专利名称::用于石脑油加氢脱硫的包括二氧化硅载体的选择性催化剂的利记博彩app用于石脑油加氢脱硫的包括二氧化硅载体的选择性催化剂发明领域本发明涉及用于石脑油加氢脱硫的方法。更特别地,Co/Mo金属氢化组份在有有机添加剂参与情况下被负载在二氧化硅或者改性二氧化硅载体上,然后硫化以制造催化剂,然后其被用于加氢脱硫石脑油。该二氧化硅载体具有确定的孔径分布,其使烯烃饱和度最小化。
背景技术:
:环境保护法规要求降低车用汽油(mogas)中的硫含量。例如,人们预期到2006年条例将要求车用汽油硫含量为30ppm或更小。在许多情况下,通过加氢处理从流化催化裂化(FCC催化石脑油)生成的石脑油实现这样的硫含量,所述的流化催化裂化是车用汽油库中最大的硫来源。因为车用汽油中的硫还可以导致催化转化器性能的降低,因此甚至在其中条例许可较高水平的情况下,也希望硫目标(含量)为30ppm。因此,需要减少催化石脑油中的硫同时使有益性能例如辛垸值的减小降至最小的技术。常规的固定床加氢处理能使裂化石脑油的硫含量降低到非常低的含量。然而,由于石脑油中烯烃含量的大量减少,以及在加氢处理过程期间过度消耗氢,这样的加氢处理同样导致明显的辛垸值损失。最近开发了选择性的加氢处理方法以避免这样的烯烃饱和度和辛烷值损失。令人遗憾地,在这样的过程中,释放的H2S与残留的烯烃反应通过返硫形成硫醇式硫。令人遗憾地,在过程中释放的H2S与残留的烯烃反应通过返硫形成硫醇式硫。这样的方法可在苛刻(条件)下进行生产在硫条例规定之内的产物。然而,同样发生明显的辛烷值损失。提出了一种用于在脱硫期间保持辛垸值的方法是利用烯烃改性的催化剂改善原料中的烯烃含量,随后与加氢脱硫催化剂接触(美国专利6,602,405)。该烯烃改性的催化剂使烯烃齐聚。最近开发的一种加氢脱硫方法是SCANfining,是由Exxonmobil公司开发的方法。SCANfining描述于NationalPetroleumRefinersAssociationpaper(国家炼油厂联合会论文)#AM-99-31中,题目为"具有最小辛烷损失的选择性的催化石脑油的加氢精制",和美国专利5,985,136和6,013,598中。典型的SCANfining条件包括用于使石脑油原料加氢脱硫的一步法和两步法。原料与加氢脱硫催化剂接触,所述的催化剂由约lwt。/。-约10wt。/。的Mo03和约0.1wt。/。-约5wt。/。的CoO组成;Co/Mo原子比约0.1-约1.0;和孔径中值为约60A-约200A。即使SCANfining可控制烯烃饱和度,同时实现高度的加氢脱硫,但仍需要改进该催化剂体系的选择性以进一步降低烯烃饱和度,因此进一步使辛烷值损失降至最小。
发明内容本发明涉及一种制造催化剂的方法,和石脑油加氢脱硫(HDS)的方法。一个实施方式涉及制造适用于石脑油加氢脱硫的催化剂的方法,包括(i)用(a)钴盐、(b)钼盐和(c)至少一种有机添加剂的水溶液浸渍二氧化硅载体,所述二氧化硅载体基于二氧化硅的二氧化硅含量至少约85wt%、孔容为约0.6-约2.0立方厘米/g、中值孔径为约150A-约2000A,以形成催化剂前体;(ii)在小于约20(TC的温度下干燥该催化剂前体以形成干燥催化剂前体;和(iii)硫化干燥催化剂前体以形成催化剂,条件是该干燥催化剂前体或者催化剂在硫化或者用于加氢脱硫之前未煅烧。另一个实施方式涉及加氢脱硫基于石脑油重量的烯烃含量至少约5wt。/。的石脑油的方法,包括(i)使石脑油在加氢脱硫条件下与选择性的加氢脱硫催化剂接触,其中通过以下方法制备选择性的加氢脱硫催化剂,即用(a)钴盐、(b)钼盐和(C)至少一种有机添加剂的水溶液浸渍基于二氧化硅重量的二氧化硅含量至少约85wt%、孔容为约0.6-约2.0立方厘米/g、中值孔径为约150A-约2000A的二氧化硅载体,以形成催化剂前体;(ii)在小于约20(TC的温度下干燥该催化剂前体以形成干燥催化剂前体;和(iii)硫化干燥催化剂前体以形成催化剂,条件是该干燥催化剂前体或者催化剂在硫化或者用于加氢脱硫之前未煅烧。该二氧化硅负载型催化剂当用于石脑油加氢脱硫时,显示对于烯烃饱和度改进的选择性,同时保持石脑油原料高水平的加氢脱硫。附图简述附图la是在90%的加氢脱硫下烯烃饱和度相对通过压汞法测量的中值孔径(MPD)的曲线图。附图lb是在90%加氢脱硫下烯烃饱和度相对中值孔径倒数的曲线图。附图lc是在90%的加氢脱硫下烯烃饱和度相对孔径>150人的孔表面积百分比的曲线图。附图2是说明通过水银孔率法测量的二氧化硅载体的孔径分布CPSD)曲线图。附图3是对于四种不同的CoMo/Si02催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图4是对于在选择的二氧化硅载体上具有不同有机配位体的CoMo/Si02催化剂和参比CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图5是对于具有不同有机配位体的CoMo/Si02催化剂和参比CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图6是高温老化的CoMo/Si02和CoMo/Al203催化剂的烯烃选择性相对加氢脱硫活性的曲线图。附图7是对于CoMo/Si02催化剂相对参比CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图8是对于在三种不同条件下干燥的CoMo-CA/Si02催化剂相对参比CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图9是对于两种小孔的CoMo/Si02催化剂相对参比CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的曲线图。附图10是通过N2吸附测量的二氧化硅载体(SC-595)的孔径分布(PSD)的曲线图。本发明的详细说明术语"石脑油"指中间沸程的烃馏分或者主要组分为汽油的馏分,而术语"FCC石脑油"指优选的通过众所周知的流化催化裂化过程生成的石脑油。具有中间沸程的石脑油是在大气压力下沸点从约l(TC(即从约Cs)到约232。C(50-450。F),优选从约21""C到约221°C(70-430°F)的那些。在没有加入氢的情况下,在FCC工艺中生产石脑油会导致具有相对高烯烃和芳烃的石脑油。其他的石脑油例如蒸汽裂化石脑油和焦化石脑油也可以包含相对高浓度的烯烃。典型的烯烃石脑油基于石脑油重量的烯烃含量至少为约5wt。/。,最高达约60wt。/。,优选为约5wt%-约40wt%;基于石脑油重量硫含量为约300ppmw-约7000ppmw;和基于石脑油重量氮含量为约5ppmw-约500ppmw。烯烃包括开链烯烃、环状的烯烃、二烯和具有烯烃侧链的环状烃。因为烯烃和芳烃是高辛烷值的组份,烯烃石脑油通常比加氢裂化石脑油呈现更高的研究法和马达辛垸值。同时烯烃石脑油通常烯烃含量高,它们也可以包含其他的化合物,尤其是含硫和含氮化合物。选择性的催化剂在一个实施方式中,用于从烯烃石脑油中选择性地除去硫同时使烯烃饱和度最小的催化剂是已经用(a)钴盐、(b)钼盐和(c)至少一种有机添加剂浸渍的二氧化硅负载型催化剂。有机添加剂是有机配位体。基于二氧化硅载体,该二氧化硅载体包含至少约85wt。/。的二氧化硅,优选至少约90wt。/。的二氧化硅,尤其是至少约95wt。/。的二氧化硅。二氧化硅载体的例子包括二氧化硅、MCM-41、二氧化硅结合的MCM-41、热解二氧化硅、金属氧化物改性的硅质载体和硅藻土。用于浸渍二氧化硅载体的钴和钼盐可以是任何的水溶性盐。优选的盐包括碳酸盐、硝酸盐、七钼酸盐等。盐的量是如此以致二氧化硅载体基于催化剂将包含约2wt。/。-约8wt。/。,优选约3wt。/。-约6wt。/。的氧化钴,和基于载体约8wt。/。-约30wt%,优选约10wt。/。-约25wt。/。的氧化钼。该二氧化硅载体具有大孔体积和大孔径,所述的孔体积通过水银孔率法,使用ASTM方法no.D4284测量。孔体积范围为约0.6立方厘米/g-约2.0立方厘米/g,优选约1.0-约1.5。通过汞测量的中值孔径为约150A-约2000A,优选约150A-约IOOOA,更优选200A-约500A。具有希望中值孔径的二氧化硅载体是市场上可买到的。尽管不希望束缚于任何特定的理论,但认为本发明的二氧化硅载体具有大的孔隙大小和大的孔径,当与有机添加剂即有机配位体例如精氨酸、柠檬酸和脲混合时,导致对于烯烃饱和度具有希望的选择性的加氢脱硫催化剂,同时保持加氢脱硫催化剂对于石脑油原料的脱硫活性。该有机配位体可以使金属分布在整个二氧化硅载体中,这反过来是本发明催化剂呈现的选择性增加的一个因素。在加氢脱硫反应期间,该催化剂具有最小的扩散约束作用。这些二氧化硅载体的大孔允许气相石脑油范围烃的自由传送到达并离开加氢脱硫催化剂活性部位。这有助于充分利用本发明催化剂的低烯烃饱和度的内在特性。该二氧化硅载体也可以掺杂有基于IUPAC版式具有1-18族的周期表的第2-4族的金属,优选第2和4族的金属。这类金属的例子包括Zr、Mg、Ti,例如见TheMerckIndex,TwelfthEdition,Merck&Co.,Inc.,1996。正如以上所指出的,认为有机配位体是有助于使Co和Mo组份在二氧化硅载体上分布的有机添加剂。该有机配位体包含氧和/或氮原子,并包括单齿、双齿和多齿配位体。该有机配位体也可以是螯合剂。有机配位体包括羧酸、多羟基化合物、氨基酸、胺、氨基醇、酮、酯等的至少一种。有机配位体的例子包括菲咯啉、羟基喹啉、水杨酸、乙酸、乙二胺四乙酸(EDTA)、环己二胺四乙酸(CYDTA)、丙氨酸、精氨酸、三乙醇胺(TEA)、甘油、组氨酸、乙酰丙酮化物、胍、次氮基三乙酸(NTA)、柠檬酸和脲。尽管不希望束缚于任何特定的理论,但认为有机配位体与Co和Mo的至少一种形成络合物。这些Co和/或Mo-有机配位体络合物与二氧化硅表面相互作用,以在整个二氧化硅表面上使金属分散得更加均匀。催化剂制备和应用利用常规方法用Co和Mo盐水溶液浸渍二氧化硅载体。该有机配位体可以加入到盐的水溶液中,之后与该二氧化硅载体接触。用金属盐浸渍二氧化硅载体的一种实施方式是通过始润方法进行。在该方法中,使用常规方法,使包含金属盐和有机添加剂的水溶液与载体混合达到初始湿润点,即加氢处理催化剂制备、制造和使用领域中众所周知的技术。通过金属盐浸渍该二氧化硅载体的方式可以通过用钴盐和有机配位体的混合物使用始润法浸渍该二氧化硅载体,干燥该浸渍的载体,然后用钼盐溶液或者包含有机配位体的钼盐溶液浸渍该干燥的载体,达到初始湿润点。在另一个实施方式中,通过钴盐随后通过钼盐的浸渍次序可以相反。在又一个实施方式中,该载体可以用钴盐和钼盐加上有机配位体的混合物共浸渍到初始湿润。该共浸渍的载体可以干燥,并重复共浸渍过程。在又一个实施方式中,用钴盐、钼盐和有机配位体的混合物浸渍挤出的二氧化硅载体,并干燥浸渍的载体。如果希望,可以重复该处理。在所有上述的实施方式中,该有机配位体可以是单配位体或者可以是配位体的混合物。加热从反应混合物中分离的浸渍的二氧化硅载体,在约5(TC-约20(TC的温度下干燥以形成催化剂前体。干燥可以在真空下、或者在空气中或者在惰性气体例如氮中进行。在足以使金属氧化物、金属盐或者金属络合物转变为相应硫化物的温度和时间周期下,用基于存在的气体总体积浓度为约0.1体积%-约10体积%的硫化氢处理干燥催化剂前体,以形成加氢脱硫催化剂。可以通过在催化剂前体中或者在催化剂前体上引入硫化剂产生硫化氢。在一个实施方式中,硫化剂与稀释剂混合。例如,二甲基二硫化物能与石脑油稀释剂混合在一起。可以使用更少量的硫化氢,但是这会延长活化需要的时间。可以存在惰性载体,活化可以液相或者气相方式进行。惰性载体的例子包括氮和轻质烃例如甲烷。如果存在,则惰性气体作为气体总体积的一部分包括在内。温度为约15(TC-约7CKTC,优选约16(TC-约343°C。在活化期间,该温度可以保持恒定,或者可以通过从较低的温度开始并增加温度的方式升高。总压为最高达约5000psig(34576kPa),优选约Opsig-约5000psig(101-34576kPa),更优选约50psig-约2500psig(446-17338kPa)。如果存在液态的载体,则液时空速(LHSV)为约0.1hr"-约12hr",优选约0.1h"-约5hr"。该液时空速针对连续方式。然而,活化也可以以分批方式进行。总的气体速率为约89mVm3-约890m3/m3(500-5000scf/B)。催化剂可以原位或者非原位进行硫化。硫化可以通过使催化剂与硫化剂接触进行硫化,可以用液相或者气相的硫化剂进行硫化。或者,可以预硫化该催化剂从而在硫化期间可以产生H2S。在液相硫化剂中,要硫化的催化剂与包含硫化剂的载液接触。可以将硫化剂加入到载液中,或者该载液本身可以为硫化剂。该载液优选是未用过的烃物流,可以是要与加氢处理催化剂接触的原料,但是可以是任意的烃物流,例如来源于矿物(石油)或者合成源的蒸馏物。如果将硫化剂加入到载液中,则硫化剂本身可以是在活化条件下能够生成硫化氢的气体或者液体。例子包括硫化氢,氧硫化碳,二硫化碳,硫化物例如二甲基硫1化物,二硫化物例如二甲基二硫化物,和多硫化物例如二-叔-壬基多硫化物。存在于某些原料例如石油原料中的硫化物,可以作为硫化剂,并包括各式各样的能够生成硫化氢的含硫物质,包括脂族、芳香和杂环化合物。该干燥催化剂在硫化或者用于加氢脱硫之前不被煅烧。不煅烧意思是该干燥催化剂不被加热到大于约300°C,优选约20(TC的温度。通过不煅烧催化剂,在硫化或者用于加氢脱硫之前约60%-约100%的分散助剂保留在催化剂上。硫化之后,催化剂在加氢脱硫的条件下可以与石脑油接触。加氢脱硫的条件包括温度约150°C-约400°C,压力为约445kPa-约13890kPa(50-2000psig),液时空速约0.1-约12,处理气体速率为约89m3/m34々890m3/m3(500-5000scf/B)。在加氢脱硫之后,脱硫石脑油可被导出用于储藏或者进一步处理加工,例如汽提除去硫化氢。脱硫石脑油可用于与其他的石脑油沸程的烃共混以制造车用汽油。在以下实施例中描述选择的实施方案,包括优选实施方案。实施例1该实施例举例说明本发明负载于Si02上的CoMo催化剂的重要特征,它使加氢脱硫反应的质量传递速率最大化;也就是说使对于该反应的扩散限制减到最少。对于催化剂球和横截面直径约1.3-约2.4毫米的催化剂挤出物,约200A-约2000A的中值孔径可提供石脑油范围的含硫分子进出催化剂粒子的有效的通道。如附图1所示,减少二氧化硅载体的孔径导致对加氢脱硫反应的扩散作用受限,以及导致在给定的加氢脱硫水平下更大的烯烃饱和度。在附图la中,Y-轴是烯烃饱和度趋势,表示为在90%加氢脱硫转化率下的C5烯烃饱和度的百分比(两者都基于重量基础测量),X-轴是由水银孔率法测量的标称横截面直径为约1.3毫米-约2.4毫米的二氧化硅载体挤出物或者球的中值孔径(埃)。作为参照,在相同条件下测试的由Albemarle制造的商品催化剂(RT-225)(CoMo/Al203,1/16"圆柱挤出物)显示基于石脑油中硫和烯烃的重量,在90%加氢脱硫转化率下C5烯烃饱和度为14wt%。和参照催化剂对比,所有的显示于附图la中的基于二氧化硅载体的催化剂具有较低的烯烃饱和度。特别是,当二氧化硅载体的孔径大于200A时,烯烃饱和度减少到8%或者以下,比参照催化剂低得多。当中值孔径增加超过200A时,选择性继续改进。当中值孔径为约500A-2000A时,烯烃饱和度接近平坦/恒定,表明在使用的测试条件下扩散作用不再影响加氢脱硫反应,且孔径大小不再限制选择性。如附图lb所示,其为烯烃饱和度相对中值孔径倒数的曲线图,烯烃饱和度表明与二氧化硅载体的中值孔径倒数的线性关系。如附图lc所示,烯烃饱和度与孔径超过约150A的孔表面积的百分比也存在相关性。表1列出不同的二氧化硅载体和它们的中值孔径(由Hg孔隙率测定法)和表面积(由氮BET法测量)以及基于石脑油中硫的重量在90%加氢脱硫转化率下烯烃饱和度的百分数。该表给出了二氧化硅载体的实施例,和当用作加氢脱硫催化剂载体时它们的孔隙率和烯烃的选择性。表1.用作HDS催化剂载体的二氧化硅载体<table>tableseeoriginaldocumentpage14</column></row><table><table>tableseeoriginaldocumentpage15</column></row><table>如从表1中的数据可见,在90%加氢脱硫下具有较大的中值孔径的二氧化硅催化剂具有较低的烯烃饱和度(OSAT)。通常,具有类似表面积但是具有较大的孔体积的载体将具有较大的孔径,同时具有类似孔体积但是具有较大的表面积的载体将具有更小的孔径。附图2是说明通过水银孔率法测量的二氧化硅载体SC-593的孔径分布(PSD)曲线图。如附图2所示,该二氧化硅载体呈现单峰孔径分布。实施例2通过初始湿润技术制备CoMo/二氧化硅催化剂。通过在蒸馏水中溶解七钼酸铵四水合物和脲制备钼脲溶液,并浸渍在二氧化硅载体SC-593上,使得在最终的催化剂上的Mo03浓度基于催化剂的重量为21.3wt%。浸渍的固体在60'C真空下干燥。通过使碳酸钴水合物与柠檬酸(CoCA)、EDTA(CoEDTA)、次氮基三乙酸(CoNTA)或者乙二胺(CoEDA)反应制备四种另外的钴有机配位体水溶液。在MoUrea/SC-593上浸渍各钴有机配位体溶液,使得在最终的催化剂上的CoO浓度基于催化剂的重量为5.3wt%。该催化剂在6(TC真空下干燥。使用在H2和直馏石脑油中3%的H2S,在硫化条件下硫化二氧化硅负载型CoMo催化剂和市场上可买到的参照CoMo/Al203(SC-154MI化剂。用于催化剂评价的原料是C5-177。C(350。F)的基于原料重量包含1408ppmS和46.3wt。/。烯烃的FCC石脑油。在MCFB-48装置(多通道固定床-48反应器)中,在274。C(525。F)、220psig下,使用112评价催化剂。调整原料流速以实现基于原料重量有65wt。/。-95wt。/。的2-甲基噻吩脱硫。使用在线GCs和SCDs分析产品流。基于重量基础比较产物中Cs烯烃含量与原料中Cs烯烃含量,以计算烯烃饱和度的百分比(%OSAT)。在约30小时的催化剂在物流上运转之后,加氢脱硫%和OSAT。/。的结果稳定,并用于评价在不同的加氢脱硫转化率(。/。HDS)下烯烃的饱和度(。/。OSAT)。附图3对于这四种CoMo/Si02(SC-593)催化剂和工业参照CoMo/Al203催化剂,将烯烃选择性相对加氢脱硫活性作图。在90%的加氢脱硫转化率下,对于使用载体SC-593制备的CoMo/Si02催化剂,烯烃饱和度为约7.7wt%,比对于CoMo/Al203参照催化剂14wt。/。的烯烃饱和度少得多。实施例3通过用三种有机配位体:柠檬酸(CA)、次氮基三乙酸(NTA)和精氨酸(Arg)溶解七钼酸铵四水合物和碳酸钴水合物制备三种浸渍溶液。在所有的三种溶液中钴与钼的原子比为0.48。使用初始湿润浸渍技术在一步中在二氧化硅载体SC-741上浸渍CoMo-CA溶液,浸渍的量要使干燥的固体基于催化剂重量包含5.85wt。/。的CoO和23.4wt。/。的Mo03。浸渍的固体在6(TC真空下干燥。还在一步中浸渍CoMo-NTA溶液,并在6(TC真空下干燥。对于CoMo-Arg溶液,溶解度低,为了在催化剂上浸渍类似量的CoO(5.83wt.。/。)和Mo03(23.4wt%),需要二次浸渍(在第一次浸渍之后,在6(TC下进行真空干燥)。在SC-741上的CoMo/Si02催化剂的催化剂评价以类似如上所述的在载体SC-593上的CoMo/Si02催化剂的评价方式进行。附图4绘制对于这三种CoMo/Si02(SC-741)催化剂和工业参照CoMo/Al203催化剂的烯烃选择性相对加氢脱硫活性的变化曲线。在90%的加氢脱硫转化率下,对于使用载体SC-741制备的CoMo/Si02催化剂,烯烃饱和度为约7.6wt%,比对于CoMo/Al203参照催化剂14wt。/。的烯烃饱和度少得多。实施例4通过用两种有机螯合剂作为配位体:柠檬酸(CA)和精氨酸(Arg)溶解七钼酸铵四水合物和碳酸钴水合物制备两种浸渍溶液。在两种溶液种钴与钼的原子比为0.48。使用初始湿润浸渍技术在一步中用CoMo-CA溶液浸渍二氧化硅载体SC-743,浸渍的量要使基于催化剂重量干燥的固体包含5.2wt。/。的CoO和20.9wt。/。的Mo03。在60。C真空下干燥浸渍的固体。对于CoMo-Arg溶液,溶解度低,为了在SC-743载体上浸渍相同量的CoO和M003需要二次浸渍(在第一次浸渍之后,在6(TC下进行真空干燥)。如实施例2中所述的对于在载体SC-593上的CoMo/Si02催化剂的评价,进行类似的评价。附图5绘制了对于这两种CoMo/Si02(SC-743)催化剂和工业参照CoMo/Al203催化剂,烯烃选择性相对加氢脱硫活性的变化曲线。在90%的加氢脱硫转化率下,对于使用载体SC-743制备的CoMo/Si02催化剂,烯烃饱和度为约8.7wt%,比对于CoMo/Al203参照催化剂14wt。/。的烯烃饱和度少得多。实施例5该实施例涉及CoMo/Si02催化剂的高温老化和稳定性。以上制备的CoMo/Si02催化剂相对工业参照CoMo/Al203催化剂进行稳定性评价如下。用FCC石脑油原料,在274r(525。F)下,在约一个星期的MCFB-48装置试验之后,反应器床温升高到299。C(570。F),并在570°F下老化约3天。温度然后降低到274X:(525。F),评价催化剂性能(烯烃饱和度和加氢脱硫活性)。反应器床温然后再一次升高到316°C(600°F),并在316i:下老化另外2天。温度然后再一次降低到274°C(525°F),评价催化剂性能(烯烃饱和度和加氢脱硫活性)。在附图6中对于在二氧化硅载体SC-593、SC-741和SC-509-5S上的CoMo/Si02催化剂绘图评价结果,并与参照催化剂CoMo/Al203相比。从附图6中显而易见,在二氧化硅载体上的CoMo催化剂至少如参照催化剂CoMo/Al203—样稳定。实施例6通过将七钼酸铵四水合物和碳酸钴水合物溶解在柠檬酸水溶液中制备浸渍溶液。钴与钼的原子比是0.48。使用初始湿润浸渍技术在一步中用CoMo-CA溶液浸渍二氧化硅载体SC-745、746、747和748,浸渍的量要使基于催化剂重量干燥的固体包含5.2wt。/。的CoO和20.9wt。/。的Mo03。浸渍的固体在6(TC真空下干燥。如上所述,类似于对在载体SC-593上的CoMo/Si02催化剂的评价,进行评价。附图7绘制对于这四种CoMo/Si02催化剂(SC-745、746、747、748)催化剂和工业参照CoMo/Al203催化剂的烯烃选择性相对加氢脱硫活性的变化曲线。在90%的加氢脱硫转化率(基于重量基础)下,在SC-747和SC-748上的CoMo/Si02显示出约8%的烯烃饱和度,同时其他的两种催化剂显示出9wty。-9.3wt。/。的烯烃饱和度,它们比参照催化剂CoMo/Al203的14wt。/。的烯烃饱和度少得多。实施例7该实施例涉及浸渍的二氧化硅载体的空气干燥相对真空干燥的比较。通过将七钼酸铵四水合物和碳酸钴水合物溶解在柠檬酸(CA)水溶液中制备浸渍溶液。在这些溶液中钴与钼的原子比为0.48。使用初始湿润浸渍技术在一步中用CoMo-CA溶液浸渍二氧化硅载体SC-593,浸渍的量要使基于重量基础干燥的固体包含5.3wt。/。的CoO和21.4wt%的Mo03。浸渍的固体在6(TC真空下干燥。在另外的使用相同的CoMo-CA溶液和二氧化硅载体SC-593的制备中,在ll(TC下空气中干燥浸渍的固体。在第三种制备中,在18(TC下空气中干燥浸渍的固体。如上所述类似于对在载体SC-593上的CoMo/Si02催化剂的评价,进行评价。附图8绘制了对于在三种不同的条件下干燥的CoMo-CA/Si02催化剂,烯烃选择性相对HDS活性的变化曲线,并与工业参照CoMo/Al203催化剂比较。在90%的加氢脱硫转化率(基于重量基础)下,这些CoMo/Si02催化剂显示出类似的选择性(7.7wt。/。的烯烃饱和度),它们比基于参照催化剂CoMo/Al203的14wt。/。的烯烃饱和度少得多。这些实验表明在11(TC-18(TC下在空气中干燥的CoMo/Si02催化剂具有类似于在60"C真空下干燥的CoMo/Si02催化剂在汽油加氢脱硫中的选择性。实施例8在该实施例中举例说明更小的孔径的影响。通过将七钼酸铵四水合物和碳酸钴水合物溶解在柠檬酸水溶液中制备浸渍溶液。钴与钼的原子比是0.48。使用初始湿润浸渍技术在一步中用CoMo-CA溶液浸渍二氧化硅载体SC-592,浸渍的量要使基于催化剂重量干燥的固体包含5.6wt。/。的CoO和22.4wt。/。的Mo03。对于二氧化硅载体SC-595,使用较少的浸渍溶液以使最终的干燥固体基于催化剂重量包含3.8wt%的CoO和15.3wt。/。的Mo03。在60"C真空下干燥两种浸渍的固体。如上所述类似于对于在载体SC-593上的CoMo/Si02催化剂的评价,进行评价。附图9绘制对于这两种CoMo/Si02催化剂(SC-592、595)催化剂和工业参照催化剂CoMo/Al203的烯烃选择性相对加氢脱硫活性的变化曲线。在90%的加氢脱硫转化率下,在SC-592上的CoMo/Si02显示出约9.5%的烯烃饱和度,同时在SC-595上的CoMo/Si02显示出约10.3%的烯烃饱和度。SC-595是1/16"的圆柱,具有双峰孔径分布,中心孔为约35A以及略微大于100A。附图10是通过N2吸附分析得到的SC-595的孔径分布曲线。由于SC-595为小孔,用压汞法使用N2吸附。这些结果方向性表明具有更小的孔的载体会导致比大孔载体更大的烯烃饱和度。因此,如上述的实施例所示,SC-592和595的更小的孔导致相对于大孔二氧化硅负载型催化剂较差的选择性。然而,该实施例小孔的二氧化硅仍呈现比参照催化剂RT-225更好的选择性。权利要求1.一种制造适用于石脑油加氢脱硫的催化剂的方法,包括(i)用(a)钴盐、(b)钼盐和(c)至少一种有机添加剂的水溶液浸渍基于二氧化硅的二氧化硅含量至少约85wt%、孔容为约0.6-约2.0立方厘米/g、中值孔径为约150-2000的二氧化硅载体,以形成催化剂前体;(ii)在小于约200℃的温度下干燥该催化剂前体以形成干燥催化剂前体;和(iii)硫化所述干燥催化剂前体以形成催化剂,条件是该干燥催化剂前体或者催化剂在硫化或者用于加氢脱硫之前未煅烧。2.—种用于基于石脑油重量的烯烃含量至少约5wtM的石脑油加氢脱硫的方法,包括(i)使石脑油与选择性的加氢脱硫催化剂在加氢脱硫条件下接触,其中通过以下方法制备选择性的加氢脱硫催化剂,即用(a)钴盐、(b)钼盐和(c)至少一种有机添加剂的水溶液浸渍基于二氧化硅重量的二氧化硅含量至少约85wt。/。、孔容为约0.6-约2.0立方厘米/g、中值孔径为约150A-约2000A的二氧化硅载体,以形成催化剂前体;(ii)在小于约20(TC的温度下干燥该催化剂前体以形成干燥催化剂前体;和(iii)硫化所述干燥催化剂前体以形成催化剂,条件是该干燥催化剂前体或者催化剂在硫化或者用于加氢脱硫之前未煅烧。3.权利要求1或者2的方法,其中该二氧化硅载体的孔体积为约1.0立方厘米/g-约1.5立方厘米/g。4.权利要求1或者2的方法,其中中值孔径为约150A-约IOOOA。5.权利要求1或者2的方法,其中该石脑油是FCC石脑油、蒸汽裂化石脑油或者焦化石脑油的至少一种。6.权利要求1或者2的方法,其中基于石脑油,该石脑油的烯烃含量为约5wt。/。-约60wt%,含氮量为约5ppmw-约500ppmw,硫含量为约300ppmw-约7000ppmw。7.权利要求1或者2的方法,其中该二氧化硅载体包含至少约90wt。/。的二氧化硅。8.权利要求1或者2的方法,其中钴盐和钼盐的量要足以使催化剂载体基于二氧化硅载体包含约2wt。/。-约8wt。/。的氧化钴和约8wt%-约30wt。/。的氧化钼。9.权利要求1或者2的方法,其中该有机添加剂包含氧原子、氮原子或者两者。10.权利要求1或者2的方法,其中该有机添加剂是有机配位体。11.权利要求10的方法,其中该有机配位体是单齿、双齿或者多齿配位体。12.权利要求11的方法,其中该有机配位体是羧酸、多元醇、氨基酸、胺、酰胺、氨基醇、酮或者酯的至少一种。13.权利要求12的方法,其中该有机配位体是菲咯啉、羟基喹啉、水杨酸、乙酸、乙二胺四乙酸(EDTA)、环己二胺四乙酸(CYDTA)、丙氨酸、精氨酸、三乙醇胺(TEA)、甘油、组氨酸、乙酰丙酮化物、胍、次氮基三乙酸(NTA)、柠檬酸或者脲的至少一种。14.权利要求1或者2的方法,其中该有机添加剂是金属分散助剂。15.权利要求10的方法,其中该有机添加剂是螯合剂。16.权利要求1或者2的方法,其中该催化剂前体在约5CTC-200"C的温度下干燥。17.权利要求1或者2的方法,其中该催化剂前体在有至少一种硫化剂参与情况下可以原位或者非原位硫化。18.权利要求17的方法,其中硫化剂是基于存在的气体总体积浓度为约0.1体积%-约10体积%的硫化氢。19.权利要求2的方法,其中加氢脱硫的条件包括温度约150°C-约400°C,压力为约445kPa-约13890kPa(50-2000psig),液时空速约0,1-约12,氢处理气体速率为约89m3/m3-约890m3/m3(500-5000scf/B)。20.权利要求1或者2的方法,其中该干燥催化剂前体或者硫化的催化剂在硫化或者用于加氢脱硫之前不被加热到大于约30(TC的温度。全文摘要描述了加氢脱硫FCC石脑油的方法。更特别地,Co/Mo金属氢化组份在有有机配位体参与情况下负载在二氧化硅或者改性二氧化硅载体上,并硫化以制造催化剂,然后其用于加氢脱硫FCC石脑油。该二氧化硅载体具有确定的孔径分布,其使烯烃饱和度最小化。文档编号B01J23/882GK101374932SQ200780003235公开日2009年2月25日申请日期2007年1月12日优先权日2006年1月17日发明者乔纳森·马丁·姆肯纳基,安东尼·F·沃尔普,戴维德·迈克·洛维,托马斯·利西尔·哈尔贝特,斯图尔特·L·舍莱德,柏传盛,瓦莱里·索科洛夫斯基,萨博陀·米赛欧,贾森·吴,军韩申请人:埃克森美孚研究工程公司