专利名称:一种纳米管道的封装方法
技术领域:
本发明涉及纳米技术领域,具体是一种纳米管道的封装方法。
背景技术:
近年来,微流控芯片(Microfluidic chip)技术在疾病诊断、药物筛选、环境检测等领域的研究与应用日益广泛,在降低生物试剂成本、提高效率、改善分析精度,提高生物学、医学研究水平等方面起到了重要作用。随着技术的发展,生物医学研究与应用已开始在分子、DNA、蛋白质层次展开,微流控技术已难以满足在分子水平上对样品进行更小尺度、更小剂量、更高灵敏度的检测分析等需求,因此更小尺度的芯片技术——“纳流控”开始成为新的关注热点。纳流管道是指尺寸处于原子或分子量级的微小通道,至少有一维尺寸在纳米级。 由于可达到超高分辨率和超高灵敏度,纳流管道在流体特性分析、单分子分析、超高速核酸分子测序、分子筛、生物膜离子通道模拟、药物疏运、电池、纳控晶体管等领域显示出重要的潜在应用前景。封装技术是纳米管道制作过程中要解决的难点问题之一。在加工有纳米沟道的Si 基片上面覆盖一层玻璃,并实现两者的有效封装,才能最终完成纳米管道的制作。在以往的纳米管道封装中,曾采用溅射的方法,但采用这种方法需要真空环境及复杂的设备,实现困难。
发明内容
为解决上述问题,本发明的目的是提供一种带有纳米管道的Si基片与玻璃之间的一种封装方法。本发明技术方案为—种纳米管道的封装方法,将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至430 470摄氏度,并在玻璃片和Si基片上施加850V 950V的直流电压,Si基片为正极,玻璃片为负极。优选方案为加热至450摄氏度;在玻璃片和Si基片上施加900V的直流电压;所述玻璃片为富含钠离子的玻璃。本发明原理是在电压作用时,玻璃中的Na+将向负极方向漂移,在紧邻硅片的玻璃表面形成耗尽层,耗尽层宽度约为几微米。耗尽层带有负电荷,硅片带正电荷,硅片和玻璃之间存在较大的静电引力,使二者紧密接触,去掉电压后该电场也不会消失。另外,在比较高的温度下,紧密接触的硅/玻璃界面会发生化学反应,形成牢固的化学键,如Si-O-Si 键等。本发明具有如下优点工艺和设备简单,不需要特殊环境和复杂,且不使用任何粘合剂;结合面内部应力小,由于使用的玻璃是一种富含阳离子的玻璃,其膨胀系统与硅相近,避免封装之后结合面热应力过大;结合强度高,可以达到材料本身的强度。
图1为本发明原理图。
具体实施例方式下面结合附图具体说明本发明。实施例1 如图1所示,本发明提供一种纳米管道的封装方法,将需要封装的带有纳米管道6的Si基片3、玻璃片2清洗干净,跟金属片4 一起放置在加热平台5上加热至 430摄氏度,在Si基片3和玻璃片2之间施力900V的直流电压,其中Si基片3放置在金属片4上,金属片4接电源正极,导电棒1接电源负极与玻璃片2点接触。加热5分钟之后,会在Si基片和玻璃片之间形成一个牢固的结合面,从而完成Si基片上纳米管道的封装。本实施例中玻璃片2可使用厦门福芯微电子科技有限公司生产的Pyrex7740玻璃,该玻璃富含钠离子。实施例2 本实施例与实施例1的区别为加热温度为450摄氏度,加热时间为3 分钟,在Si基片和玻璃之间施加850V的直流电压,其他条件与实施例1相同。实施例3 本实施例与实施例1的区别为加热温度为470摄氏度,加热时间为3 分钟,在Si基片和玻璃之间施加950V的直流电压,其他条件与实施例1相同。
权利要求
1.一种纳米管道的封装方法,其特征在于将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至430 470摄氏度,并在玻璃片和Si基片上施加850V 950V的直流电压,Si基片为正极,玻璃片为负极。
2.根据权利要求1所述的封装方法,其特征在于将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至450摄氏度。
3.根据权利要求1所述的封装方法,其特征在于在玻璃片和Si基片上施加900V的直流电压。
全文摘要
本发明涉及纳米技术领域,公开一种纳米管道的封装方法。将富含钠离子的玻璃覆盖于加工好的纳米管道Si基片上,通过对Si基片进行高温加热并向玻璃和Si基片施加一定高电压,利用玻璃与Si基片间的静电引力实现玻璃对纳米管道的键合封装。本发明的纳米管道封装方法可应用于生物医学领域微流控芯片中的管道封装,利用封装后的纳米管道可在纳米级尺度下对管道内流体及生物单分子特性进行检测和分析。
文档编号B01J19/00GK102211007SQ201010138060
公开日2011年10月12日 申请日期2010年4月2日 优先权日2010年4月2日
发明者焦念东, 王栋, 董再励 申请人:中国科学院沈阳自动化研究所