专利名称:核-壳结构的钆钇锑基复合磁性颗粒光催化剂、制备及应用的利记博彩app
技术领域:
本发明涉及一种新型光催化剂、制备及应用,尤其粉末催化材料Y3_xGdxSb07(0.5 ^ χ ^ 1)及“磁性颗粒核-光催化剂壳”结构的 Y -Fe2O3-Y3^GdxSbO7 (0. 5 彡 χ 彡 1)(光催化剂壳)、SiO2-Y3^xGdxSbO7 (0. 5 彡 χ 彡 1)、 MnO-Y3^xGdxSbO7 (0. 5彡χ彡1),制备工艺,经光催化去除水体中的有机污染物的应用,及光催化分解水制取氢气的应用。
背景技术:
在水体环境中,难于生物降解的有机污染物的处理一直是水处理领域中的难点和热点课题。难于生物降解的有机污染物对人体的健康有极大的危害,对生态环境拥有巨大的破坏作用,因此应该寻找优良的技术及工艺去除水体中的这类污染物。由于常规生化处理方法对这类物质的去除效果差或基本无处理效果,必须采用光催化高级氧化技术及新型光催化材料对其有针对性的去除。进而导致水中难降解性有机物的新型高级氧化处理技术的开发研究成为目前国际环境工程领域的热点和前沿课题。此外,采用低廉的成本制备新型洁净的能源氢气也是目前的热点课题,基于此,研制能够利用太阳能且具有可见光相应的新型光催化材料也迫在眉睫。新型半导体光催化材料及光催化高级氧化技术是各国科学家们公认的处理水中难降解性有机物最有效、最有市场前景的催化材料和技术工艺,利用新型半导体光催化材料及光催化高级氧化技术可以高效率地降解水体中的难降解性有机污染物,光催化高级氧化技术在难生物降解性有机物的矿化分解等方面比电催化、湿式催化氧化技术具有明显的优点,此外光催化高级氧化技术及半导体光催化材料也是目前分解水制取氢气较廉价和最环保的技术和催化材料。但上述光催化技术及半导体粉末催化材料在去除水体中有机污染物方面与分解水制取氢气方面尚未工业化,主要存在如下两个问题(1)悬浮体系光催化体系光催化效率高,存在催化剂后处理问题,如果将光催化剂固定在玻璃等材料上可以解决光催化剂的分离回收问题,但其光催化效率却明显低于悬浮体系;(2) 二氧化钛仅能吸收紫外光,在可见光范围没有响应,对太阳光的利用率低),而太阳光谱中紫外光部分只占不到5 %,而波长为400-750nm的可见光则占太阳光谱的43 %,如果能将太阳光中的紫外光波段和可见光波段同时充分利用起来,光量子效率将会得到很大提高。因此,在保证较高的光催化效率的前提下解决光催化剂的回收和量子效率问题成了光催化去除水体中有机污染物及光催化分解水制取氢气工业化应用的关键。目前,提高光催化剂的光利用率主要有两个方向。一是二氧化钛可见光化,如N、 s、c等非金属元素部分取代二氧化钛中的氧元素,能够降低半导体光催化材料的带隙能,扩展了其光响应范围,在一定程度上提高了光量子效率;二是研究开发高效的可见光光催化材料。近年来,科学家们开展了探索新型可见光光催化材料的研究工作,取得了很多成果 采用Bi12GeO^1粉末能有效降解甲基橙等有机物;采用Co3CVBiVO4可以降解苯酚;采用Tii3N5粒子可以降解亚甲基蓝染料;采用Na2Ta2O6可以降解刚果红染料;采用Bi2GaTaO7可以降解亚甲基蓝染料;采用Ma9NiaiTaO4和可见光可以分解水制取氢气。付希贤制备的LaFe03、 LaFe1^xCuxO3 (x = 0. 02,0. 05)具有较小的带隙,可以有效利用可见光对水相中的有机物进行光催化降解。邹志刚等人成功地合成了 CaBi2O4等新型光催化材料,利用CaBi2O4等新型光催化材料和可见光可以有效地降解水和空气中的甲醛、乙醛、亚甲基蓝和H2S等有害物。 朱永法、赵进才等利用自制的新型材料(如Bi2WO6等)快速有效地降解了水相中罗丹明B, 其效果较传统方法有大幅度的提高。栾景飞课题组首次成功制备了 Ga2BiTaO7粉体光催化降解水体中亚甲基蓝染料,140分钟后亚甲基蓝被完全降解。因此,扩大光催化材料的光响应范围是提高光催化量子效率的一个有效方法。目前所报道的可见光光催化材料多是粉未状,在悬浮体系中有很好的光催化活性,因此开发新型的粉末状光催化材料去除水体中的有机污染物或分解水制取氢气不但能产生显著的经济效益,而且还能产生巨大的环境效益和社会效益。此外,为了解决悬浮体系中粉末状光催化材料的二次污染问题,急需制备核壳状粉末状光催化材料,目的旨在提高核壳状粉末状光催化材料的回收率,同时也保证核壳状粉末状光催化材料拥有高的光催化量子效率。
发明内容
本发明的目的是提出一种粉末催化材料Y3_xGdxSb07(0. 5彡χ彡1)及制备工艺路线及方法、性能表征及应用。以及提出一种“磁性颗粒核-光催化剂壳”结构的Y -Fe2O3 (铁磁性颗粒核)_Y3-xGdxSb07 (0. 5彡χ彡1)(光催化剂壳)、 SiO2 (顺磁性颗粒核)-Y3^xGdxSbO7 (0. 5彡χ彡1)(光催化剂壳)、MnO (反铁磁性颗粒核)-Y3_xGdxSb07(0. 5彡χ彡1)(光催化剂壳)制备工艺、性能表征及应用。本发明的技术方案是粉末催化材料,如下的结构式Y3-xGdxSb07 (0. 5 < χ < 1),粉末的粒径为0. 04-0. 32微米。核-壳结构的催化材料、-Fe2O3 (铁磁性颗粒核)_Y3_xGdxSb07 (0. 5彡χ彡1)(光催化剂壳)、SiA (顺磁性颗粒核)-Y3-xGdxSb07 (0. 5 ^ X ^ 1)(光催化剂壳)、MnO (反铁磁性颗粒核)-Y3^xGdxSbO7 (0. 5彡χ彡1)(光催化剂壳)。Y -Fe2O3^SiO2和MnO的粒径为0. 06-2 微米,Y3^xGdxSbO7 (0. 5彡χ彡1)包裹核后粒径为0. 08-1. 2微米。粉末催化材料的应用,通过Y3_xGdxSb07(0.1)粉末为催化剂,或分别负载 Pt,、NiO和RuO2辅助催化剂,光源为氙灯或高压汞灯,在密闭的由多个阀门控制的玻璃管路内部照明反应器内进行分解水制取氢气。核-壳结构的催化材料的应用,通过磁场装置和核-壳结构光催化材料构成的反应系统降解废水中的有机污染物五氯苯酚、阿特拉津、敌草隆和染料罗丹明B等,磁场装置是强度可调式交变磁场发生器,磁场强度选取0. 5 5T (特斯拉),光源为氙灯或高压汞灯; 采用核-壳结构的催化材料¥呼%03(铁磁性颗粒核)43_力(1!£釙07(0.5彡1彡1)(光催化剂壳)、SW2 (顺磁性颗粒核)_Y3-xGdxSb07 (0. 5 ^ χ ^ 1)(光催化剂壳)和MnO (反铁磁性颗粒核)-Y^xGdxSbO7 (0. 5 ^ χ ^ 1)(光催化剂壳)作为催化剂,上述三种磁性复合光催化材料的体积百分比各占体积比均为三分之一,上述三种磁性复合催化剂颗粒在水溶液中呈梯度分布,并且可使其均勻分布在水溶液内上、中、下三层,采用截止滤光片(λ > 420nm), 并同时采用充氧曝气。整个光照反应在密闭不透光的环境下进行。
核-壳结构的催化材料磁性颗粒核-Y3_xGdxSb07(0. 5彡χ彡1)的制备方法其特征是采用脉冲激光溅射沉积的方法a.靶材制备以固相烧结的方法制备YhGdxSbO7 (0. 5 ^ χ ^ 1)靶材,靶材直径为 IOmm,厚度为2mm ;b.选取衬底选用上述尺寸的铁磁性颗粒、-Fe2O3、顺磁性颗粒SW2或反铁磁性颗粒MnO作为衬底;c.采用脉冲激光溅射沉积,激光主波长为248nm,激光功率密度为2 3J/cm2,以氮气为保护气氛,氮气和氧气(纯度为99. 99%)的压力为8 10 ,沉积室内初始压力为6X 10_5Pa 2X 10_3Pa,靶材至衬底的距离为3 7厘米,衬底的温度为300 700°C, 溅射Y3_xGdxSb07(0. 5 ^ χ ^ 1)靶材至铁磁性颗粒Y-F^O3、顺磁性颗粒SW2或反铁磁性颗粒MnO衬底表面,在Y_Fe203、SiO2或MnO颗粒衬底上沉积厚度不同的膜,薄膜沉积时间为90 200分钟,将上述三种膜分别于氮气或在氩气中在1320士 10°C温度下处理 120士 lOmin,使之晶化而得到所需的磁性复合催化材料Y -Fe203-Y3-xGdxSb07 (0. 5彡χ彡1)、 Si02_Y3_xGdxSb07(0· 5 彡 χ 彡 1)或 Mn0_Y3_xGdxSb07 (0. 5 彡 χ 彡 1)。核-壳结构的催化材料磁性颗粒核-Y3_xGdxSb07(0.1)的制备方法其特征是采用多靶磁控溅射沉积的方法a.靶材制备准备纯金属Gd、Sb和Y金属靶材,靶材直径为5 6厘米;b.选取衬底选用铁磁性颗粒、-Fe2O3、、顺磁性颗粒SW2或反铁磁性颗粒MnO作为衬底;c.采用多靶磁控溅射以金属Y、Gd和Sb为靶材,溅射功率为60 200W,以氩气为保护气氛,氩气和氧气(纯度为99. 99% )的压力为4 32mT0rr,氧气的流量比[O2/ (02+Ar)]为30 % 50 %,沉积室内初始压力为3. 3 X KT6Torr 1 X KT5Torr,靶材至衬底的距离为4 15厘米,衬底的温度为O 400°C,薄膜沉积速率为1 2nm/min ;在氧气和氩气的混合气体中共溅射纯金属Gd、Y和Sb靶材至铁磁性颗粒Y-Fe2O3、顺磁性颗粒SiO2或反铁磁性颗粒MnO衬底表面,在衬底上沉积形成 Y3^xGdxSbO7 (0.5 ^ X^l)膜层,将上述三种膜层于氮气或氩气中在1320 士 10°C处理 120士 IOmin ;使之晶化而得到所需的Y-Fii2O3 (铁磁性颗粒核)_Y3_xGdxSb07 (O. 5 ^ χ ^ 1) (光催化剂壳)、SiO2 (顺磁性颗粒核)-Y3_xGdxSb07(0· 5彡X彡1)或MnO (反铁磁性颗粒核)-Y3_xGdxSb07(0. 5 彡 χ 彡 1)。核-壳结构的催化材料磁性颗粒核-Y3_xGdxSb07(0. 5彡χ彡1)的制备方法其特征是采用金属有机物化学气相沉积(MOCVD)的方法MOCVD设备主要由源供给系统、反应室、加热系统、气体输运和流量控制系统、真空和低压控制部分、排气系统、操作控制系统和安全保护系统构成。系统采用立式不锈钢反应室,高纯石墨包敷的衬底托盘直径52mm,可旋转,电阻加热,温度范围200-900°C。采用英国欧陆808控温仪控温,精度士 1°C,反应气体和源蒸气进入反应室,通过喷嘴与托盘之间的距离微调来控制衬底表面气体气流的均勻分布。固体金属有机化合物源盛在鼓泡瓶内,温度由HA8800型半导体热阱控制,控温精度士0. 1°C。生长时由高纯度的氩气载气流经鼓泡瓶把源蒸气携带到反应室。所有源流经的管路都采用加热带保温,高于金属有机化合物源工作温度5 10°C,避免源蒸气在管道中沉积。反应气体为高纯O2,为了避免发生预反应,金属有机化合物源管路和反应气体管路分别进入反应室后再混合。催化剂薄膜在生长过程中的低压,由日本产的无油干泵(DVT-300)提供,系统在低压条件下稳定运行,调节压力精度小于1%。反应体系前驱体原料乙酰丙酮钇[Y(CH3COCHCOCH3)3]、乙酰丙酮钆 [Gd(CH3COCHCOCH3)3]、三甲基溴化锑(V) [Trimethylantimony (V)bromide, Sb(CH3)3Br2]或 SbCl5等蒸气由载气Ar或N2稀释输运至反应室(或输运至反应炉),在反应室内利用激光或紫外光照射使上述原料蒸汽发生光化学反应,加速前驱体分解,各前驱体在气相充分混合, 通过控制各气相金属源的流量来控制薄膜的组分。衬底基片由Y-Fe2O3(铁磁性颗粒核)、 SiO2 (顺磁性颗粒核)、MnO(反铁磁性颗粒核)构成。本次实验MOCVD沉积过程涉及多种气态反应物,通过化学合成反应和氧化反应来完成。用氩气或氮气作为载气,氧化剂为氧气。 调整各种参数,反应气体乙酰丙酮钇、乙酰丙酮钆和三甲基溴化锑(或SbCl5)的摩尔比为 (3-x) χ 1(0. 5≤χ≤1);衬底温度为650士200°C ;薄膜生长温度为600士250°C ;反应室内压力为133 1596 ;反应室内氧气分压力为25 798Pa ;载气和气态金属有机化合物源的流动速率为10 500cm7min ;氧气的流动速率为5 300cm7min ;薄膜的沉积速率为0. 5 10 μ m/h ;薄膜沉积时间为10 lOOmin。按照上述工艺成功地在衬底上沉积形成Y3_xGd3b07(0.5≤X≤ 1)膜层,将上述三种膜层于氮气或氩气中在1320士 10°C处理 200 士 10min ;使之晶化而得到所需的Y _狗203 (铁磁性颗粒核)_Y3_xGdxSb07 (0. 5 ≤ χ≤ 1) (光催化剂壳)、SiO2 (顺磁性颗粒核)-Y3_xGdxSb07(0· 5≤X≤1)或MnO (反铁磁性颗粒核)-Y3_xGdxSb07(0. 5≤ χ ≤1)。2、粉末催化材料Y3_xGdxSb07(0. 5 ≤ χ≤ 1)的制备方法其特征是(1)粉末催化材料Y3_xGdxSb07 (0. 5≤ χ ≤ 1)的制备采用高温固相烧结的方法制备Y3^xGdxSbO7 (0. 5≤x≤1)光催化粉末材料;以纯度为99. 99%的Y2O3^Gd2O3和Sb2O5为原材料,将Y、Gd和Sb以所述分子式的原子比的t03、Gd203和Sb2O5充分混合,然后在球磨机中研磨,粉末的粒径达到1.4-1. 8微米,在200士40°C烘干2士 1小时,压制成片,放入高温烧结炉中烧制。将炉温升至750士20°C,保温8士2小时后随炉冷却,将粉末压片取出粉碎至粒径为1. 3-1. 6微米,再将这些粉末压制成片,放入高温烧结炉中烧结,最高炉温为780士20°C, 保温6士 1小时后随炉冷却,将粉末压片取出粉碎至粒径为1. 2-1. 5微米,再将这些粉末压制成片,放入高温烧结炉中烧结,升温条件如下a.由 20°C 升温至 400°C,升温时间为 40 士 10min ;b.在 400°C 保温 40 士 10min ; c.由 400°C升温至 800°C,升温时间为 40士 IOmin ;d.在 800°C保温 480_800min ;e.由 800°C 升温至 1320士 10°C,升温时间为 50士 IOmin ;f.在 1320士 10°C保温 3900士200min,炉冷。粉末压片经最高温度1320士 10°C保温3900士200min后随炉冷却,取出粉末压片粉碎至粒径为0. 06-0. 32微米,最终制备成功纯净的Y3_xGdxSb07(0. 5 ≤ χ ≤ 1)粉末光催化材料。(2)采用溶胶-凝胶法制备粉末光催化材料Y3_xGdxSb07(0. 5 ≤ χ ≤ 1):利用改进的Sol-Gel方法,采用有机金属前驱物,制备Y3_xGdxSb07 (0.51)。前驱体醋酸钆 [Gd (CH3CO2) 3]、乙酸钇水合物[Y(CH3CO2)3 · 4Η20]和氯化锑(SbCl5)溶于异丙醇中,且以Y、 Gd和Sb以所述分子式的原子比,利用上述前驱体按照分段式溶胶-凝胶制备方法,制备混合氧化物,然后在200士30°C烘干3士 1小时,压制成片,放入高温烧结炉中烧制,升温条件如下a.由20°C升温至400°C,升温时间为40士 IOmin ;b.在400°C保温60士 IOmin ;c.由 400°C升温至 750°C,升温时间为 40士 IOmin ;d.在 750°C保温 480_600min ;e.由 750°C升温至 1220士30°C,升温时间为 40士 IOmin ;f.在 1220士30°C保温 2200士400min,炉冷。粉末压片经最高温度1220 士 30 V保温2200 士 400min后随炉冷却,取出粉末压片粉碎至粒径为 0. 04-0. 20微米,最终制备成功纯净的Y3_xGdxSb07(0. 5 ^ χ ^ 1)粉末光催化材料。(3)采用水热合成方法制备粉末光催化材料Y3_xGdxSb07 (0. 5 ^ χ ^ 1)利用前驱体原料硝酸钆水合物[Gd(NO3)3 · 6Η20]、硝酸钇水合物[Y(NO3)3 · 6Η20]、氯化锑(SbCl5)和硝酸(HNO3),将Y、Gd和Sb以所述分子式的原子比的Y(N03)3、Gd(N03)3和SbCl5充分混合, 即Y、Gd和Sb的摩尔比为(3-x) χ 1 (0. 5 ^ χ ^ 1),然后将上述前驱体原料转入反应容器高压釜内,采用水溶液作为反应介质,聚乙二醇或乙二醇作为分散剂。溶液体积占高压釜体积的60%。将反应容器高压釜放入高温烧结炉内进行加热,加热温度为200士40°C,高压釜内压强为120ΜΙ^士30MPa,保温1800士 120min,最后冷却至室温,通过离心过滤,再经过丙酮、去离子水和纯乙醇的水洗处理,然后于室温在真空中干燥,通过高温和高压反应环境制备Y3_xGdxSb07(0.1)粉末。最后将上述粉末混合物压成薄片后放入高温烧结炉中烧结,升温条件如下a.由20°C升温至400°C,升温时间为40士 IOmin ;b.在400°C保温40士 IOmin ;c.由400°C升温至750°C,升温时间为30士 IOmin ;d.在750°C保温480 600min ;e.由 750°C 升温至 1150 士 10°C,升温时间为 50 士 IOmin ;f.在 1150 士 10°C 保温 600士 lOOmin,炉冷。取出粉末压片粉碎至粒径为0. 04-0.沈微米,最终制备成功纯净的 Y3^xGdxSbO7(0. 5彡χ彡1)粉末光催化材料。本发明的有益效果是通过物理方法、溶胶-凝胶方法或水热合成方法成功制备了粉末催化材料Y3_xGdxSb07(0. 5彡χ彡1),同时制备了新型“磁性颗粒核-光催化剂壳”结构的Y -Fe2O3 (铁磁性颗粒核)-Y3_xGdxSb07 (0. 5 ^ χ ^ 1)(光催化剂壳)、SW2 (顺磁性颗粒核)-Y3_xGdxSb07(0· 5 彡 χ 彡 1)、MnO (反铁磁性颗粒核)-Y3_xGdxSb07 (0. 5 彡 χ 彡 1)(光催化剂壳)。并对其进行了一系列表征,研究了上述新型光催化材料在可见光或紫外光照射下降解被污染水体中有机污染物(包括五氯苯酚、阿特拉津和敌草隆)的效率及降解机理,研究在可见光或紫外光照射下分解水制取氢气的效率和光学活性,通过磁场-光催化反应系统,促进了复合磁性光催化材料在有机物废水中的梯度分布,同时也促进了磁性复合光催化材料的均勻分布,进而促进了光源和有机污染物的充分接触,极大地提高了有机污染物的降解效率。
图IY2GdSbO7的透射电镜图谱图2. Y2GdSbO7的实测XRD数据与模拟XRD数据的Rietveld软件结构精修图谱(_ XRD实验数据;...=XRD模拟数据;一=XRD实验数据与模拟数据的差值;| 观测到的反射位置)。图3.利用IGdSbO7在可见光下降解罗丹明B的光量子效率与入射光波长关系图谱(图3中上图)J2GdSbO7的漫反射吸收图谱(图3中的下图)。图4.针对Y2GdSbO7的(ahv)2和hv关系图谱。图5.可见光照射下,以IGdSbO7为催化剂降解罗丹明B所获得的吸光度与入射光波长关系图谱。图6.可见光照射下,以IGdSbO7为催化剂降解罗丹明B所获得的罗丹明B浓度和入射光照射时间关系图谱。图7.可见光照射下,以IGdSbO7等为催化剂降解罗丹明B所获得的一级动力学曲线。图8.可见光照射下,以IGdSbO7为催化剂降解罗丹明B所获得的CO2产率。图9.可见光照射下,以IGdSbO7为催化剂降解罗丹明B时,总有机碳TOC与入射光照射时间关系图谱。图10. Y2GdSbO7的能带结构。
具体实施例方式制备粉末催化材料Y3_xGdxSb07(0.5彡χ彡1);此外,制备“磁性颗粒核-光催化剂壳”结构的Y -Fe2O3 (铁磁性颗粒核)-Y3_xGdxSb07 (0. 5 ^ χ ^ 1)(光催化剂壳)、Si& (顺磁性颗粒核)_Y3-xGdxa07(0· 5 彡 χ 彡 1)、MnO (反铁磁性颗粒核)_Y3_xGdxSb07 (0. 5 ^ χ ^ 1) (光催化剂壳)。(1)制备能够在可见光波段或紫外光波段响应的新型光催化剂 Y^xGdxSbO7(0.5^ x^ 1);制备能够在可见光波段或紫外光波段响应的新型“磁性颗粒核-光催化剂壳”结构的Y -Fe2O3 (铁磁性颗粒核)-Y^GdxSbO7 (0. 5彡χ彡1)(光催化剂壳)、SiO2 (顺磁性颗粒核)-Y3_xGdxSb07 (0. 5彡χ彡1)、MnO (反铁磁性颗粒核)-VxGdxSbO7 (0.光催化剂壳)。采用紫外—可见分光光度计和紫外—可见漫反射光谱仪对上述制备的新型催化剂在可见光(或紫外光)照射下产生的吸收谱进行了测定,表征了其光吸收性质。测定了上述新型催化剂X射线光电子能谱(XPQ,探讨了上述新型催化剂表面的电子层结构特征及在磁场作用下催化剂晶体内电子和空穴的输运机制, 分析了磁性颗粒表面负载的催化剂各微区元素组成,并结合理论计算结果分析了上述新型催化剂的能级结构及电子态密度。(2)采用X射线衍射仪(XRD)对上述本发明催化剂进行了物相分析;采用透射电镜(TEM)分析了上述本发明催化剂的微观结构特征;利用扫描电镜(SEM)对上述本发明催化剂进行了组织形貌分析,并结合扫描电镜能谱(SEM-EDS)和X射线光电子能谱(XPS)测定了它们的成分组成,揭示了催化剂表面的电子层结构特征。深层次揭示了新型光催化剂的微观结构对光催化降解有机污染物效率的影响规律。在可见光(或紫外光)照射下降解水体内染料、阿特拉津、敌草隆或五氯苯酚等难降解有机污染物的过程中,通过液相色谱/质谱(LC/MQ联用仪及离子色谱仪,测试跟踪了降解上述有机污染物过程中的中间产物和最终产物,获得了在新型核-壳磁性复合催化剂颗粒作用下,在可见光(或紫外光)照射下降解水体内多种有机污染物的可能途径,揭示了水体内染料、阿特拉津、敌草隆或五氯苯酚等有机污染物的降解机制。采用单波长可见光(或紫外光)照射水体内染料、阿特拉津、敌草隆或五氯苯酚等有机污染物,通过试验研究结果及理论计算成功推导出参与光催化降解反应的光生电荷 (光生电子或者光生空穴)数量,进而推导出参与反应的可见光(或紫外光)光子数,结合计算出的入射光总光子数,最终得出在单波长可见光(或紫外光)作用下降解水体中染料权利要求
1.粉末催化材料,其特征是用如下的结构式Y3_xGdxSb07(0.5彡χ彡1),粉末的粒径为 0. 04-0. 32 微米。
2.核-壳结构的催化材料,其特征是Y-Fe3203(铁磁性颗粒核)-Y3_xGdxSb07(0.5彡χ彡1)(光催化剂壳)、Si02(顺磁性颗粒核)-Y3_xGdxSb07(0.5彡χ彡1)(光催化剂壳)、MnO(反铁磁性颗粒核)-Y3^xGdxSbO7 (0. 5 彡 χ 彡 1)(光催化剂壳)。Y -Fe203> SiO2 和 MnO 的粒径为 0. 06-2 微米,Y3^xGdxSbO7 (0. 5彡χ彡1)包裹核后粒径为0. 08-1. 2微米。
3.粉末催化材料的应用,通过Y3_xGdxSb07(0.5<X<1)粉末为催化剂,或分别负载 Pt,、NiO和RuO2辅助催化剂,光源为氙灯或高压汞灯,在密闭的由多个阀门控制的玻璃管路内部照明反应器内进行分解水制取氢气。
4.核-壳结构的催化材料的应用,通过磁场装置和核-壳结构光催化材料构成的反应系统降解废水中的有机污染物五氯苯酚、阿特拉津、敌草隆和染料罗丹明B等,磁场装置是强度可调式交变磁场发生器,磁场强度选取0. 5 5T (特斯拉),光源为氙灯或高压汞灯; 采用核-壳结构的催化材料¥呼%03(铁磁性颗粒核)43_力(1!£釙07(0.5彡1彡1)(光催化剂壳)、SW2 (顺磁性颗粒核)_Y3-xGdxSb07 (0. 5 ^ χ ^ 1)(光催化剂壳)和MnO (反铁磁性颗粒核)-Y^xGdxSbO7 (0. 5 ^ χ ^ 1)(光催化剂壳)作为催化剂,上述三种磁性复合光催化材料的体积百分比各占体积比均为三分之一,上述三种磁性复合催化剂颗粒在水溶液中呈梯度分布,并且可使其均勻分布在水溶液内上、中、下三层,采用截止滤光片(λ > 420nm), 并同时采用充氧曝气。整个光照反应在密闭不透光的环境下进行。
5.核-壳结构的催化材料磁性颗粒核-Y3_xGdxSb07(0.5彡χ彡1)的制备方法其特征是采用脉冲激光溅射沉积的方法a.靶材制备以固相烧结的方法制备Y3_xGdxSb07(0.5^x^1)靶材,靶材直径为10mm, 厚度为2mm ;b.选取衬底选用上述尺寸的铁磁性颗粒Y-Fe2O3、顺磁性颗粒SiO2或反铁磁性颗粒 MnO作为衬底;c.采用脉冲激光溅射沉积,激光主波长为248nm,激光功率密度为2 3J/cm2,以氮气为保护气氛,氮气和氧气(纯度为99.99 % )的压力为8 10Pa,沉积室内初始压力为6X 10_5Pa 2X 10_3Pa,靶材至衬底的距离为3 7厘米,衬底的温度为300 700°C, 溅射Y3_xGdxSb07(0. 5 ^ χ ^ 1)靶材至铁磁性颗粒Y-F^O3、顺磁性颗粒SW2或反铁磁性颗粒MnO衬底表面,在Y_Fe203、SiO2或MnO颗粒衬底上沉积厚度不同的膜,薄膜沉积时间为90 200分钟,将上述三种膜分别于氮气或在氩气中在1320士 10°C温度下处理 120士 lOmin,使之晶化而得到所需的磁性复合催化材料Y -Fe203-Y3-xGdxSb07 (0. 5彡χ彡1)、 Si02_Y3_xGdxSb07(0· 5 彡 χ 彡 1)或 Mn0_Y3_xGdxSb07 (0. 5 彡 χ 彡 1);或采用多靶磁控溅射沉积的方法制备磁性颗粒核_Y3_xGdxSb07(0. 5 ^ x^ 1)a.靶材制备准备纯金属Gd、Sb和Y金属靶材,靶材直径为5 6厘米;b.选取衬底选用铁磁性颗粒Y-Fe203、、顺磁性颗粒SiO2或反铁磁性颗粒MnO作为衬底;c.采用多靶磁控溅射以金属Y、Gd和Sb为靶材,溅射功率为60 200W,以氩气为保护气氛,氩气和氧气(纯度为99. 99%)的压力为4 32mTorr,氧气的流量比
为30% 50%,沉积室内初始压力为3. 3X IO^6Torr 1 X 10_5Torr,靶材至衬底的距离为 4 15厘米,衬底的温度为0 400°C,薄膜沉积速率为1 2nm/min ;在氧气和氩气的混合气体中共溅射纯金属Gd、Y和Sb靶材至铁磁性颗粒Y -Fe2O3、顺磁性颗粒SW2或反铁磁性颗粒MnO衬底表面,在衬底上沉积形成Y3_xGdxSb07 (0. 5 ^ χ ^ 1) 膜层,将上述三种膜层于氮气或氩气中在1320士 10°C处理120士 IOmin ;使之晶化而得到所需的Y -Fe2O3 (铁磁性颗粒核)-Y3_xGdxSb07 (0. 5 ^ χ ^ 1)(光催化剂壳)、SW2 (顺磁性颗粒核)-Y3_xGdxSb07(0. 5 彡 χ 彡 1)或 MnO (反铁磁性颗粒核)_Y3_xGdxSb07 (0. 5 彡 χ 彡 1)。 或采用金属有机物化学气相沉积的方法制备磁性颗粒核_Y3_xGdxSb07(0. 5 ^ x^ 1) MOCVD设备主要由源供给系统、反应室、加热系统、气体输运和流量控制系统、真空和低压控制部分、排气系统、操作控制系统和安全保护系统构成。系统采用立式不锈钢反应室, 高纯石墨包敷的衬底托盘直径52mm,可旋转,电阻加热,温度范围200-900°C。采用英国欧陆808控温仪控温,精度士 1 °C,反应气体和源蒸气进入反应室,通过喷嘴与托盘之间的距离微调来控制衬底表面气体气流的均勻分布。固体金属有机化合物源盛在鼓泡瓶内,温度由HA8800型半导体热阱控制,控温精度士0. 1°C。生长时由高纯度的氩气载气流经鼓泡瓶把源蒸气携带到反应室。所有源流经的管路都采用加热带保温,高于金属有机化合物源工作温度5 10°C,避免源蒸气在管道中沉积。反应气体为高纯O2,为了避免发生预反应,金属有机化合物源管路和反应气体管路分别进入反应室后再混合。催化剂薄膜在生长过程中的低压,由日本产的无油干泵(DVT-300)提供,系统在低压条件下稳定运行,调节压力精度小于1%。反应体系前驱体原料乙酰丙酮钇[Y(CH3C0CHC0CH3)3]、乙酰丙酮钆 [Gd(CH3COCHCOCH3)3]、三甲基溴化锑(V) [Trimethylantimony (V)bromide, Sb(CH3)3Br2]或 SbCl5等蒸气由载气Ar或N2稀释输运至反应室(或输运至反应炉),在反应室内利用激光或紫外光照射使上述原料蒸汽发生光化学反应,加速前驱体分解,各前驱体在气相充分混合, 通过控制各气相金属源的流量来控制薄膜的组分。衬底基片由Y-Fe2O3(铁磁性颗粒核)、 SiO2 (顺磁性颗粒核)、MnO(反铁磁性颗粒核)构成。本次实验MOCVD沉积过程涉及多种气态反应物,通过化学合成反应和氧化反应来完成。用氩气或氮气作为载气,氧化剂为氧气。 调整各种参数,反应气体乙酰丙酮钇、乙酰丙酮钆和三甲基溴化锑(或SbCl5)的摩尔比为 (3-x) χ 1(0. 5彡χ彡1);衬底温度为650士200°C ;薄膜生长温度为600士250°C ;反应室内压力为133 15961 ;反应室内氧气分压力为25 798Pa ;载气和气态金属有机化合物源的流动速率为10 500cm7min ;氧气的流动速率为5 300cm7min ;薄膜的沉积速率为0. 5 10 μ m/h ;薄膜沉积时间为10 lOOmin。按照上述工艺成功地在衬底上沉积形成Y3_xGd3b07(0.5<X< 1)膜层,将上述三种膜层于氮气或氩气中在1320士 10°C处理 200 士 IOmin ;使之晶化而得到所需的Y _狗203 (铁磁性颗粒核)_Y3_xGdxSb07 (0. 5 ^ χ ^ 1) (光催化剂壳)、SiO2 (顺磁性颗粒核)-Y3_xGdxSb07(0· 5彡X彡1)或MnO (反铁磁性颗粒核)-Y3_xGdxSb07(0. 5 彡 χ 彡 1)。
6.粉末催化材料Y3_xGdxSb07 (0. 5彡χ彡1)的制备方法其特征是 (1)粉末催化材料Y3_xGdxSb07(0. 5彡χ彡1)的制备采用高温固相烧结的方法制备 Y3^xGdxSbO7 (0. 5彡χ彡1)光催化粉末材料;以纯度为99. 99%的Y2O3^Gd2O3和Sb2O5为原材料,将Y、Gd和Sb以所述分子式的原子比的&03、Gd2O3和Sb2O5充分混合,然后在球磨机中研磨,粉末的粒径达到1.4-1. 8微米,在200士40°C烘干2士 1小时,压制成片,放入高温烧结炉中烧制。将炉温升至750士20°C,保温8士2小时后随炉冷却,将粉末压片取出粉碎至粒径为1. 3-1. 6微米,再将这些粉末压制成片,放入高温烧结炉中烧结,最高炉温为780士20°C, 保温6士 1小时后随炉冷却,将粉末压片取出粉碎至粒径为1. 2-1. 5微米,再将这些粉末压制成片,放入高温烧结炉中烧结,升温条件如下a.由20°C升温至400°C,升温时间为40士 IOmin ;b.在400°C保温40士 IOmin ;c.由 400°C升温至 800°C,升温时间为 40士 IOmin ;d.在 800°C保温 480_800min ;e.由 800°C升温至 1320士 10°C,升温时间为 50士 IOmin ;f.在 1320士 10°C保温 3900士200min,炉冷;粉末压片经最高温度1320士 10°C保温3900士200min后随炉冷却,取出粉末压片粉碎至粒径为0. 06-0. 32微米,最终制备成功纯净的Y3_xGdxSb07 (0.5^x^1)粉末光催化材料;(2)或采用溶胶-凝胶法制备粉末光催化材料Y3_xGdxSb07(0.5彡χ彡1)利用改进的Sol-Gel方法,采用有机金属前驱物,制备Y3_xGdxSb07(0.5彡χ彡1)。前驱体醋酸钆 [Gd (CH3CO2) 3]、乙酸钇水合物[Y(CH3CO2)3 · 4H20]和氯化锑(SbCl5)溶于异丙醇中,且以Y、 Gd和Sb以所述分子式的原子比,利用上述前驱体按照分段式溶胶-凝胶制备方法,制备混合氧化物,然后在200士30°C烘干3士 1小时,压制成片,放入高温烧结炉中烧制,升温条件如下a.由20°C升温至400°C,升温时间为40士 IOmin ;b.在400°C保温60士 IOmin ;c.由 400°C升温至 750°C,升温时间为 40士 IOmin ;d.在 750°C保温 480_600min ;e.由 750°C升温至 1220士30°C,升温时间为 40士 IOmin ;f.在 1220士30°C保温 2200士400min,炉冷。粉末压片经最高温度1220士30°C保温2200士400min后随炉冷却,取出粉末压片粉碎至粒径为 0. 04-0. 20微米,最终制备成功纯净的Y3_xGdxSb07(0. 5 ^ χ ^ 1)粉末光催化材料。(3)采用水热合成方法制备粉末光催化材料Y3_xGdxSb07(0.1)利用前驱体原料硝酸钆水合物[Gd(NO3)3 · 6H20]、硝酸钇水合物[Y(NO3)3 · 6H20]、氯化锑(SbCl5)和硝酸 (HNO3),将Y、Gd和Sb以所述分子式的原子比的Y(N03)3、Gd(NO3)3和SbCl5充分混合,即Y、 Gd和釙的摩尔比为(3-x) χ 1(0.5彡χ彡1),然后将上述前驱体原料转入反应容器高压釜内,采用水溶液作为反应介质,聚乙二醇或乙二醇作为分散剂。溶液体积占高压釜体积的60%。将反应容器高压釜放入高温烧结炉内进行加热,加热温度为200士40°C,高压釜内压强为120ΜΙ^士30MPa,保温1800士 120min,最后冷却至室温,通过离心过滤,再经过丙酮、去离子水和纯乙醇的水洗处理,然后于室温在真空中干燥,通过高温和高压反应环境制备Y3_xGdxSb07(0. 1)粉末。最后将上述粉末混合物压成薄片后放入高温烧结炉中烧结,升温条件如下a.由20°C升温至400°C,升温时间为40士 IOmin ;b.在400°C保温40士 IOmin ;c.由400°C升温至750°C,升温时间为30士 IOmin ;d.在750°C保温480 600min ;e.由 750°C 升温至 1150 士 10°C,升温时间为 50 士 IOmin ;f.在 1150 士 10°C 保温 600士 lOOmin,炉冷。取出粉末压片粉碎至粒径为0.04-0.沈微米,最终制备成功纯净的 Y3^xGdxSbO7(0. 5彡χ彡1)粉末光催化材料。
全文摘要
核-壳结构的催化材料,γ-Fe2O3-Y3-xGdxSbO7(0.5≤x≤1)、SiO2-Y3-xGdxSbO7(0.5≤x≤1)、MnO-Y3-xGdxSbO7(0.5≤x≤1);γ-Fe2O3、SiO2和MnO的粒径为0.06-2微米,Y3-xGdxSbO7(0.5≤x≤1)包裹核后粒径为0.08-1.2微米;核-壳结构的催化材料的应用,通过磁场装置和核-壳结构光催化材料构成的反应系统降解废水中的有机污染物五氯苯酚、阿特拉津、敌草隆和染料罗丹明B等,磁场装置是强度可调式交变磁场发生器,光源为氙灯或高压汞灯;上述三种磁性复合光催化材料的体积百分比各占体积比均为三分之一,使其均匀分布在水溶液内,并同时采用充氧曝气;整个光照反应在密闭不透光的环境下进行。通过多靶磁控溅射沉积方法、脉冲激光溅射沉积方法或金属有机物化学气相沉积方法在磁性颗粒核上面负载新型催化剂。
文档编号B01J23/34GK102151563SQ20111004436
公开日2011年8月17日 申请日期2011年2月23日 优先权日2011年2月23日
发明者张玲燕, 徐勇, 栾景飞 申请人:南京大学