专利名称:经纤维强化的多孔性基材的利记博彩app
技术领域:
本发明概括涉及多孔性蜂巢状基材,且更特定涉及由包含以纤维为基质的材料的原料所组成的多孔性蜂巢状基材。
背景技术:
先进的陶瓷材料一般利用于设置在不友善环境中的系统中,例如,举例而言,汽车引擎(如触媒转化器)、航空应用(如太空梭砖)、耐火的操作(如耐火砖)及电子装置(如电容器、绝缘体)。在这些环境中,多孔性陶瓷体特别用作过滤器。例如,现今的汽车工业使用陶瓷蜂巢状基材(即多孔性陶瓷体)以主导废气的催化性氧化还原及过滤微粒状的排放物。陶瓷蜂巢状基材提供过滤上的高比表面积及催化反应上的支撑体,同时,在有关汽车引擎环、境的高操作温度下,陶瓷蜂巢状基材是稳定且实质上结构可靠的。一般而言,陶瓷材料,例如举例而言,以钛酸铝为基质的陶瓷,是在高温环境中表现良好的惰性材料。然而,陶瓷材料并非不受热应力影响,例如自高温度梯度产生的应力,与使材料遭受极端温度间热偏移的环境。当所欲的特性为高度多孔性时,例如过滤应用上,暴露于极端热环境的陶瓷材料的表现甚至更加受到挑战。已知作为高温环境中的过滤介质及/或催化性主体的高孔隙度钛酸铝基材材料,在许多应用中会降解及失效。
发明内容
本发明藉由使用以纤维为基质的材料来提供由一刚性纤维状微结构所产生的具机械完整性的所欲组成,提供一高孔隙度基材,从而克服先前技术缺点。本发明的基材适合用于严苛的环境中,如高温环境,作为过滤介质及/或催化性主体。在本发明的一方面,多孔性蜂巢状基材包含刚性蜂巢状外形,所述刚性蜂巢状外形具有一通道阵列。如本说明书所使用,「刚性」一词意谓该结构在处理或加工时并非可挠的或可弯曲的,展现至少100 psi的冷碎强度(cold crush strength)。本发明的蜂巢状基材包含约10体积%至约60体积%的陶瓷纤维,与差额的或约90体积%至约40体积%的纤维材料。所述陶瓷纤维与所述陶瓷材料形成多孔性基材的组成,其系由所述陶瓷纤维与所述陶瓷材料之间的反应所产生。所述多孔性基材中的纤维材料贡献于基材中具孔隙度的开孔网络的形成,在过滤应用上提供高渗透性与低操作背压。制造所述多孔性蜂巢状基材的方法包括混合约10体积%至约60体积%的纤维材料与差额的以颗粒为基质的材料,以提供作为所述基材的所欲组成的前驱物的材料。这些材料(代表非挥发性组分)与挥发性组分(如粘结剂与孔洞形成剂)和一液体混合,以提供一可挤制的混合物。所述混合物被挤制成为一胚体蜂巢状外形,经过干燥,并经过一系列加热加工以接续除去挥发性组分,然后烧结所述胚体蜂巢状外形以将所述前驱物反应成形为所欲的组成。在本发明的一方面,由以纤维为基质的材料与以颗粒为基质的材料之间的反应成形的组成,可为以纤维为基质的材料上的介面层,或是形成于以纤维为基质的材料或以颗粒为基质的材料的表面上。在本发明的另一方面,由以纤维为基质的材料与以颗粒为基质的材料之间的反应成形的组成,可实质上均匀地分布于所述基材中。在本发明的又另一方面,由以纤维为基质的材料与以颗粒为基质的材料之间的反应成形的组成,可实质上消耗掉所述纤维,使得纤维材料与陶瓷材料之间的介面实质上无法确定。本发明的各方面包含由纤维材料与以颗粒为基质的材料之间的反应成形的组成,包含,但不限于,钛酸铝、堇青石与碳化硅。
图式构成本说明书的一部分,并包括本发明的例示型实施方案,其可以各种形式而体现。图I描述根据本发明的蜂巢状基材。
图2显示本发明的蜂巢状基材中多孔性微结构的放大区域。图3为一流程图,描述根据本发明制造多孔性蜂巢状基材的方法。
具体实施例方式以下提供本发明的实施例的详细描述。然而,应理解,本发明可以各种形式体现。因此,本文揭露的特定细节不应视为限制,而是作为教导熟悉本技术领域人士实际上如何应用本发明的详细系统、结构或方式的代表性基础。以陶瓷纤维为基质的基材材料可用于高温隔热、过滤及主导催化反应。所述材料,以任何各种形式,可用于高温应用如触媒转化器、NOx吸附器、脱硝过滤器、多功能过滤器、熔融金属的传输机制与过滤器、再生器核心、化学加工、固定床反应器、加氢脱硫作用、加氢裂解或加氢处理,及引擎排气过滤。以粉末为基质的陶瓷基材可经由使用有机物与孔洞形成剂而制成多孔性形式,所述有机物与孔洞形成剂在基材制造中典型的烧结程序期间挥发掉。或者,以粉末为基质的陶瓷蜂巢状基材的烧结程序可致密化陶瓷前驱物,以致于烧结后的基材材料遍含孔洞与空隙。由以粉末为基质的材料所制造之多孔性基材在烧结的材料中整体孔隙度(bulkporosity)多于50%时会明显折损。在如此高的孔隙度下,以粉末为基质的基材变得较为脆弱,并在经受温度梯度及/或机械应力时发生机械故障。此外,由以粉末为基质的陶瓷与陶瓷前驱物衍生的多孔性陶瓷基材的孔洞型态并不适用于过滤应用,因为以粉末为基质的材料中由原料的致密化及/或由有机物与孔洞形成剂的挥发,所形成的空隙空间与孔洞并未良好的互连。互连良好的开孔网络或孔洞空间展现高程度的渗透性,在过滤应用中结果为增进的流速与较低的背压和较高的功效。由以纤维为基质的原料衍生成的多孔性陶瓷基材可提供一高渗透形式的孔隙度,具有增进的结构完整性。已知以纤维为基质的材料可在低质量时提供高强度,并可承受广且突然的温度偏离而未展现热震或机械性降解。陶瓷纤维亦可用于制造高温刚性隔热板,例如用于燃烧室内衬与需抗冲击的高温环境中的真空铸造板。铸造程序也可用于形成陶瓷纤维的刚性结构,例如窑具与承载砖。当使用于此处,纤维是一材料的形式,其长宽比,即长度除以宽度,大于I。纤维的横切面通常为圆形,然而也可能是其他形状如三角形、长方形或多边形。此外,纤维宽度可能随着纤维长度或纤维切面而变化。许多种类的材料组成可以纤维形式提供。一般而言,纤维可由数种方法之一者来制造,包括但不限于,纺制、吹制、抽制或溶胶-凝胶法。大多数用于耐火隔绝的陶瓷纤维,例如硅酸铝或氧化铝纤维,具有约I微米至约25微米的直径或宽度,且更典型为3微米至约10微米。熟悉此技术领域人士应理解,用作生产多孔性纤维基材的原料的纤维,其形状和较典型陶瓷粉末材料形成强烈对比,其中此种以颗粒为基质的材料的长宽比大约为I。图I描述根据本发明的蜂巢状基材。基材100具有一蜂巢状阵列的壁110,定义出相邻壁之间的通道120。基材100,更特 定而言指壁110,是由一陶瓷材料组成的多孔性微结构。参照图2,其绘示根据本发明的多孔性基材的横切面,绘示一包含纤维的多孔性陶瓷材料,提供一多孔性微结构200。孔洞空间220是由交叠且互相缠结的纤维210之间的空间所创造。形成壁110的多孔材料结构的基体230,是由纤维210与陶瓷材料240所形成。本技术领域普遍已知使用纤维强化物件。一般经纤维强化的复合物包括纤维与基体的结构。纤维提供强度,而基体将纤维黏合在一起以转移强化用纤维之间的应力。已知蜂巢状陶瓷基材包括少量的纤维以提供蜂巢状结构的增强度与强化性。然而,在本发明的方法与装置中,所述纤维并非仅仅增强基体,而是在基体形成中与之反应,并提供贡献于由相邻且交叠的纤维之间的空间所产生的孔隙度与渗透性。本发明的结构与经纤维强化的物件结构之间的一个关键区别在于,本发明的纤维与相邻并相连接的纤维及/或连结基质反应,以形成一大致均匀的复合材料。作为制造多孔性蜂巢状基材的原料的以纤维为基质的材料,提供较相同组成的以粉末为基质的材料更增进的性质。共有的美国专利第7,486,962号与第7,578,865号,并于此处作为参考,揭露高多孔性以纤维为基质的蜂巢状基材的方法与装置。此等文献揭露挤制的蜂巢状基质中,互相缠结且连结的纤维所产生的开孔网络与互连的孔隙度,提供一高渗透的多孔性结构,有利于过滤与化学加工应用。当以纤维为基质的材料被包含在陶瓷材料与陶瓷前驱物及/或玻璃材料与有机粘结剂和孔洞形成剂的可挤制的混合物中时,在影响互连孔洞的尺寸、形状与分布之形成蜂巢外形的挤制程序中,所述以纤维为基质的材料以相对于有机粘结剂与孔洞形成剂预先定位。该伸长的纤维材料提供相邻的孔洞之间的路径,以确保最终烧结结构中相邻孔洞之间的互连性。以纤维为基质的多孔性基材的孔隙度主要决定于用以形成蜂巢状基材的批料中,挥发性组分与非挥发性组分的相对量。举例而言,在一具有约60%孔隙度的多孔性基材中,可挤制的批料将可能含有约40体积%的非挥发性组分与约60体积%的挥发性组分。非挥发性组分包含结果将形成基体230的材料,挥发性组分包含挤制成形程序的后续程序中将被挥发的材料,包括粘结剂、孔洞形成剂与流体。所述挥发性组分可包含以纤维为基质的材料,如作为孔洞形成材料的易褪纤维(fugitive fiber),如纸或木衆纤维或碳纤维。然而,具有机组成的纤维材料也可考虑用作非挥发性材料,若将挤制成形程序的后续程序设定为反应这些材料以成为基体230的一部分时,例如若烧结程序在真空或惰性环境中进行,而基体230包含以碳化物为基质的组成时。在根据本发明之多孔性结构中,如图2所示,以纤维为基质的材料的相对量为用于形成基体230的非挥发性组分的约10体积%至60体积%。以纤维为基质的材料的相对量,可为用于形成基体230的非挥发性组分的10、15、20、25、30、35、40、45、50、55或60体积%。所述纤维与剩余40%至90%的以颗粒为基质的材料反应,提供所欲的组成及/或形成复合结构,具有基质230中的大致均匀组成。此纤维相对量通常是低的,就纤维材料可能或可能不轻易显现在最终结构中而言(未经详细的微结构分析)。然而,以纤维为基质的材料的使用影响所得基体230的孔洞结构,同时对组成有所贡献,因此在形成基材期间影响材料的性质。图3描述制造本发明的多孔性结构的方法。一般而言,方法300使用一挤制程序以挤制可被固化成最终多孔基材的胚体基材。方法300中的挤制程序提供基材尺寸、形状与几何结构的灵活性,因为可使挤制模具与挤制设备适用于特定构造。一般而言,非挥发性组分315 (包含纤维材料310与颗粒320)与挥发性组分325(包含粘结剂及/或孔洞形成剂)和流体330在混合步骤340中混合。所述纤维材料310包含陶瓷或玻璃材料,为最终基材所欲组成的前驱物,或具有最终基材的组成,或最终基材的复合材料的一组分。所述颗粒材料包含陶瓷或玻璃材料,为最终基材所欲组成的前驱物,或具有最终基材的组成,或最终基材的复合材料的一组分。根据本发明,纤维材料310的相对 量可为非挥发性组分315的约10体积%至约60体积%的范围。纤维材料310的组成与颗粒材料315的组成决定最终基材,特定而言指基体230,的组成。举例而言,欲制造具钛酸铝组成的多孔性基材,非挥发性组分315可包含钛酸铝前驱物或可能导致非计量比钛酸铝的其他化合物。例如,已可轻易取得纤维形式的硅酸铝材料如非晶性50%氧化铝/50% 二氧化硅(硅石),其可和粉末状二氧化钛结合,形成具钛酸铝与莫来石及/或钛酸铝、莫来石与以硅石为基质的玻璃的复合组成的结构。更进一步,莫来石纤维可与二氧化钛纤维一起包含而提供相似的钛酸铝一莫来石一玻璃复合物。在另一实施方案中,前驱物可为粉末(及/或胶体)形式,使用包含硅石纤维的添加物,以形成钛酸铝包围硅石纤维的结构,或者由适量来自前驱物的氧化铝与硅石纤维反应形成的莫来石纤维。这些复合结构可为形成在纤维添加物上的钛酸铝涂层的形式。以下提供各种实施方案的特定实施例。根据本发明,纤维材料210可包含任何陶瓷、玻璃、无机、有机、金属或介金属纤维材料。举例而言,纤维310可包含莫来石、氧化铝、硅石/氧化铝与硅石的混合物、含氧化铝、硅石与硅酸铝的混合物、硅酸铝硼、碳化硅、氮化硅、堇青石、钇铝石榴石、氧化铝增强热障壁(AETB)组合物(alumina-enhanced thermal barrier (AETB) composition)、氧化招一硅石一氧化硼化合物、含氧化铝、硅石、氧化硼及/或硅酸铝硼的组合、氧化铝一莫来石、氧化铝一硅石一氧化锆、氧化铝一硅石一氧化铬、硅酸镁、硅酸镁锶、硅酸镁钙锶、纤维玻璃、E-玻璃(e-glass)、钛酸招纤维、氧化银钛、二氧化钛纤维、碳化钛纤维、娃酸韩招、聚酯纤维、碳纤维、乾镍石槽石、FeCrAl合金、酹类纤维(phenolic fibers)、聚合纤维、纤维素、角蛋白、对芳香聚酰胺(para-aramid)合成纤维、尼龙、聚四氟乙烯、氟聚合物、双轴排列聚乙烯对苯二甲酸聚酯(polyethylene terephthalate polyester)、错石纤维、镍、铜、黄铜、不锈钢、镍铬合金、Ni3Al,或是须晶如Al2O3须晶、MgO须晶、MgO-Al2O3须晶、Fe2O3须晶、BeO须晶、MoO须晶、NiO须晶、Cr2O3须晶、ZnO须晶、Si3N4须晶、AlN须晶、ZnS须晶、CdS须晶、氧化鹤须晶、LaB6须晶、CrB须晶、SiC须晶与B4C须晶。挥发性组分325包含粘结剂、分散剂、孔洞形成剂、增塑剂、加工助剂及强化材料。粘结剂包含的有机与无机材料与挤制或成形助剂、流变改质剂与加工助剂和增塑剂,可用于后续的挤制步骤350期间。举例而言,可并含作为挥发性组分325的有机粘结剂包含甲基纤维素、羟丙基甲基纤维素(HPMC)、乙基纤维素及其组合。有机粘结剂可包括但不限于热塑性树脂,例如聚乙烯、聚丙烯、聚丁烯、聚苯乙烯、聚乙烯乙酯、聚酯、等规聚丙烯、无规聚丙烯、聚砜、聚缩醒聚合物、聚甲基丙烯酸甲酯、富马酸一却烧共聚物(fumaron-indanecopolymer)、乙烯乙酸乙烯酯共聚物、苯乙烯一丁二烯共聚物、丙烯酸类橡胶(acrylrubber)、聚乙烯丁醛、及离聚物树脂。有机粘结剂可包含但不限于热固性粘结剂,如环氧树脂、尼龙、苯酚甲醛、苯酚呋喃甲醛、蜡、石蜡、蜡乳液、以及微晶蜡。有机粘结剂亦可包含但不限于纤维素、糊精、氯化烃、精炼褐藻酸盐、淀粉、明胶、木质素、橡胶、丙烯酸酯、浙青、酪蛋白、树胶、白蛋白、蛋白质、及二醇。所述挥发性组分325典型可包括烧结助剂,以相对小的量,例如小于I重量%,例如碳酸镁或其他,以在较低烧结温度下促进形成钛酸铝,而不显著改变所得钛酸铝组成的特性,例如像是CTE。挥发性组分325亦可包含稳定用化合物,防止钛酸铝材料在操作期间分解的可能,例如作为柴油微粒过滤器时。稳定用化合物可包含微量硅石、氧化镁及/或氧化铁。可并含水溶性粘结剂作为挥发性组分325,包含,例如羟丙基甲基纤维素、羟乙基纤维素、甲基纤维素、羧甲基纤维素钠、聚乙烯醇、聚乙烯吡咯啶酮、聚环氧乙烷、聚丙烯酰胺、聚醚酰亚胺、琼脂、琼脂糖、糖蜜、糊精、淀粉、木质磺酸盐、木 质素溶液、褐藻酸钠、阿拉伯胶、三仙胶、黄蓍胶、梧桐树胶、刺槐豆胶、鹿角菜、硬葡聚糖、丙烯酸酯、及阳离子半乳甘露聚醣。可并含无机粘结剂作为颗粒材料320,例如可溶性硅酸盐、可溶性铝酸盐、可溶性磷酸盐、球黏土、高岭土、膨润土(bentonite)、氧化硅胶体、氧化铝胶体及硼磷酸盐。所述无机粘结剂提供可塑性与可挤制性,并同时对作为非挥发性组分315的复合结构的形成有所贡献。挥发性组分325亦可包含增塑剂,可包含但不限于硬脂酸、聚乙二醇、聚丙二醇、丙二醇、乙二醇、二乙二醇、三乙二醇、四乙二醇、酞酸二甲酯、酞酸二丁酯、酞酸二乙酯、酞酸二辛酯、酞酸二烯丙酯、甘油、油酸、硬脂酸丁酯、微晶蜡、石蜡、日本蜡、棕榈蜡、蜂蜡、酯蜡、植物油、鱼油、硅油、氢化花生油、磷酸三甲苯酯、硬脂酸甘油酯、及有机硅烷。挥发性组分325亦可包含增进多孔性基材100中孔洞尺寸与分布的孔洞形成剂。加入孔洞形成剂以增加最终多孔性基材中的开放空间。孔洞形成剂的选择不仅是为了其创造开放空间的能力与基于其热降解行为,亦是为了在混合与挤制期间协助定向纤维。如此,孔洞形成剂协助将纤维排列成一交叠的模式,有助于烧结步骤380的晚期阶段中纤维之间适当的连结。此外,孔洞形成剂也可扮演将纤维以较佳方向定向的角色,其影响挤制出基材在不同轴上的热膨胀特性。作为挥发性组分325的孔洞形成剂可包含但不限于碳黑、活性碳、石墨片、合成石墨、木粉、经修饰的淀粉、淀粉、纤维素、椰子壳粉、果壳、乳胶球、鸟食、锯木屑、可热解聚合物、聚(甲基丙烯酸烷酯)、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸正丁酯、聚醚、聚四氢呋喃、聚(1,3-二氧戊烷)、聚(环氧烷)、聚环氧乙烷、聚环氧丙烧、甲基丙烯酸酯共聚物、聚异丁烯、聚伸丙基碳酸酯(polytrimethylene carbonate)>聚乙烯草酸酯、聚¢-丙内酯、聚S-戊内酯、聚乙烯碳酸酯、聚丙烯碳酸酯、乙烯基甲苯/a -甲基苯乙烯共聚物、苯乙烯/ a -甲基苯乙烯共聚物、及烯烃-二氧化硫共聚物。如上已简单叙述,可并含一或多种纤维组成作为纤维材料310。此外,挥发性组分325可为粉末、流体溶液或纤维形式。
典型的液体330为水,然而亦可提供其他液体,例如溶剂。此外,非挥发性组分315与挥发性组分325可以胶体悬浮液或溶液形式提供,可减少或消除额外液体330可能需要的量。液体330视需要添加以达成适用于挤制步骤350的混合物所欲的流变性。流变性可在混合步骤340期间进行以评估混合物的流变性,与挤制步骤350所欲的流变性相较。过量的液体330是不理想的,因为在固化步骤355期间可能发生过度收缩,此会在基材中诱发形成裂纹。非挥发性组分315与挥发性组分325与流体330在混合步骤340中混合以提供可挤制的混合物。混合步骤340可包括干混合形式、湿混合形式、及剪切混合形式。已发现剪切或分散混合对于在混合物中产生高度均匀分布的纤维是理想的。分布是尤其重要的,因为混合物中陶瓷材料的浓度相对低。对于在混合物中拆开与分布纤维,剪切混合是必要的。曲拐式混合机(sigma mixer)或等效的设备适用于执行混合步骤340。随着混合均勻混合物,可视需要调整混合物的流变性。当混合混合物时,其流变性持续改变。可以主观的测试 流变性,或可经测量以符合熟悉本技术领域人士所知的流变性数值。接着在挤制步骤350中,将可挤制的混合物挤制为一胚体基材。在螺旋挤制机的情况下,混合步骤340可近乎同时地与挤制步骤360 —起进行,以提供高体积的连续生产线上的加工。或是,亦可在一活塞挤制机中进行批料加工以挤制所述混合物成为胚体基材。可藉由挤制混合物通过一蜂巢状挤制模具而获得蜂巢状外形。蜂巢室的尺寸与几何形式,例如室密度与壁厚度,由挤制模具的设计决定。胚体基材具有足够的胚体强度以支撑基材并为后续程序维持挤制的形状与外形。固化系列355主要由干燥步骤360、粘结剂烧除步骤370与烧结步骤380所组成。执行干燥步骤360以除去胚体基材中实质上所有的液体,并固化或胶化挥发性组分325中的粘结剂组分。干燥步骤360可典型地在干燥炉中于相对低温下进行,或是采用其他干燥方法,例如微波、红外线或控制湿度的干燥系统。已显示在红外线或微波干燥炉中干燥胚体基材以除去超过98%的流体,例如水,是一可接受的对于减少或消除后续高温加工中因快速收缩产生的裂纹或崩坏的范围。进行粘结剂烧除步骤370以除去在高温下可至少部分挥发的挥发性组分325,例如有机材料。所述添加物可在经控制的方式中烧除,以维持纤维的定向与排列,并确保逸出的气体与剩余物不干扰纤维结构。当添加物烧除时,纤维材料310在结构中维持其相对于颗粒材料320的位置。使用如粘结剂,纤维已位于这些交叠的排列中,并可透过使用任何的孔洞形成剂材料而具有特定的模式。在粘结剂烧除步骤370期间,除去挥发性组分325之特定的时间、温度与环境取决于所选择的材料。举例而言,若使用HPMC作为有机粘结剂的挥发性组分325,并用石墨颗粒作为孔洞形成剂,粘结剂烧除步骤370可选择性除去添加物,藉由加热胚体基材至约325° C以热分解HPMC,而后在空气吹洗环境中加热胚体基材至约600° C,将石墨氧化为二氧化碳。然后进行烧结步骤380,以自包含纤维材料310的非挥发性组分315形成多孔性结构的组成。在烧结步骤380中,以纤维为基质的材料310会经由挤制程序350而排列且定位,且挥发性组分325经由粘结剂烧除步骤370而除去。再参照图2,以纤维为基质的材料310表现为纤维210,与由已于粘结剂烧除步骤370除去的挥发性组分325形成的开放孔洞空间220,与至少围绕纤维的以粉末为基质的材料320。烧结步骤380在环境中加热基材至一足以将非挥发性组分315与基体230的复合结构烧结在一起的温度。在本发明的一实施方案中,相对量约10体积%至约60体积%的纤维材料310,与相对量约90体积%至约40体积%的以颗粒为基质的材料320连结,以形成一复合物,所述复合物于其中的纤维与非纤维材料之间大体上有明显的组成分别。此实施方案中,在烧结步骤380期间,纤维与非纤维材料之间的反应在纤维/非纤维介面创造了一介面组成。或是,纤维与非纤维材料之间的反应改质了基体320中纤维材料及/或非纤维材料的表面。此实施方案的例子可包括莫来石纤维于来自堇青石前驱物之堇青石基体中,前驱物包含氧化镁、氧化铝与硅石作为以颗粒为基质的材料320。另一例中可包含硅酸铝纤维于钛酸铝基体中,由氧化铝粉末与二氧化钛粉末作为以颗粒为基质的材料320所形成。又另一例为钛酸铝形成在硅酸铝或莫来石纤维上。此处提供例示性的例子。在本发明的另一实施方案中,相对量约10体积%至约60体积%的纤维材料310,与相对量约90体积%至约40体积%的以颗粒为基质的材料320完全反应,以形成一组成,于基体230中纤维材料310与周围以颗粒为基质的材料320之间无明显的分别。于此实施方案中,纤维材料310在烧结步骤380期间参与热化学反应,以形成具有所欲组成的材料。 本实施方案的例子可包括硅酸铝纤维与氧化镁、氧化铝与硅石以适当量结合,以创造堇青石组成。另一例可包含碳纤维与石墨颗粒和硅颗粒以适当相对量结合,以创造碳化硅组成。相似的,氧化铝纤维与氧化钛粉末以适当相对量可用于创造一具有钛酸铝组成的多孔性基材。此处提供例示性的例子。在本发明的又另一实施方案中,相对量约10体积%至约60体积%的纤维材料310,与相对量约90体积%至约40体积%的以颗粒为基质的材料320部分地反应,以形成一复合组成,于基体230中纤维材料310与以颗粒为基质的材料320之间有分别,但纤维材料与周围的陶瓷材料240至少部分地反应形成一复合结构。本实施方案的例子可包括硅酸铝纤维与氧化镁、氧化铝与硅石以适当量结合,以创造具莫来石纤维的堇青石组成的陶瓷材料340。另一例可包含氧化铝纤维与适当相对量氧化钛粉末,以用于创造多孔性基材,其具有钛酸铝组成与氧化铝纤维的陶瓷材料240之复合结构。此处提供例示性的例子。钛酸铝(Al2TiO5)为一斜方晶系结构,在烧结的多晶或非晶相材料中形成稳定的微裂结构。钛酸铝为一稳定的氧化物陶瓷材料,因其极低的热膨胀系数(CTE)可展现优良抗热震性,受到高度重视。具低CTE的陶瓷材料在可能存有热梯度的应用中为理想的。例如,在一柴油微粒过滤器中,当累积于过滤器的粉尘周期性再生成时,就会形成热梯度。柴油微粒过滤器的再生牵涉到将累积的粉尘烧除,以氧化累积的粉尘为二氧化碳与水蒸气。过滤器中可发展出超过摄氏800度的热梯度,会引发可能超过陶瓷材料强度的热应力。当使用具低CTE的材料时,据此可减少由高热梯度所导致的热应力。先前已知使用以粉末为基质的原料制造钛酸铝组成的多孔性蜂巢状基材。孔隙度的有效范围受限,因来自以粉末为基质的材料的钛酸铝基材在孔隙度超过约50%时会变得机械性脆弱。根据本发明使用以纤维为基质的原料制造的多孔性钛酸铝基材,以挤制方法产生蜂巢状基材,可提供孔隙度为50%或更高的多孔性钛酸铝蜂巢状基材,具有足够的机械强度及其他热特性与机械特性。此外,使用约10体积%至约40体积%的以纤维为基质的原料与差额的以颗粒为基质的材料以制造蜂巢状外形,可提供较佳的纤维定向一即,纤维排列在挤制方向上。如此,纤维排列(其可受到纤维原料的机械特性,如直径、长度及组成所产生的强度,控制或影响)可赋予非均向的CTE特性,包含可能在操作时经历最大热梯度的基材方向上之低CTE性质。
实施例以下的例示提供作为进一步说明与帮助了解本发明。所述特定实施例为用以阐明本发明,而非用以限制。在第一例示实施例中,混合约11体积%的纤维材料与约89体积%的以颗粒为基质的材料,以制造具有钛酸铝组成之多孔性蜂巢基材。于此实施例中,15公克莫来石纤维(散纤维具有约4至8微米的直径)与40公克二氧化钛粉末和51公克氧化铝粉末作为非挥发性组分。所述非挥发性组分与一起代表挥发性组分的作为有机粘结剂的16公克羟丙基甲基纤维素(HPMC)和作为孔洞形成剂的65公克石墨颗粒(-325网目等级),以及作为流体的65公克去离子水混合。制备一可挤制的混合物,并藉由挤制成形为一直径I英吋之蜂巢。胚体基材以射频(RF)干燥机干燥,而后进行粘结剂烧除步骤,于325° C下以氮气吹洗约一小时,以分解有机粘结剂,于1000° C下以空气吹洗约四小时以烧除石墨孔洞形成剂。 之后材料在1400° C下烧结二小时以形成多孔性基材。所述多孔性基材的分析确定此基材组成为约87%的钛酸铝,差额组成包括莫来石、金红石(二氧化钛)与其他非晶相材料。孔隙度经测量为57. 2%,具552 psi的冷碎强度。第二例示实施例中,制备与第一例示实施例相同的材料(11体积%的纤维),但于1500° C下烧结二小时,以提供更多纤维材料与以颗粒为基质的材料反应,提供孔隙度为48. 8%、冷碎强度为1,277 psi的基材。第三例示实施例中,混合约13体积%的纤维材料与约89体积%的以颗粒为基质的材料,以制造具钛酸铝组成之多孔性蜂巢基材。于此实施例中,20公克莫来石纤维(散纤维具有约4至8微米的直径)与40公克二氧化钛粉末和60公克氧化铝粉末作为非挥发性组分。所述非挥发性组分与一起代表挥发性组分的作为有机粘结剂的16公克羟丙基甲基纤维素(HPMC)和作为孔洞形成剂的65公克石墨颗粒(-325网目等级),以及作为流体的70公克去离子水混合。制备一可挤制的混合物,并藉由挤制成形为一直径I英吋之蜂巢。胚体基材以射频(RF)干燥机干燥,而后进行粘结剂烧除步骤,于325° C下以氮气吹洗约一小时以分解有机粘结剂,于1000° C下以空气吹洗约四小时以烧除石墨孔洞形成剂。之后材料在1400° C下烧结二小时以形成多孔性基材。所述多孔性基材的分析确定此基材组成为约91%钛酸铝,差额组成包括莫来石、金红石(二氧化钛)与其他非晶相材料。第四例示实施例中,混合约14体积%的纤维材料与约86体积%的以颗粒为基质的材料,以制造具钛酸铝组成之多孔性蜂巢基材。于此实施例中,20公克莫来石纤维(散纤维具有约4至8微米的直径)与40公克二氧化钛粉末和51公克氧化铝粉末作为非挥发性组分。所述非挥发性组分与一起代表挥发性组分的作为有机粘结剂的16公克羟丙基甲基纤维素(HPMC)和作为孔洞形成剂的65公克石墨颗粒(-325网目等级),以及作为流体的70公克去离子水混合。制备一可挤制的混合物,并藉由挤制成形为一直径I英吋之蜂巢。胚体基材以射频(RF)干燥机干燥,而后进行粘结剂烧除步骤,于325° C下以氮气吹洗的约一小时以分解有机粘结剂,于1000° C下以空气吹洗约四小时以烧除石墨孔洞形成剂。之后材料在1500° C下烧结二小时以形成多孔性基材。所述多孔性基材的分析确定此基材组成为约82. 9%钛酸铝,差额组成包括莫来石、金红石(二氧化钛)与其他非晶相材料。孔隙度经测量为48. 8%,具1,277 psi的冷碎强度。第四例示实施例中,混合约56体积%的纤维材料与约44体积%的以颗粒为基质的材料,以制造具钛酸铝组成之多孔性蜂巢基材。于此实施例中,50公克氧化铝纤维(散纤维具有约10微米的直径)与30公克二氧化钛粉末和微量碳酸镁及氧化铁作为非挥发性组分。所述非挥发性组分与一起代表挥发性组分的作为有机粘结剂的16公克羟丙基甲基纤维素(HPMC)和作为孔洞形成剂的65公克石墨颗 粒(-325网目等级),以及作为流体的70公克去离子水混合。制备一可挤制的混合物,并藉由挤制成形为一直径I英吋之蜂巢。胚体基材以射频(RF)干燥机干燥,而后进行粘结剂烧除步骤,于325° C下以氮气吹洗约一小时以分解有机粘结剂,于1000° C下以空气吹洗约四小时以烧除石墨孔洞形成剂。之后材料在1550° C下烧结六小时以形成多孔性基材。所述多孔性基材的分析确定此基材组成为约85%钛酸铝,差额组成包括莫来石、金红石(二氧化钛)与其他非晶相材料。孔隙度经测量为
25.4%,具2,528 psi的冷碎强度。第五例示实施例中,混合约59体积%的纤维材料与约41体积%的以颗粒为基质的材料,以制造具钛酸铝组成之多孔性蜂巢基材。于此实施例中,25公克莫来石纤维(散纤维具有约4至8微米的直径)与25公克氧化铝纤维(散纤维具有约10微米的直径)和29公克二氧化钛粉末与4公克氧化铝粉末,及微量碳酸锶与碳酸镁,作为非挥发性组分。所述非挥发性组分与一起代表挥发性组分的作为有机粘结剂的16公克羟丙基甲基纤维素(HPMC)和作为孔洞形成剂的65公克石墨颗粒(-325网目等级),和作为流体的80公克去离子水混合。制备一可挤制的混合物,并由挤制成形为一直径I英吋之蜂巢。胚体基材以射频(RF)干燥机干燥,而后进行粘结剂烧除步骤,于325° C下以氮气吹洗约一小时以分解有机粘结齐[J,于1000° C以空气吹洗约四小时以烧除石墨孔洞形成剂。之后材料在1400° C下烧结六小时以形成多孔性基材。所述多孔性基材的分析确定此基材组成为约72%钛酸铝,差额组成包括莫来石、刚玉(氧化铝)、硅酸锶铝与其他非晶相材料。孔隙度经测量为54. 5%,具1,106 psi的冷碎强度。再参照图3,可以选择性的执行最后加工步骤390,以视所欲的应用配置所述多孔性基材。最后加工步骤390可包含封堵蜂巢状基材中间隔的室以配置基材成为一壁流式过滤器。此外,基材可切割或磨削成其所欲目的几何形状,例如长方形或圆柱形截面。在某些应用上,使用高温粘着材料以粘合复数个片段,由数个较小片段组装一大块基材是理想的。此外,可施加外皮或涂层以获得所欲最终尺寸与表面条件。可将最终的多孔性基材插入一金属套筒,或在排放控制装置,例如柴油微粒过滤器中,提供外壳。熟悉本技术领域的人士应可理解将具有此处所描述性质与特性之高孔隙度蜂巢状基材作为其他应用。以上已详细描述本发明的例示性实施方案。在不背离本发明的精神及范围之情况下,可对本发明进行各种修饰与添加,且每一上述的各种实施方案皆可与其他描述的实施方案结合以提供多种特性。此外,虽然以上描述本发明的一些装置与方法之各别实施方案,此处的描述仅用于说明本发明的应用原理。例如,当混合物中提供纤维材料与其他添加物时,可形成包括钛酸铝、堇青石、碳化硅及其他的多种组成与复合物。此外,对干燥、粘结剂烧除及/或烧结步骤的更多改变可一起调整实施于此处考量的混合物成分。且已提供纤维材料与以颗粒为基质的材料的多种相对量,烧结后的基材中纤维材料相对量可广义包括任何纤维复合物蜂巢状结构,包含而不限于玻璃连结、玻璃一陶瓷连结与陶瓷连结的陶瓷纤 维材料。因此,此处的描述只是用以作为例示而并非用以限制本发明的范围。
权利要求
1.一种多孔性蜂巢状基材,包含 一具有一通道阵列的刚性蜂巢状外形; 约10体积%至约60体积%的陶瓷纤维; 约90体积%至约40体积%的陶瓷材料; 所述陶瓷纤维与所述陶瓷材料形成一组成,其系由所述陶瓷纤维与所述陶瓷材料之间的反应所产生;以及 一具孔隙度的开孔网络于所述基材中。
2.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成,为一介面层与一于所述陶瓷纤维上的表面层的至少一者。
3.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成,实质上均匀地分布于所述基材中。
4.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成,实质上消耗掉所述陶瓷纤维。
5.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成为钛酸铝。
6.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成为堇青石。
7.如权利要求I所述的多孔性蜂巢状基材,其中,所述由陶瓷纤维与陶瓷材料之间的反应所产生的组成为碳化娃。
8.—种多孔性蜂巢状基材,包含 一具有一通道阵列的实质上刚性蜂巢状外形,所述蜂巢状外形由以下方法制造,包含 混合约10体积%至约60体积%的纤维材料与差额的以颗粒为基质的材料,以提供作为所述多孔性蜂巢状基材的组成的前驱物的材料; 混合所述前驱物与含有一粘结剂和一液体的添加物,以提供一可挤制的批料; 挤制所述可挤制的批料成为一胚体蜂巢状外形; 干燥所述胚体蜂巢形式以除去实质上所有的所述液体; 加热所述胚体蜂巢状外形以除去实质上所有的所述粘结剂; 烧结所述胚体蜂巢状外形以将所述前驱物反应成形为所欲的组成。
9.如权利要求8所述的多孔性蜂巢状基材,其中,所述所欲的组成为一介面层与一于陶瓷纤维上的表面层的至少一者。
10.如权利要求8所述的多孔性蜂巢状基材,其中,所述所欲的组成实质上均匀地分布于所述基材中。
11.如权利要求8所述的多孔性蜂巢状基材,其中,将所述前驱物反应成形为所述所欲的组成的烧结步骤实质上消耗掉所述陶瓷纤维。
12.如权利要求8所述的多孔性蜂巢状基材,其中,所述所欲的组成为钛酸铝。
13.如权利要求8所述的多孔性蜂巢状基材,其中,所述所欲的组成为堇青石。
14.如权利要求8所述的多孔性蜂巢状基材,其中,所述所欲的组成为碳化硅。
15.一种制造多孔性蜂巢状基材的方法,包含混合约10体积%至约60体积%的纤维材料与差额的以颗粒为基质的材料,以提供作为多孔性蜂巢状基材的组成的前驱物的材料; 混合所述前驱物与含有一粘结剂和一液体的添加物,以提供一可挤制的批料; 挤制所述可挤制的批料成为一胚体蜂巢状外形; 干燥所述胚体蜂巢外形以除去实质上所有的所述液体; 加热所述胚体蜂巢外形以除去实质上所有的所述粘结剂; 烧结所述胚体蜂巢状外形以将所述前驱物以反应成形为所欲的组成。
16.如权利要求15所述的方法,其中,所述纤维材料包含氧化铝纤维、硅酸铝纤维、及莫来石纤维的至少一者,且所述组成为钛酸铝。
17.如权利要求16所述的方法,其中,所述以颗粒为基质的材料包含二氧化钛与氧化铝的至少一者。
18.如权利要求15所述的方法,其中,所述添加物进一步包含一孔洞形成剂。
19.如权利要求15所述的方法,其中,所述纤维材料包含碳纤维,且所述组成为碳化硅。
20.如权利要求15所述的方法,其中,所述纤维材料包含氧化铝、氧化硅、硅酸铝、莫来石、及硅酸镁铝的至少一者,且所述组成为堇青石。
全文摘要
一种具有约10体积%至约60体积%的陶瓷纤维的多孔性蜂巢状基材系以多种材料组成制造。纤维材料与以颗粒为基质的材料组合以反应成形为复合结构,形成一多孔性基体。所述多孔性蜂巢状基材展现来自纤维组分的具孔隙度的开孔网络,以为多种应用提供高渗透性,例如过滤与化学方法中的催化性主体。
文档编号B01D39/20GK102740947SQ201080058026
公开日2012年10月17日 申请日期2010年12月17日 优先权日2009年12月21日
发明者J·J·刘 申请人:美商绩优图科技股份有限公司