO3催化活性较高。实施例2氮氟掺杂钛酸钡光催化剂在降解有机染料中的应用以酸性橙II为目标污染物做降解实验。方法如下:调节酸性橙II溶液初始浓度为10.0mg/L,催化剂加入量为2.0g/L,可见光功率为315W,可见光照射时间为4.0h。(一)不同催化剂的影响以实施例1制备的N-BaTiO3,F-BaTiO3,N-F-BaTiO3为催化剂,在不同条件下的UV-vis光谱见图2,降解率见表1。表1由表1可见,当可见光与催化剂结合时,N-F-BaTiO3表现出很高的催化活性。说明在催化剂结合可见光照射下,酸性橙II大幅度降解,酸性橙II的苯环、萘环和偶氮键同步被降解。由图2可知,不同条件下BaTiO3,N-BaTiO3,F-BaTiO3和N-F-BaTiO3纳米粒子催化剂在可见光照射下降解酸性橙II溶液的降解效果。通常情况下,酸性橙II溶液有三个主要的吸收峰,在484nm、310nm和230nm处,分别对应着酸性橙II分子中的偶氮键,萘环和苯环。从图2中可知,单独光照下酸性橙II溶液4h后,吸光度只有微弱减小,降解率为2.9%,图2中曲线c–f显示吸附率由小到大为:BaTiO3<F-BaTiO3<N-BaTiO3<N-F-BaTiO3。如图2中曲线g–j,484nm、310nm和230nm处的峰都大幅度下降,可看出酸性橙II分子中的偶氮键、萘环和苯环都逐渐被降解。降解顺序由大到小为:N-F-BaTiO3>N-BaTiO3>F-BaTiO3>BaTiO3。因此,在可见光和催化剂共同作用下,酸性橙II溶液能够被降解。N-F-BaTiO3纳米粒子催化剂结合可见光的降解效果最好。(二)催化剂中N,F/Ti摩尔比对降解率的影响方法同实施例1,只是改变N,F/Ti摩尔比,降解率如表2。表2N,F/Ti摩尔比(%)N-BaTiO3F-BaTiO3N-F-BaTiO30.12569.95%70.30%70.98%0.2578.77%77.57%83.99%0.37579.88%80.31%84.85%0.5083.58%82.12%86.31%0.62573.72%72.61%83.74%0.7569.87%70.21%82.37%1.0069.35%64.21%81.60%由表2可知,改变氮和氟加入量,使氮氟与Ti的摩尔比为0.125%-1.000%。对于三种催化剂而言,随着N,F与Ti的摩尔比从0变化到0.500%时,酸性橙II的降解率逐渐升高,从0.500%变化到1.000%时,酸性橙II的降解率逐渐降低,由此可见N,F与Ti的摩尔比为0.500%时,酸性橙II的光催化效果最好,降解率达86%。说明N和F掺杂量的改变可以对钛酸钡的光催化活性引起变化。当掺杂过量或掺杂量不够时都会降低光催化活性。而且钛酸钡的粒径大小也会因掺杂浓度的大小而发生变化。综上所述,本发明优选氮和氟的最佳掺杂量为0.500%。(三)不同微波水热合成压力下制备的催化剂对降解率的影响方法同实施例1,只是改变微波水热合成压力,降解率如表3。表3微波水热合成压力N-BaTiO3F-BaTiO3N-F-BaTiO30.5MPa66.96%61.57%79.83%1.0MPa71.13%68.17%81.03%1.5MPa83.58%82.12%86.31%由表3可以看出,当微波水热合成压力为1.5MPa时,三种催化剂中N,F-BaTiO3催化剂的光催化活性最高,本发明优选1.5MPa作为催化剂的最佳合成压力。(四)不同微波水热合成时间制备的催化剂对降解率的影响方法同实施例1,只是改变微波水热合成时间,降解率见表4。表4微波水热合成时间N-BaTiO3F-BaTiO3N-F-BaTiO310min54.96%75.00%57.91%20min76.00%74.26%80.52%30min83.58%82.12%86.31%40min80.87%79.48%82.96%由表4可以看出,微波水热合成时间从10min变化到30min时,酸性橙II的降解率增大。再延长时间到40min,酸性橙II的降解率开始变小。结果表明,微波水热合成时间为30min时,三种催化剂的光催化活性最好。三种催化剂中N-F-BaTiO3催化剂的光催化活性最高,本发明优选的最佳微波水热合成时间为30min。实施例3降解条件对降解率的影响以实施例1制备的N-BaTiO3,F-BaTiO3,N-F-BaTiO3为催化剂,以酸性橙II为目标污染物做降解实验。方法如下:调节酸性橙II溶液初始浓度为10.0mg/L,催化剂加入量为2.0g/L,可见光功率为315W,可见光照射时间为6.0h。(一)光照时间对降解率的影响其它条件同上,降解时间为2-10h,降解率如表5。表5照射时间BaTiO3N-BaTiO3F-BaTiO3N-F-BaTiO32h21.17%27.37%23.36%38.69%4h51.13%58.39%57.30%69.71%6h69.52%83.58%82.12%86.31%8h75.68%87.96%85.77%94.17%10h81.85%94.71%92.88%100%由表5可以看出,BaTiO3、N-BaTiO3、F-BaTiO3和N-F-BaTiO3催化剂结合可见光降解降解酸性橙II溶液。照射时间延长,酸性橙II的降解率也随之增大,当N-F-BaTiO3为催化剂时,降解10.0h时,酸性橙II完全降解。而采用同样的条件,以BaTiO3、N-BaTiO3和F-BaTiO3纳米粒子作为催化剂,其降解率分别为81.85%、94.71%和92.88%。结果表明N-F-BaTiO3的催化活性最好。(二)初始浓度对降解率的影响其它条件同上,改变酸性橙II的初始浓度为5-25mg/L,降解率见表6。表6酸性橙II初始浓度N-BaTiO3F-BaTiO3N-F-BaTiO35mg/L100%100%100%10mg/L83.58%82.12%86.31%15mg/L51.98%34.86%59.05%20mg/L41.34%31.83%49.77%25mg/L39.32%29.61%42.86%由表6,初始浓度变化范围是5mg/L到25mg/L,使用N-F-BaTiO3对初始浓度较低的酸性橙II光照降解效果更好。因为初始浓度较低时有利于酸性橙II分子与催化剂充分接触,从而有利于降解。而酸性橙II浓度过高时,阻碍了催化剂对光的吸收,从而影响降解效果。但综合考虑在实际工作中的情况,本发明优选10mg/L作为酸性橙II溶液的初始浓度。(三)催化剂的加入量对降解率的影响其它条件同上,改变催化剂的加入量,降解率见表7。表7由表7可以看出,在可见光照射下,随着三种催化剂投加量的增加,酸性橙II溶液的降解率逐渐增大,N-F-BaTiO3对酸性橙II分子的降解效果要比N-BaTiO3和F-BaTiO3好。但当催化剂的加入量过大,降解率反而下降,并且浪费催化剂。所以本发明优选2.0g/L作为本实验的催化剂投加量。(四)可见光功率对降解率的影响其它条件同上,改变可见光功率,降解率见表8。表8可见光功率N-BaTiO3F-BaTiO3N-F-BaTiO3105W38.77%29.3%44.74%210W61.75%41.98%68.6%315W83.58%82.12%86.21%由表8,功率从105W增加到315W,酸性橙II的降解率也逐渐增大。功率越大,催化剂吸收的光强越大,产生的羟基自由基越多,降解染料的能力就越强。另外,使用N,F-BaTiO3纳米粒子催化剂,光催化降解酸性橙II的降解率始终比N-BaTiO3和F-BaTiO3的高。实施例4降解不同有机染料以实施例1制备的N-F-BaTiO3为催化剂,方法如下:调节有机染料的初始浓度为10.0mg/L,催化剂加入量为2.0g/L,可见光功率为315W,可见光照射时间为10.0h,降解率如表9。表9酸性橙II甲基橙偶氮品红甲基对硫磷双酚A100%58.53%66.52%73.46%40.38%由表9可以看出N-F-BaTiO3催化剂分对五种有机污染物降解程度不一,随着光照延长,降解率都增加。由于化学成分、分子结构的不同,五种有机污染物降解顺序分别是酸性橙II>甲基对硫磷>偶氮品红>甲基橙>双酚A。结果表明,N-F-BaTiO3可以降解结构不同的农药、染料和环境内分泌干扰物,而且降解效果明显,为N-F-BaTiO3光催化剂投入到实际应用中奠定了理论基础。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1