用于燃料电池的空气进气口的过滤器组件和系统的利记博彩app

文档序号:4989793阅读:296来源:国知局
专利名称:用于燃料电池的空气进气口的过滤器组件和系统的利记博彩app
技术领域
本发明涉及用来从空气入口中去除颗粒和化学污染物的空气过滤系统。具体来说,本发明涉及一过滤器组件,其从燃料电池的空气入口中去除颗粒和化学污染物,过滤器组件还提供消声功能。
背景技术
自从电发明以来,人们一直在寻求实用和有效的发电方法。水力发电站、燃煤火力发电厂和核电厂以及电池早就已被用来供应人们对电力的需要。采用燃料电池来发电是相当近期的成果,其迅速地得到商业和居家应用的认可。与传统的燃煤发电相比,它们相当干净和有效。燃料电池是电化学装置,它有效地将燃料的化学能直接地转换成电能。它们化学地化合燃料和氧化剂而不发生燃烧,由此,消除许多传统燃烧发电系统中的无效性和大部分的污染。
燃料电池的操作原理很象一电池。然而,与电池不同,一燃料电池不会逐渐变弱或要求补充。只要有燃料供应给它,它将连续地产生电能形式的能量和热量。一般来说,燃料电池包括两个夹在电解液周围的电极(一阳极和一阴极)。例如,对于一PEM的燃料电池,氢和氧分别通过阳极和阴极,在两个电极之间产生一电压,形成电力和热量,并产生一次的副产物的水。氢燃料被供应到燃料电池的阳极。有些燃料电池直接消耗氢气,而其它的燃料电池使用一燃料变换器,以从碳氢化合物的燃料中萃取氢,例如,天然气、甲醇、乙醇,或汽油。氧在阴极处进入到燃料电池。氧可以纯氧形式供应,或可直接来自于大气中。
燃料电池使用催化剂来致使氢原子分裂成一质子和电子,各个质子和电子取不同的路径到阴极。质子穿过电解液。电子产生一可被用作为电源的有用的电流,然后,返回到阳极,它们与氢质子重新结合,与氧一起形成水。
燃料电池的特征在于电解液的材料,其夹在阴极和阳极之间,并用作离子交换的桥梁。目前主要有五种已知类型的燃料电池。碱性燃料电池(AFCs)包含液体的碱性电解液,并主要地用于航天飞行任务的应用中。质子交换膜燃料电池(PEMFCs)包含一固体的聚合物电解质。它们在低温下操作,具有高的功率密度,使其能快速改变其输出,以满足切换功率的要求,适合用于移动的和固定的应用中,例如,向车辆或建筑物供电。磷酸燃料电池(PAFCs)利用磷酸电解液,并普遍地用于商业中的发电。碳酸盐熔盐燃料电池(MCFCs)包含一碳酸盐电解质,在约650℃操作温度下其变得熔化。固体氧化物燃料电池(SOFCs)使用一陶瓷电解质材料,并在高达约1000℃温度中进行操作。MCFCs和SOFCs可使用一氧化碳作为燃料。
燃料电池具有广泛范围的潜在的应用。它们通过固定的发电厂可为家庭、商业和工业产生电力。燃料电池产生一直流电(dc),它必须转化为交流电,以用于电网的应用或用于大部分消费者的产品中。然而,未来的燃料电池可运行在电网连接和非电网连接的模式中。对于居家的应用,可建立较小的燃料电池发电厂,以生产热能和电力。它们也可用来向未能利用一次电网电力的远处的居住实体提供电力,就有可能不必建立与电网的连接。
除了较大规模发电用途之外,燃料电池可取代对消费者的电子产品供电的电池,例如,笔记本电脑、移动电话以及诸如此类的电子产品,并甚至可经微加工而直接对计算机芯片供电。燃料电池的其它有前景的商业应用是,它们可能替代车辆和运输应用中的内燃机。燃料电池的应用实际上是无限的。
所有上述的已知燃料电池的结构对作为整体成分的氧具有共同的需要,以执行电池的化学过程。其它的动力源,例如,内燃机,包括柴油机也需要有氧气。对于大多数的商业应用来说,这样的氧的供应希望直接来自于大气。然而,在今日的世界中,人们已公认所有大气中的空气均有某种程度的污染物呈现在其中。这样的污染物可以是相当大,诸如疏松碎片、昆虫、树上的开花等,或者可以是类似于悬浮在大气中的小的颗粒,诸如尘埃、树上的花粉、烟雾,或烟颗粒。化学污染物也广泛存在于空气中,不管是人为污染的结果还是自然发生的污染。典型的化学污染物可包括挥发性的有机化合物,例如,芳烃、甲烷、丁烷、丙烷和其它的碳氢化合物,以及氨,氮的氧化物、臭氧、烟雾、硫的氧化物、一氧化物、硫化氢等。这样的污染物可有意地(诸如战争环境或由恐怖分子制造)或无意地出现。当燃料电池用于移动使用中,其使燃料电池承受许多变化的大气条件时,解决后一种要求变得特别地尖锐。
由于有效的燃料电池的操作依赖于精致地平衡的化学反应,被燃料电池采用的空气中的污染物,可对燃料电池的操作带来显著不利的影响,根据其特性,甚至可造成燃料电池中断操作。因此,重要的是,燃料电池系统包括一过滤系统,其设计来消除有害的污染物,并能使燃料电池在一广泛范围的使用环境中使用。重要的是,其它的发电设备也应具有用来消除有害污染物的过滤系统。
为了获得燃料电池和其它设备所必要的氧气量,以产生要求的能量输出,要求含有携带氧气的空气通过空气移动设备,诸如压缩机,或位于提供给燃料电池或其它设备的空气流内的风扇。遗憾的是,通常的压缩机产生显著的不理想的且烦人的噪音水平。因此,要求在发电系统中减小并最大程度地降低由压缩机产生和/或通过压缩机传输的并返回到环境中的噪音。由于通常也要求减小系统的尺寸,所以,系统的过滤和消声装置最好在实体上尽可能减少,甚至最好组合在单一的元件和壳体内。本发明着力于上述的诸需要和要求,提供一有效和安静的系统用于广泛的用途,包括燃料电池系统。
因此,需要有一诸如燃料电池的发电器,其能在具有大范围污染物的环境中发挥功能。

发明内容
本发明为过滤诸如燃料电池之类的发电系统的入口空气提供过滤器组件。本发明着力于与用于发电的燃料电池技术的具体实施有关的若干个问题,涉及的技术不论是应用于大型固定的发电装置、车辆、诸如笔记本电脑或移动电话之类的移动轻巧的设备,还是小型的诸如雷达探测器或传感器之类的固定设备。这些应用可获取的电力小到1KW,大到几个兆瓦。本发明的过滤器组件着力于所有这些应用中共同的需要,即,对燃料电池提供无污染物的氧化剂的需求,或至少提供具有降低污染物水平的氧化剂。
要求从入口空气中除去污染物的量和类型,取决于最初存在于入口空气(一般是,燃料电池周围的大气或环境)中的污染物的量和类型。在过滤之前,根据燃料电池的位置,或至少空气入口的位置,呈现在入口气流中的污染物的量和类型变化很大。例如,某些环境具有大量的诸如尘埃、烟雾、烟气或花粉之类的颗粒污染物,而其它的一些环境具有大量的诸如氨、一氧化碳、二氧化硫,或硅树脂之类的化学污染物。一般来说,没有两个环境具有相同的污染物分布。
要求从入口空气中除去污染物的量和类型,还取决于燃料电池的类型。任何类型的燃料电池或燃料电池的堆叠可采用本发明的过滤器组件,例如,PEM燃料电池、固体氧化物燃料电池、磷酸燃料电池,以及碳酸盐熔盐燃料电池。通常,诸如固体氧化物燃料电池的较高温下操作的燃料电池,较之诸如PEM燃料电池的低温下操作的燃料电池,可允许较高水平的有机污染物。
因此,本发明的一个方面是对燃料电池系统的入口空气提供过滤。本发明的组件对进入的气流提供颗粒过滤和/或化学品过滤,以提供纯化的氧化剂供应。由于大部分燃料电池系统包括诸如压缩机之类的某些类型的空气移动设备,其可将污染物引入到气流中,本发明也致力于空气移动设备下游的空气的过滤。
遗憾的是,空气移动设备通常在交换其移动空气量时产生大的噪音。正是这些运动部件,例如,转子、叶轮、辦轮、翼片、活塞以及空气移动设备的其它各种零件,产生声波或频率范围在3赫兹至30,000赫兹内的噪音,有时频率高达50,000赫兹,在一米内测量达85至135分贝的水平。尽管并不是所有从空气移动设备中发射出的噪音都是不可接受的,但本发明的各种组件针对噪音分布中的最烦人的部分来减小其噪音。
在一特定的实施例中,本发明涉及一发电的系统。该系统包括一空气过滤器组件,它包括一外壳和一在外壳内的过滤器元件。外壳具有一入口和一出口,入口接收脏空气到过滤器组件,而出口从过滤器组件提供干净空气。过滤器元件包括至少一个物理的或颗粒的过滤器部分,以从脏空气中除去颗粒的污染物。过滤器元件还可包括一化学过滤器部分,以从脏空气中除去化学品的污染物。过滤器组件还包括一容纳在外壳内的声音抑制或消除的元件。声音抑制元件对通过过滤器组件的声音提供宽频带的衰减。空气过滤器组件可操作地连接到诸如燃料电池的发电源上。
该系统通常还包括诸如压缩机或鼓风机之类的空气移动设备,以向燃料电池提供增强的空气流。过滤器组件还特别布置来减小由任何这样设备发出的噪音水平。
本发明提供一过滤器组件,该过滤器组件具有一外壳和一在外壳内的过滤器元件。外壳具有一入口和一出口,入口接收脏空气到过滤器组件,而出口从过滤器组件提供干净空气。过滤器元件通常还具有声音抑制元件,例如,共鸣器、声音堵塞、全堵塞、吸音材料,其衰减或减小通过外壳的声音,在一米内至少衰减3分贝,较佳地至少达6分贝。
过滤器元件还包括一颗粒过滤器部分,一化学过滤器部分,以及一供选择的声音抑制元件,所有这些均为过滤器元件。声音抑制元件提供在一米内至少6分贝的宽频带的声音衰减。颗粒过滤器部分从进入过滤器元件的脏空气中去除颗粒污染物,而化学过滤器部分(如果存在的话),从进入的脏空气中去除化学污染物。颗粒过滤器部分可径向地定位在声音抑制元件的附近,或形成为声音抑制元件的一部分。在某些结构中,颗粒过滤器部分可构造成提供直通的流动。
这样的过滤器组件或过滤器元件可用于任何的工艺过程,或产生噪音或声音、以及从较清洁的入口气体(例如,空气)中得益的系统。一燃料电池是采用本发明的过滤器组件的发电系统。此外,过滤器组件或过滤器元件可用于其它的发电系统,例如,柴油机或汽油机。
附图的简要说明

图1是包括本发明的过滤器组件的一发电系统的示意图;图2是根据本发明的原理构造的图1的过滤器组件的第一实施例的前平面图;图3是图2的过滤器组件的局剖的立体图;图4是图3的过滤器组件的局剖的前平面图;图5是根据本发明的原理构造的图3和4的过滤器组件的过滤器元件部分一实施例的立体图;图6是用于图5的过滤器元件中的过滤器介质的一部分的示意的立体图;图7是沿图5的线5-5截取的图5的过滤器元件的局部剖视图;图8是用于本发明的过滤器组件中的类似于如图5所示的一过滤器元件的第二实施例的立体图;图9是用于本发明的过滤器组件中的类似于如图7所示的一过滤器元件的第三实施例的局部剖视图;图10是用于本发明的过滤器组件中的类似于如图7和9所示的一过滤器元件的第四实施例的局部剖视图;图11是对于图3和4的过滤器组件作的声音对频率的衰减曲线图;
图12是具有图1的过滤器组件的外部结构的过滤器组件的第二实施例的局剖的前平面图;图13是图12的过滤器组件的化学吸收元件部分的局剖的剖视图;图14是图13的化学吸收元件的端帽的右端视图;图15是根据本发明的原理构造的图1的排出组件的一实施例的前平面图;图16是沿图15的线6-6截取的图15的排出组件的剖视图;图17是根据本发明的原理构造的图1的排出组件的第二实施例的侧平面图;图18是图17排出组件的前平面图;图19是沿图18的线19-19截取的图17和18的排出组件的剖视图;图20是沿图17的线20-20截取的图17、18和19的排出组件的剖视图;图21是根据本发明的原理构造的过滤器组件的一第三实施例的前平面图;图22是图21的过滤器组件的局剖的前平面图;图23是图21和22的过滤器组件的过滤器和噪音抑制元件(不带外壳)的截面图;图24是类似于图23的过滤器组件的过滤器和噪音抑制元件的截面图;图25是对于图21至24的过滤器组件作的声音对频率的衰减曲线图;图26是小容量空气处理系统的立体图,其包括空气处理设备、入口过滤器组件和排出过滤器组件;图27是图26的入口过滤器组件的局剖的立体图;以及图28是图26的排出过滤器组件的局剖的立体图。
具体实施例方式
参照诸附图,其中,在全部的若干个视图中,相同的标号代表相同的零件,在图1中示意地示出一过滤器组件10,其示为与设备组件101组合。本发明的过滤器组件10的一个用途是从被设备101使用的空气中去除污染物。过滤器组件10的另一用途是抑制从设备101产生和/或发射的噪声或声音。
如图1所示,大气中的或周围的空气50进入和通过入口12被过滤器组件10接收。在进入过滤器组件10之前,大气中的空气50通常包含各种物理的(例如,颗粒)和化学的污染物,这里通称脏空气。过滤器组件10构造成从脏空气50中去除各种污染物,以提供从过滤器组件10的出口14出来的干净的空气54。干净空气54是用于设备101的吸入空气。在图1所示的实施例中,设备101包括一燃料电池102。燃料电池102使用来自于入口空气54的氧,其与诸如氢(H2)之类的燃料源组合,以产生电力。水(H2O)是发生在燃料电池102内的氧和氢反应的副产物。
本发明的过滤器组件10具有至少一个过滤器元件15,以去除颗粒和/或化学污染物。过滤器元件15具有一脏空气入口侧13和一干净空气出口侧17。外壳11将过滤器元件15保持在其中。入口12与脏空气入口侧13流体连通,外壳出口14与过滤器元件15的干净空气侧17流体连通。外壳11可以是变化的结构,并较佳地包括至少两个分离的部分,这样,可获得通到包含的过滤器元件15的通道。多个部分可通过卡锁、夹具、带或其它合适的固定机构而保持在一起。一个用来接合过滤器组件的两个外壳部分的较佳的系统,可以是如美国专利No.6,051,042(Coulonvaux)所公开的那种系统。其它较佳的系统公开在美国专利No.5,755,842(Patel等人)。
当脏空气通过外壳11内的入口12,并前进到过滤器元件15的脏空气侧13时,大气中的空气50进入过滤器组件10。当空气通过过滤器元件15到器干净空气侧17时,污染物被过滤器元件15去除而提供过滤过的空气。由标号54表示的过滤过的空气通过外壳出口14退出过滤器组件10,并被设备101采用。从空气中去除污染物后提供过滤过的空气54的类型和数量,取决于呈现在大气中的空气50内的污染物,过滤器元件15的结构,所采用燃料电池的类型,以及燃料电池操作的环境的温度。
过滤器组件10还包括一噪音抑制元件19,以减小或抑制从设备101中发出的并返回通过过滤器组件10的噪音或声音。抑制元件19可定位在外壳11内,在某些实施例中,抑制元件19由外壳11的结构和形状限定。
为了便于提高燃料电池内的化学反应的速率,通常要求在加压下引入携带氧的空气54到燃料电池内,或者,比仅将燃料电池“暴露”在大气压力下的空气中获得的速率大的速率引入到燃料电池内。为此目的,可采用一压缩机或鼓风机。因此,根据一种结构,设备101包括一压缩机104,其对燃料电池102提供空气,以用于催化反应。压缩机104定位在燃料电池102的上游。所谓的术语“上游”是指空气从压缩机104流到燃料电池102;相反地,燃料电池102定位在压缩机104的“下游”。包括噪音抑制元件19的过滤器组件10也设置在压缩机104的上游。
在压缩机104的操作过程中,通常呈现在压缩机104内的快速运动的叶轮、转子或活塞,发出声音,一般称之为噪音。该噪音的频率根据压缩机的类型和结构而变化,但通常在3赫兹至30,000赫兹的范围内,有时高达50,000赫兹,在一米距离内达到85至135分贝的水平。一种特殊类型的压缩机104是“Lysholm”双螺杆式压缩机,其可从瑞典的Opcon Autorotor AB公司购得,这种压缩机操作并产生约160至1100赫兹范围的噪音输出。每一压缩机具有一与其操作相关的噪声或频率分布;这种分布将取决于压缩机(包括压缩机的具体的型号)的类型,并可依赖于诸如输入和输出流量和环境温度之类的变量。
应该理解的是,将在下文中描述的这种过滤器结构,只是说明实施本发明的原理的这种结构的具体的实施例,且本发明的范围并不受特别描述的结构的细节的限制。
来自压缩机104的噪音可沿任何方向传播,例如,沿下游通过燃料电池102,以及沿上游通过过滤器组件10。过滤器组件10,特别是利用抑制元件19的过滤器组件,减小在压缩机104的上游前进的声级,并在过滤器组件入口12外的一米内减小至少达3分贝,通常,至少达6分贝,最好至少达25分贝。下面将描述包括过滤器元件15和噪音抑制元件19在内的过滤器组件10的各种具体的结构。
过滤器组件的第一实施例根据本发明原理构造的过滤器组件的第一实例示于图2中。为了便于识别,图2的实施例中与上述图1视图中的元件相同或其执行相同的功能的元件,在图2中,其后将接字母标号(即,“a”)。当描述其它的实施例时,例如,图12的实施例,将采取同样的方法,其中,标号后接字母(即,“b”)。
图2和3示出一用于旅客汽车中的燃料电池内的过滤器组件10a,其采用一堆叠PEM燃料电池,提供200KW的总电力输出。应该理解的是,过滤器组件10a是特别设计用于这样的应用,即,一在200KW上运行的汽车,以及用于其它应用的过滤器组件,例如,其它的车辆、固定的单元,或便携的电子设备,它们设计用于这样的应用,在不脱离过滤器组件10a的总体特征的前提下,它们可具有不同的尺寸、形状和结构,以及操作参数。
相对于图3的视图,图2的过滤器组件的视图表示为绕其中心纵向轴线转动180°。过滤器组件10a包括一大致圆柱形的外壳11a,其形成有一空气入口12a和一空气出口14a。脏空气50通过入口12a进入过滤器组件10a,干净空气54通过出口14a退出。外壳11a的外部可包括安装支架31a、32a,以相对于周围设备和结构定位和固定过滤器组件10a。一传感器接纳端口35a位于外壳11a的外面并靠近出口14a。过滤器外壳11a可呈现为除圆柱形之外的好多种实体形状;例如,过滤器组件10a可具有卵形或长圆形、正方形、矩形,或任何其它封闭形的横截面。
外壳11a可由与诸如入口12a、出口14a等所要求的元件一起形成的任何材料制成。用于外壳11a的实用的材料的实例包括有金属,或塑料或其它的聚合物材料。通常,外壳11a可以是热塑性或热固性的聚合物材料,例如,环氧、聚碳酸酯、聚乙烯以及诸如此类的材料。这些材料可包括在聚合物材料内用诸如平纹棉麻织物或纤维进行加强,以增加外壳11a的强度。在某些实施例中,当制作外壳11a或过滤器元件10a的任何其它零件或元件时,可要求避免硅树脂脱模剂,因为硅树脂的烟气对燃料电池有害。或者,可以冲洗或净化外壳11a,以去除诸如脱模剂之类的任何的污染物。
返回到外壳11a结构上来,接收器端口35构造成合作地接收一在外壳内部腔内、可监视要求的诸参数的传感器。可被要求用于传感器接收器端口35a的一传感器的实例是空气质量流传感器,通常称之为流量传感器或流量计。一空气质量流传感器可被用来监视通过出口14a的空气质量。通过出口14a的空气质量直接涉及到通过整个系统的空气质量,该系统包括过滤器元件10a和图1的设备101(诸如压缩机102、燃料电池104,以及可供选择的排出装置103)。通过监视任何的变化,特别是,在流动通过过滤器元件10a的空气质量流中的参数的减小,可估计过滤器元件10a内任何物理的或颗粒过滤器或系统中任何其它设备的寿命。或者,一传感器可用来监视通过出口14a的化学污染物的水平或累积量。通过监视通过出口14a的化学污染物量,可估计在过滤器元件10a内的任何化学过滤器的余下的寿命。
一较佳的空气质量流传感器的实例是“热线式”传感器,其利用通过热线的电阻的变化来确定在热线上流过的空气量。这种热线式传感器例如可从St.Paul,MN的TSI公司购得。可监视污染物累积或总的污染物的装置的实例包括授予Dallas等人的美国专利Nos.5,976,467和6,187,596中公开的那些装置。
过滤器元件10a的各个部分示于图3中,其中,示出过滤器元件10a的剖开视图。可操作地定位在外壳11a内的是过滤器元件15a,以及一噪音抑制元件19a。
噪音抑制元件19a构造成衰减通过由外壳11a限定的内部腔的声波。在一优选的实施例中,抑制原件19a包括一第一共鸣器21和一第二共鸣器22。在这里所述的本发明的优选的实施例中,第一共鸣器21构造成在约900赫兹的峰值频率处衰减声音,而第二共鸣器22构造成在约550赫兹的峰值频率处衰减声音。涉及声抑制元件19(图1)、抑制元件19a和共鸣器21、22的详细信息将在下文中作更为详细的介绍。
过滤器组件10a的较佳的结构具体特征示于图4中。过滤器组件10a,具体来说,外壳11a具有不大于约1500毫米的长度“L”,较佳地不大于约1000毫米。在一优选的实施例中,长度“L”不大于32英寸(813毫米)。通常为圆柱形的过滤器组件10a具有一不大于约18英寸(460毫米)的直径“D”,较佳地不大于约16英寸(406毫米)。在一优选的实施例中,直径“D”不大于10英寸(254毫米)。长度“L”和直径“D”通常取决于使用该过滤器组件的系统内过滤器组件10a所分配占据的容积量。这种系统的要求可受系统被应用的空间要求的支配。
空气通过入口12a流入过滤器组件10a,入口具有约1至8英寸(25至203毫米)的直径“DI”。在一优选的实施例中,入口直径“DI”约为4英寸(102毫米)。入口12a的长度“LI”是从外壳11a的入口端量测到大约为过滤器元件15a的脏空气侧的距离,入口12a的长度通常约为1至8英寸(25至203毫米)。在一优选的实施例中,“L1”约为3.5英寸(90毫米)。出口14a具有约为1至8英寸(25至203毫米)的直径“D0”。在一优选的实施例中,外直径“D0”约为4英寸(102毫米)。
过滤器元件15a在外壳11a内占据一体积,其具有约为4至8英寸(102至203毫米)的长度“F”。由过滤器元件15a占据的特定的长度“F”受到下列特征的支配所用的过滤器元件的类型,外壳11a分配给抑制元件19a的容积(图3),以及外壳11a的总长“L”。在一优选的实施例中,长度“F”约为7.3英寸(185毫米)。通常过滤器元件15a占据其中过滤器元件15a定位的直径D的大部分。
噪声抑制元件19a占据外壳11a的其余的长度的大部分。在如图3和4所示的实施例中,噪声抑制元件19a包括一第一共鸣器21和一第二共鸣器22。第一共鸣器21占据约为6.4英寸(163毫米)的长度“R1”,而第二共鸣器22占据约为12.2英寸(310毫米)的长度“R2”。所用共鸣器的数量和由共鸣器占据的特定的长度(例如,R1和R2)是所要求共鸣器声衰减特性的函数。即,由共鸣器所衰减的声音的频率依赖于共鸣器的结构,特别是,占据的体积。如上所述,涉及声衰减和共鸣器的其它的信息将在下面提供。
在过滤器组件10a外部的安装支架31a、32a间隔为18.5英寸(470毫米),其用“LB”来表示。第一安装支架31a离入口12a间距8.9英寸(227毫米),用“LA”表示。应该理解的是,任何安装支架的定位取决于过滤器组件10a的总长“L”,其相对于周围设备或结构所要求的定位,以及内部折流板或外壳11a内的其它结构的定位。
过滤器组件的物理或颗粒去除部分本发明的过滤器组件10,特别是过滤器元件15,包括一用来从流入空气50中去除诸如颗粒的物理污染物的一个部分。应该理解的是,在空气到达过滤器组件10之前,大的物品,例如,树叶、鸟、啮齿动物以及其它的碎物,将通过筛子、网眼、分离器或诸如此类的装置,从进入的空气50中去除。可纳入一水或液体分离器,在空气进入过滤器组件10之前,从空气50中去除水或流体,这在该技术领域内是众所周知的。
在过滤器组件10内可采用一系列颗粒去除部分,每一后继的颗粒去除部分去除越来越小尺寸的颗粒。或者,可使用单一的颗粒去除部分。
通常,颗粒去除部分包含一诸如包括纤维性材料的纤维垫或棉网的过滤器介质,以用来去除颗粒。由颗粒去除部分去除的颗粒或微粒的实例包括有尘埃、泥土、花粉、柴油微粒、昆虫、木片和锯末、金属切屑、宇宙尘埃等。某些微粒因其物理的颗粒和颗粒的分子结构,对燃料电池的操作可具有双重的危害;例如,石灰石是碱性材料,其可危害PEM燃料电池内的呈酸性的电解液。其它类型的燃料电池可受到酸性污染物的有害影响。重烃,特别是存在于马路沥青中的重烃,也可有害地影响燃料电池的操作。
过滤器介质可用多种方式进行处理,以提高其去除微小颗粒的效率;例如,可使用静电处理的介质,其可以是纤维的或合成的介质,或两者的组合,并具有一层或多层的毫微纤维,或者,为本技术领域内的技术人员熟知的其它类型的介质。有关可被使用的毫微纤维的类型的细节可参见美国专利No.4,650,506(Barris等人)。
应该理解的是,可使用具有任何组合的颗粒去除效率的任何数量的颗粒去除部分。要求的颗粒去除系统将取决于存在于大气中的污染物的类型、大小和特性(例如,树叶、三叶杨花、棉绒、雪、宇宙尘埃等),以及所要求的最终过滤过的空气的干净程度。用于过滤器元件15的介质可以变化,其取决于所要求的颗粒去除的效率,通过过滤器元件15的最大可接收压降的水平,以及其它的诸种因素。
图3和4中的过滤器元件15更详细地示于图5中。在一优选的实施例中,过滤器元件15a包括围绕一中心轴线卷绕的过滤器介质55,以形成一圆柱形的过滤器元件。过滤器元件包括一密封系统60。一优选的密封系统公开在美国专利No.4,720,292。
在较佳的结构中,过滤器介质55设计来从通过过滤器介质55的空气中去除颗粒,而密封系统60设计来在过滤器元件15a和外壳11a的内侧壁之间提供一密封,如图3和4所示。所谓的术语“密封”是指密封系统60,在正常情况下,其阻止非故意能级的空气通过介于过滤器元件15a的外表面和外壳11a的内侧壁之间的区域,即,密封系统60约束空气流避免通过过滤器15a的过滤器介质55。
在某些优选的实施例中,过滤器介质55构造成直通的流动。所谓“直通的流动”是指,过滤器介质55构造成具有一第一流动面105(在所示实施例中,对应于一入口端),以及一相对的第二流动面110(在所示实施例中,对应于一出口端)。常常需要直通的流动,因为较之裥状的过滤器,一直通流动的过滤器可处理更大量的空气通过其间。“直通流动”和“轴向流动”不存在差别。空气沿一个方向114进入通过第一流动面105,并沿同一方向116从第二流动面110退出。在该实施例中,第一流动面105与图1的过滤器元件的脏空气侧13相关,而第二流动面110与图1的过滤器元件的干净空气侧17相关。
当过滤器元件15a用于诸如图3和4的外壳11a的轴向流动外壳时,一般来说,空气将沿一个方向进入通过外壳11a的入口12a,沿同一方向通过第一流动面105进入过滤器元件15a,沿该同一方向从第二流动面110退出过滤器元件15a,还沿同一方向通过出口14a退出外壳11a。
尽管第一流动面105在上述中描述为对应于入口端(及脏空气侧13),而第二流动面110在上述中描述为对应于出口端(及干净空气侧17),入口和出口端(及脏空气侧和干净空气侧)可反过来。即,图5中所示的第一流动面105可对应于一出口端,而图5中所示的第二流动面110可对应于一入口端。换句话说,过滤器元件15a的物理定向相对于空气流通过其间的方向可以反过来。
在图5中,第一流动面105和第二流动面110示为平面的并且互相平行。在其它的实施例中,第一流动面105和第二流动面110可以是非平面的,例如,截头圆锥。此外,第一流动面105和第二流动面110不必互相平行。
在一优选的实施例中,过滤器元件15a的介质是卷绕的或卷形的结构。即,过滤器元件15a通常将包括一层过滤器介质,其完全地或重复地绕一中心轴线卷绕。通常,该卷绕结构呈一线圈,其中,一层过滤器介质围绕一中心轴线卷绕成一系列的匝数。在使用一卷绕线圈的结构的布置中,过滤器元件15a将呈一卷筒过滤器介质的形状,通常为可渗透的有槽形的过滤器介质。
现在注意力放在图6上,其中示出表示用于过滤器结构的某些优选介质的操作原理的示意的立体图。在图6中,一槽形的介质构造用标号122表示。较佳地,槽形构造122包括一具有多个槽形124的波浪形层123和一面板132。图6的实施例示出面板132的两部分,在132A(示于波浪形层123的顶上)和在132B(示于波浪形层123的底下)处。通常,用于这里所述的布置中的较佳的介质构造125将包括固定在底面板132B上的波浪形层123。当使用这种呈卷筒形构造的介质结构125时,它将绕自身卷绕,这样,底面板132B将盖在波浪形层123的顶上。覆盖波浪形层123的顶的面板132表示为132A。应该理解的是,“卷绕”的介质构造的面板132A和132B是相同的板132。
当使用这种类型的介质构造125时,槽形腔124较佳地形成交替的波峰126和波谷128。波峰126和波谷128将槽形124分为上行和下行。在图6所示的特定的构造中,上槽形成在下游端封闭的槽形腔136,而具有其上游端封闭的槽形腔134形成槽形的下行。槽形腔134被第一端缘138封闭,第一端缘138填充槽形板130和第二面板132B之间的槽的上游端的一部分。同样地,第二端缘140封闭交替的槽形136的下游端。在某些较佳的系统中,第一端缘138和第二端缘140沿介质结构125的所有部分是直的。在某些较佳的系统中,第一端缘138是直的且决不从在介质构造125的端部之一或靠近端部之一中偏离出去,而第二端缘140是直的且决不从在介质构造125的端部之一或靠近端部之一中偏离出去。槽形124、面板132和端缘138、140提供形成为过滤器元件15a的介质结构125。
当使用以介质结构125形式构造的介质时,在使用过程中,未过滤空气进入由阴影箭头144表示的槽形腔136。槽形腔136具有其敞开的上游端146。未过滤的流体流不允许通过槽形腔136的下游端148,因为其下游端148被第二端缘140封闭。因此,空气被迫前进通过槽形板130或面板132。当未过滤空气通过通过槽形板130或面板132时,空气被净化或过滤。净化的空气用非阴影的箭头150表示。然后,空气通过槽形腔134(其具有封闭的上游端151),以通过敞开的下游端152(图5)流出槽形结构122。利用所示的结构,未过滤的空气可流动通过槽形板130、上面板132A,或下面板132B,进入槽形腔134。
通常,制备好介质结构125,然后,卷绕而形成过滤介质的卷筒结构100。当选用这种类型的介质时,介质结构125包括波浪形层123,其用端缘138固定到底面板132B(如图6所示,但没有顶面板132A)。在这些类型的构造中,介质构造125将包括在一端处的前导边缘和在相对端处的尾部边缘,使顶部侧向边缘和底部侧向边缘在前导边缘和尾部边缘之间延伸。术语“前导边缘”是指,最先弯曲或卷绕的边缘,以使其在卷绕结构的中心或内芯上或靠近内芯上。术语“尾部边缘”是指在弯曲或盘卷过程结束后,在卷绕结构外面的边缘。
在这些类型的介质构造125中,在卷绕板成为盘卷之前,前导边缘和尾部边缘应密封在波浪形板123和底面板132B之间。尽管可采用好几种方式,但某些方法中,在前导边缘处的密封应如下形成(a)波浪形板123和底面板132B沿从顶部侧边缘到底部侧边缘(或从底部侧边缘到顶部侧边缘)延伸的一直线或路径切割或切片,沿一槽形124,在峰126的最高点(顶点)处形成峰126;以及(b)沿切割线或路径,密封剂涂覆在底面板132B和波浪形板123之间。可类似于在前导边缘处形成密封的工艺过程,形成在尾部边缘处的密封。尽管形成这些密封可采用多种不同类型的密封剂,但一种有效的材料是可从明尼苏打的St.Paul市的H.B.Fuller公司购得的非泡沫的密封剂。
当使用介质结构125时,可由系统设计师要求将结构125卷绕到过滤器介质的卷筒的结构上,诸如图5中的过滤器元件15a。可采用各种工艺来盘卷或卷绕介质。应该认识到,为制作其它形状的过滤器介质,例如具有长形的或长圆形的、卵形的、矩形的,或赛马道形外形的过滤器介质,可使用非圆形的中心卷绕件。
介质结构125也可无心轴或内芯情况下卷绕。形成一无芯卷绕结构的方法如下(a)与前导边缘隔开的波浪形板123的最初几个波形的槽128,从顶部侧边缘到底部侧边缘(或从底部侧边缘到顶部侧边缘)进行刻痕,以帮助卷绕该结构125;例如,从前导边缘起的前四个波形将具有沿槽128的刻痕线;(b)密封剂的填料140沿波浪形板123的顶部涂覆,且沿与具有端缘138的侧边缘相对的侧边缘;(c)前导边缘首先弯曲或卷绕在其自身上,然后,夹紧在一起,以便与密封剂填料140密封;以及(d)具有固定在其上的底部面板132B的其余的波形板123被盘卷或卷绕或弯曲围绕夹紧的前导边缘。
在其它的方法中,无芯结构可通过自动的工艺由介质结构125制成,该工艺如美国专利Nos.5,543,117和5,435,870所公开。在还有的一些方法中,介质结构可由手工卷绕。
当使用诸如过滤器结构100的卷绕结构时,系统设计师将要求确保结构100的外周缘封闭,或锁定到位,以防止过滤器结构100松开。有各种方式可用来完成这要求。在某些应用中,外周缘被周缘层包围。周缘层可以是无孔的粘结材料,例如,在一侧上具有粘结剂的塑料。当采用这种类型的周缘层时,周缘层防止过滤器结构100松开,并防止空气通过过滤器结构100的外周缘,保持通过过滤器结构100的直通流动。
在某些应用中,通过粘结剂密封介质结构125的尾部边缘,或沿线160(图5)的密封剂,以将尾部边缘固定到过滤器结构100的外表面上,由此,过滤器结构100固定在其卷绕的结构上。例如,可沿线160涂覆热熔的焊料。
此外,另一种方法是,支承带162可设置在过滤器结构100的外周缘的周围,以便固定尾部边缘。在图5中,支承带162显示为定位在第一流动面105。
过滤器元件15a包括一定位在第二流动面110处的一端部框架200。图7中示出过滤器元件15a的局部剖视图;过滤器结构100连同其各个部件用虚线表示。参照图5和7,框架200包括一外环形周缘带205和径向十字支柱210。十字支柱210从外周缘带或轴环205向内延伸,并在过滤器元件的轴线上的中心相遇。当它们相遇在框架200的中心215处时,十字支柱形成一环形下凹座部分。周缘带205沿在第二流动面110处的过滤器100的外周缘延伸,并沿纵向远离第二流动面110延伸。在图5和7所示的具体的实施例中,框架200包括一第二内环形环212,其与十字支柱21相交并与其连接。
端框架200支承密封系统60并提供一实心相对不变形的表面,以便于在过滤器元件和由密封系统60形成的过滤器外壳之间密封。具体来说,密封系统60包括一圆形密封剂材料的环形环,它安装和坐落在从第二流动面110向外突出的周缘带205的远端部分上。密封系统60较佳地是可压缩的材料,例如,聚亚安酯泡沫材料,其构造成合作地与外壳11a的内部侧壁啮合。并提供一气密的密封。密封系统60可具有一最外直径尺寸减小的台阶形的截面结构,以便于密封和保证气密密封。
一般来说,对于功能合适的径向密封结构,当过滤器元件15a可操作地安装在外壳11a内时,可压缩的密封系统60需要被压缩。在许多优选的实施例中,它被压缩大约其厚度的15%至40%(通常约为20至33%),在其最厚的部分,提供一强壮结实的密封,然而,其仍为手工安装元件的一种密封,所用力为80磅的量级或不到,较佳地为50磅或不到,通常约为20-40磅。
一用于本发明的过滤器组件的过滤器元件的第二实施例示于图8中的过滤器元件15b。除了过滤器元件15b的框架200未包括内环形环212之外,过滤器元件15b类似于图5和7的过滤器元件15a。
关于过滤器元件15a、过滤器元件15b以及其它有用的过滤器元件的额外的细节可见美国专利No.6,190,432。
应该理解的是,还可使用除具有直通流动的过滤器结构之外的其它的过滤器结构。可采用的其它特殊的过滤器结构的实例包括折裥型介质过滤器、平板型过滤器、具有深度介质容积的过滤器等。
过滤器组件的化学去除部分再次参照图1,过滤器组件10较佳地还包括一设计来通过吸附或吸收的方法从大气中去除污染物。如这里所采用的术语“吸收”、“吸附”、“吸附剂”以及诸如此类的术语,意在包括吸收和吸附的机构。
化学去除部分通常包括一物理吸着或化学吸收的材料,例如,干燥剂(即,吸附或吸收水或蒸汽),或吸附或吸收挥发性有机化合物和/或酸性气体和/或碱性气体的材料。术语“吸附剂材料”、“吸附材料”、“可吸附的材料”、“吸收剂材料”、“吸收材料”、“可吸收的材料”,以及其任何变种,用来涵盖通过吸附或吸收作用去除化学污染物的任何材料。例如,合适的吸附材料包括活性碳、活性碳纤维、浸渍碳、活性氧化铝、分子筛、离子交换树脂、离子交换纤维、硅胶、氧化铝和硅石。上述材料中的任何一种可与下列材料组合、涂覆或浸渍,例如,高锰酸钾、碳酸钙、碳酸钾、碳酸钠、硫化钙、柠檬酸、磷酸、其它的酸性材料,或其混合物。在某些实施例中,吸附材料可与第二种材料复合或浸渍。
吸附材料通常包括微粒状或颗粒状材料,并可呈现各种构造,例如,颗粒状、珠状、纤维状、细粉末状、毫微结构状、毫微管、气凝胶,或可呈现为涂覆在诸如陶瓷料的基材上的涂层,单体结构、纸介质或金属表面。通常,吸附材料,特别是微粒或颗粒材料放置在一材料床上。
或者,吸附材料可成形为单片或单体的形式,例如,大块的板体、颗粒、珠子,或折裥或蜂窝结构,它们还可有选择地进一步成形。在至少某些实例中,成形的吸附材料在过滤器组件的正常或期望寿命中,基本上保持其形状。成形的吸附材料可由组合有固体或事后成形为非流动物品的液体粘结剂的自由流动的微粒形成。成形的吸附材料可通过模制、压缩模制,或挤出工艺来形成。成形的吸附物,例如,可按美国专利Nos.5,189,092(Koslow)和5,331,037(Koslow)传授的方法形成。
用于提供成形物的粘结剂可以是干的,即,呈粉末和/或颗粒形式,或者粘结剂可以是液体,是溶剂化的或分散的粘结剂。某些粘结剂,例如,湿度下固化的聚氨酯橡胶,以及通常称之为“热熔”的材料,例如,可通过喷涂工艺直接地涂覆在吸附材料上。在某些实施例中,使用一临时的液体粘结剂,其包括溶剂或分散剂,它们在模制过程中可被去除。合适的粘结剂包括;乳胶、微晶纤维素、聚乙烯醇、乙烯醋酸乙烯脂、淀粉、羧甲基纤维素、聚乙烯吡咯烷酮、磷酸二钙二水合物,以及硅酸钠。较佳地,成形材料的成分包括至少约70%吸附材料(以重量计),通常约不大于98%(以重量计)。在某些例子中,成形吸附剂包括85至95%,最好是大约90%(以重量计)的吸附材料。成形吸附剂通常包括不小于约2%的粘结剂(以重量计),且不大于约30%的粘结剂(以重量计)。
用于化学去除部分的合适的吸附材料的另一实施例是一包括一载体的吸附材料。例如,可采用一网眼或平纹棉麻织物来保持吸附材料和粘结剂。聚酯和其它合适的材料可用作网眼或平纹棉麻织物。通常,任何载体不大于吸附材料重量的约50%,且更为通常地是吸附材料总重的约20至40%。在带有载体的成形吸附物内的粘结剂量,通常约为总吸附剂重量的10至50%,而吸附材料的量通常约为总吸附剂重量的20至60%。
化学去除部分可包括强碱性材料,以便从空气中去除酸性污染物,或者,包括强酸性材料,以便从空气中去除碱性污染物,或者两者兼而有之。较佳地,碱性材料和酸性材料互相充分地分开,这样,它们不会互相反应或中和。在某些实施例中,吸附材料本身可以是强酸性或强碱性材料。这种材料的实例包括聚合物微粒、活性碳介质、沸石、粘土、硅胶,以及金属氧化物。在另一些实施例中,强酸性材料或强碱性材料可以表面涂层设置在载体上,诸如颗粒、珠子、纤维、纤维素材料、细粉末、毫微管,以及气凝胶。或者,或额外地,形成酸性和碱性表面的酸性和碱性材料可呈现在全部的载体的至少一部分;例如,这可通过用酸性或碱性材料涂覆或浸渍载体而实现。
通常呈现在大气的空气中并被认为是燃料电池的污染物的酸性化合物的实例,包括硫氧化物、氮氧化物、硫化氢、氯化氢,以及挥发的有机酸和不挥发的有机酸。通常呈现在大气的空气中并被认为是燃料电池的污染物的碱性化合物的实例,包括氨、胺、氨基化合物、氢氧化钠、氢氧化锂、氢氧化钾、挥发的有机碱和不挥发的有机碱。
对于PEM燃料电池,阴极反应在酸性条件下发生,因此,不希望有碱性污染物的存在。一用来去除碱性污染物的诸如氨之类的较佳材料的实例是浸渍或涂覆柠檬酸的活性碳。
一具有物理的或颗粒去除部分和化学去除部分的过滤器元件15(图1)的第一实施例,在图9中示为过滤器元件15c。过滤器元件15c与图7的过滤器元件15a的类似之处在于,过滤器组件15c具有带有第一流动面105和第二流动面110的过滤器结构100(在图9中用虚线表示),支承带162,框架200,以及密封系统60。过滤器元件15c还包括一诸如成形的活性碳的吸附元件300。吸附元件300定位在框架200上,在框架200和密封系统之内。可压缩的密封系统60通过摩擦将吸附元件300保持在要求的位置上,但可以变形,以便当吸附剂用过之后为了更换而释放吸附元件300。
在一优选的实施例中,吸附元件300是成形质量的活性碳材料,它们由热塑性粘结剂保持在一起。一较佳的吸附元件300包括活性碳材料,滤网尺寸12×20,或8×16,用8%的乙烯-醋酸乙烯酯进行模制。这样一较佳的吸附元件300可根据美国专利Nos.5,189,092(Koslow)或5,331,037(Koslow)中的传授进行制造。在另一优选的实施例中,吸附元件300由碳材料层(未示出)制成,其可从马萨诸塞州East Walpole的Hollingsworth&Vose购得(也称之为H&V)。
在所示的实施例中,吸附元件300定位在第二流动面110的附近;因此,流动通过过滤器元件15c的空气,通过第一流动面105进入过滤器结构100,并通过第二流动面110退出,然后,通过吸附元件300。这样的结构具有在颗粒去除过滤器结构100的“下游”的吸附元件300。所有通过过滤器结构100的空气较佳地通过吸附元件300。应该理解的是,吸附元件300也可定位在过滤器结构100的“上游”。
一具有物理的或颗粒去除部分和化学去除部分的过滤器元件15(图1)的第二实施例,在图10中示为过滤器元件15d。过滤器元件15d与过滤器元件15a的类似之处在于,过滤器组件15d具有带有第一流动面105和第二流动面110的过滤器结构100(用虚线表示),支承带162,框架200,以及密封系统60。过滤器元件15d还包括吸附元件300,除了吸附元件300定位在第二流动面110和框架200的十字支柱210之间之外。框架200的周缘带205(见图8)保持吸附剂300抵靠在第二流动面110上。吸附元件300可永久地连接在框架200和过滤器结构110的一个或每个上,或可从中脱开。再者,通过过滤器结构100的第二流动面110的所有空气较佳地也通过吸附元件300。
在过滤器元件15c和15d中,化学去除部分,特别是吸附元件300与颗粒去除部分组合而形成一单一的结构。应该理解的是,在某些实施例中,化学去除部分将与颗粒去除部分分离和隔开。还应该理解的是,颗粒去除部分和化学去除部分可组合成一单一的元件,其既去除物理的污染物也去除化学的污染物。在一实例中,颗粒去除部分的过滤器介质可用纤维制成,其表面经处理后能化学吸收或与酸性或碱性污染物反应或互相作用,因此,提供一化学去除部分。在另一实例中,如果颗粒之间的间隔足够小,则一活性碳颗粒床可布置和构造成从空气中去除物理的污染物。
一包括颗粒和化学去除部分的优选的过滤器元件公开在美国专利No.6,152,996(Linnersten等人)。
有关用于燃料电池系统的过滤器元件的化学去除部分的其它的信息可见2000年9月12日提出的美国专利申请系列号No.09/660,127。
过滤器组件的声音抑制元件再次参照图1,本发明的过滤器组件10包括一噪声或声音抑制元件19,以减小或抑制从设备101发出的噪声或声音的能级。这样的噪音衰减较佳地在一米内至少3分贝,通常至少为6分贝,较佳地至少为10分贝,且最好为至少25分贝。发生在燃料电池102内的催化反应是静音的过程,其原因在于,氢燃料、阴极上的反应,以及电的产生,没有产生人能听到的声音。有关燃料电池102的结构和操作的细节将在下面提供。然而,尽管燃料电池102是静音的,但通常用来提供增强的空气流到燃料电池102的设备或机械,一般会产生明显的噪音。与燃料电池102结合使用的空气移动设备包括压缩机、风扇、鼓风机,以及泵。
从诸如压缩机104之类设备发出的声音将沿燃料电池、设备和过滤器组件允许的各个方向传播。即,声音在压缩机上游传播,迎着空气的气流,到过滤器组件10;且声音沿下游传到燃料电池102。根据本发明,通过过滤器组件10的声音抑制元件19来衰减声音,过滤器组件10减小从压缩机104发出、通过过滤器组件传到周围环境的噪音。
声音抑制元件19可以是任何类型的元件,其连同过滤器组件10的其它的零件,可衰减或减小声音,其提供声音的衰减至少达3分贝,通常至少为6分贝,较佳地为10分贝,最好至少是25分贝。声音抑制元件19的实例包括消音器、有内衬的管道、挡板。在声音通道上的弯头、充气增压、膨胀腔室、共鸣器、声阻塞、全阻塞、声音吸附材料,以及上述的各种组合。有关声音抑制元件的各种细节可见美国专利No.6,082,487(Angelo等人)。
某些典型的抑制元件19包括一外壁,通常为圆柱形,其形成一内部体积,以及一定向在外壁内部体积内的入口和出口管。最好外壁和任何其它的结构具有平面的或平的最小的表面;确切地说,抑制元件19的表面最好是弧形的,以减小平壁上常会发生的振动量和发嗡声。在通常的结构中,出口管形成一声阻塞。一打孔的内壁与外壁隔开,以在其间形成一环形体积。该环形体积可包括一在环形体积内的吸收材料的衬垫或填料。在环形体积内的该吸收材料提供一吸收的功能,并还有助于减小外壁或外壳的发嗡声。在某些结构中,打孔的内壁和环形体积与抑制元件19的入口区域对齐。即,打孔的内壁可限定入口管的至少一部分。
较佳的抑制元件19是共鸣器。一共鸣器是一封闭体积的空气,其通过一小的开孔与外部连通。该封闭的空气在有限的频率范围内发生共鸣。该频率范围和衰减水平取决于封闭体积的尺寸。在封闭体积内共鸣的频率确定由共鸣器衰减的噪音频率。
在图3和4所示的过滤器组件10a中,抑制元件19a包括第一共鸣器21和第二共鸣器22。应指出的是,第一共鸣器21定位在出口14a的附近,而第二共鸣器22定位在入口12a的上游或紧靠入口12a。这里表示的共鸣器的“第一”和“第二”定位已被选定,因为从设备101(图1)发出的噪音将沿上游方向移动(与空气流的方向相反),通过过滤器组件10a从出口14a到入口12a。第一和第二共鸣器21、22可设计成衰减相同的或不同的范围内的声音频率。一般来说,如果共鸣器21、22去除相同范围的噪音频率,则噪音降低的水平将会更大。如果共鸣器21、22去除不同频率范围的噪音,则衰减频率的总范围将会更大。
在一优选的实施例中,第一共鸣器21设计成衰减大约900赫兹峰值频率的声音,而第二共鸣器22设计成衰减大约550赫兹峰值频率的声波。如图3和4所示,各个部件在第一共鸣器21和第二共鸣器22之间有所不同。例如,由第二共鸣器22占据的体积远大于由第一共鸣器21占据的体积。第一共鸣器21的体积通常由介于出口14a和内环形挡板25a之间的外壳11a的内部壁限定。由第二共鸣器22占据的体积通常由介于内挡板25a和过滤器元件的流动面110(图5)之间的外壳11a的内部壁限定。此外,在一中心壁结构28内的打孔在第一共鸣器21和第二共鸣器22之间变化。例如,诸孔的形状和大小,相邻孔之间的间距,以及其定向在两个共鸣器之间不同。各个共鸣器的不同的特征支配由此衰减的频率。对要求频率衰减的共鸣器的设计在声抑制和衰减技术领域内是众所周知的,本文将不再作详细的介绍。
此外,第一和第二共鸣器21、22大约隔开3英寸(76毫米),该距离由两个共鸣器的中心壁结构28的打孔之间的纵向间隔量得。共鸣器21、22之间的距离在图4中表示为标号24,该距离将衰减具有其1/4波长等于该距离的频率的声音。一大约为3英寸(76毫米)的距离提供约1100赫兹的峰值衰减。
图11用曲线示出上述优选实施例衰减的声音的能级和频率。第一共鸣器21衰减约900赫兹峰值频率处的声音,第二共鸣器22衰减约550赫兹峰值频率处的声音,而1/4波长间距24衰减约1100赫兹处的声音。三个合成的声衰减跨越一典型的双螺杆压缩机的基本频率,例如,由Opcon公司制造的Lysholm式双螺杆压缩机,其频率从160至1100赫兹。
再参照图1,抑制元件19可定位在外壳11内,在某些实施例中,抑制元件19由外壳11形成。在过滤器组件10a的实施例中,第一和第二共鸣器21、22部分地由外壳11a形成。外壳11a的内壁连同内挡板25,形成由共鸣器21、22占据的体积。
外壳11a的不同的其它的部件可提供声音衰减。例如,如图4所示入口12a沿轴线方向具有一钟形的膨胀,其直径从4英寸(102毫米)至10英寸(254毫米)。该膨胀提供一大约为3分贝的宽频带的声音衰减。
应该指出的是,诸如过滤器元件15a、15b、15c、15d中任何一个的过滤器元件15,可具有一与颗粒去除部分或化学去除部分相关的附加的声音衰减特性。例如,过滤器结构100(图5和7)可衰减某些频率一小的量,例如,1分贝。此外,吸附元件300(图9和10)可衰减某些频率。业已发现,诸如美国专利Nos.5,189,092(Koslow)和5,331,037(Koslow)传授的各种形状的吸附元件,可提供某些声音衰减;衰减的频率和能级(即,分贝)将取决于成形吸附元件的特定的部件。
过滤器组件的第二实施例一过滤器组件的第二实例在图12的局部剖视图中示为过滤器组件10b。类似于过滤器组件10a,过滤器组件10b用于一由燃料电池操作的乘客汽车,该燃料电池采用一堆叠的PEM燃料电池,提供200KW的总的电力输出。应该理解的是,过滤器组件10b是为这样的应用特定设计(即,以200KW运行的汽车),而用于其它应用的过滤器组件将设计用于这些应用中,只是大小、形状和构造上不同,并不脱离过滤器组件10b的总体的特征。
过滤器组件10b包括一限定一入口12b和一出口14b的外壳11b。脏空气50通过入口12b进入过滤器组件10b,而干净空气54通过出口14b退出。外壳11b的外部包括安装支架31b、32b,用来相对于周围设备和结构定位和固定过滤器组件10b。一传感器接纳器端口35b位于外壳11b的外部,以允许连接一传感器(如要求的话)。过滤器元件15a定位在外壳11b内。在该实施例的过滤器组件10b中,所用过滤器元件15a与第一实施例的过滤器组件10a的过滤器元件15a相同。在外壳11b内还有一噪音抑制元件19b。
抑制元件19b包括一构造成衰减约900赫兹峰值处的声音的共鸣器23。有关共鸣器的详细信息提供在上述的过滤器组件10a的第一实施例中。共鸣器23的一端可操作地、并流体连通地连接在过滤器组件的出口端口14b,一环形安装支架342固定在一相对端上。安装支架342具有一允许空气通过其间进入到共鸣器23内的打孔的中心部分,并形成一环形的密封座343,其包括一沿朝向入口端口12b从共鸣器23轴向突出的圆柱形延伸突缘345。突缘345的末端向外展开,其理由将在下义中描述。
过滤器组件10b还包括一吸附元件310,在图13中放大显示。吸附元件310包括一圆柱形碳质量块330,其分别在第一和第二端330a和330b之间延伸。碳元件330在优选的实施例中是一中空、圆柱形的挤出成形的活性碳,其由热塑性粘结剂保持在一起。碳元件330可按照美国专利Nos.5,189,092(Koslow)和5,331,037(Koslow)传授的方法形成。
在某些实施例中,诸如过滤器元件15a的过滤器元件可与诸如吸附元件310的吸附元件进行组合,以形成提供颗粒和化学过滤的单一的结构。例如,一颗粒去除介质可定位在碳元件330的外表面周围。一包括颗粒和化学去除部分的过滤器元件公开在美国专利No.6,152,996(Linnersten等人)。
吸附元件310的挤出成形的圆柱形的碳的构造,提供一固体的表面,其用来在端部330a上直接连接一密封系统340,在端部330b上连接一端帽350。这样的“固体”的碳/粘结剂的挤出成形,还形成一元化的吸附过滤器元件310,其本身不释放任何的碳或其它的颗粒或污染物进入到过滤的空气流中。
端帽350密封地固定到碳吸附元件330的端部330b。端帽350转向空气退出过滤器元件15a,这样,当如图12所示安装时,空气沿吸附剂330的外圆柱形表面通过,而不是直接地、沿轴向移动进入到碳吸附元件330的中心孔区域。从过滤器元件15a退出的空气撞击到帽350的弧形的表面355上,并变更路线从其离开过滤器15a的“直线”流动到具有径向分量的流动。表面355是一从一轴向对齐的末端352沿径向延伸的弧形表面。弧形表面355以最小的阻力光滑地转向空气。末端352是帽350的暴露表面355的中心点,但在某些实施例中,末端352可以不是中心地定位在帽350上。应该认识到,可以采用端帽350的其它的表面结构,例如平的或台阶形的表面。参照图13和14,端帽350包括诸小孔,其用来在其问通过空气并沿碳元件330的外表面流过。径向臂356限定和分离小孔354并对帽350提供结构支承。此外,某些空气可绕帽350的外周缘并在帽350和外壳11b的内部之间通过。
当吸附元件310可操作地如图12所示地安装时,密封系统340在端部330a提供一介于吸附元件310和密封座343和安装支架342(图12)的突缘345之间的气密的密封。突缘345的展开的末端有助于引导密封系统340进入密封座343内。与挡板25b和端帽350组合形成的密封,引导空气流动通过吸附元件310,且在正常的条件下,在空气首先已通过碳元件330之前,阻止不要求能级的空气通过安装支架342而进入到共鸣器23。使空气沿从入口12b到出口14b的方向流动,挡板25b在安装支架342的下游并介于外壳11b的侧壁的内表面和共鸣器23之间形成一密封。各帽350、挡板25b和密封系统340要求所有空气从过滤器元件15a流动通过碳吸附元件330和安装支架342,然后,继续通过到过滤器组件出口14b。
密封系统340通常由一弹性的可压缩的材料制成,例如,聚亚安酯。图13所示的实施例示出一密封系统340,其具有最外尺寸减小的“台阶形”结构,它改进坐落和抵靠密封座343和安装支架342的延伸突缘345的密封。密封系统340引导空气从过滤器元件15a流动通过碳元件330,然后进入共鸣器23。
除了如上所述控制空气流动,通过与框架200的接合,具体来说,与框架200(见图5)的中心接合,端帽350提供结构支承,以及吸附元件310的第二端330b与过滤器元件15a的锚固。末端352适于合作地插入到中心215的下凹部分并被下凹部分保持住。末端352在框架200内的配装,应保持吸附元件310沿轴向与过滤器元件15a对齐,但也可使用外壳11b内部内的其它的部件来将吸附元件310保持在要求的位置上。由框架200作用在末端352上的沿轴线方向的压力,可操作地保持吸附元件310,使其抵靠在密封座343上与密封系统340密封地接合。
各个密封系统340和帽350可暂时地或永久地附连在碳元件330上。为了提供一永久的连接,密封系统340可连接到碳330上,例如,通过粘结剂,或通过直接地将密封系统340模制到碳330上。对于帽350的永久的连接,帽350可粘结地连接到碳330上。帽350可包括一环形的下凹,以便接纳碳330的第二端330b的一部分。
吸附元件310起作化学去除部分和声音抑制元件19b的一元件。吸附元件310与图9和10的吸附元件300功能上的类似之处在于,它包括从流动通过其间的空气中或由此去除化学污染物的吸附材料。外壳11b的内部和吸附元件310之间的体积可以用作为一共鸣器来抑制或衰减声音。此外,吸附元件310的碳材料330直接地吸附声音,因此,提供独立的声音衰减。在一优选的实施例中,吸附元件310构造成衰减至少约700赫兹的频率峰值,通常大于700赫兹。
吸附元件和吸附材料的其它的结构也可具有化学去除质量和声音抑制质量。此外,诸如过滤器元件15a的物理的或颗粒的过滤器元件可具有某些声音抑制质量。
过滤器组件的第三实施例一过滤器组件的第三实施例在图21-23中示为过滤器组件10c。过滤器组件10c适于用于燃料电池操作的车辆中,例如,一乘客汽车,其使用一提供25KW总电力输出的堆叠的PEM燃料电池。应该理解的是,过滤器组件10c是特定为这种应用设计的(即,以25KW运行的车辆),且用于其它应用的过滤器组件可设计用于这些应用中,其在尺寸、形状和结构上不同,而不脱离过滤器组件10c的总体的特征。
过滤器组件10c包括一大致圆柱形外壳11c,如图22所示,其形成有一入口12c和一出口14c。脏空气通过入口12c进入过滤器组件10c,干净空气通过出口14c退出。一物理的或颗粒的过滤器元件415定位在外壳11c内。过滤器组件415通常在结构上类似于第一实施例的过滤器组件10a的过滤器元件15a,类似之处在于,过滤器元件415具有圆柱形或螺旋形卷绕的槽形过滤介质412,其提供直通的空气流动。包括一密封系统460的端框架420连接到过滤器元件415的一端,以提供一对外壳11c气密的无泄漏的配装。定位在过滤器元件415下游的是一吸附元件430。吸附元件430可以是上述的任何种吸附材料,但较佳地是由模制、压缩模制,或挤出工艺制成的成形的吸附剂物品。过滤器元件415与图10的过滤器元件15d的类似之处在于,吸附元件430定位在颗粒过滤介质412和端框架420之间。一噪音抑制元件19c也设置在外壳11c内。在该实施例中,噪音抑制元件19c具有一第一共鸣器421和一第二共鸣器422,它们将在下文中作详细描述。
外壳11c可由能提供要求元件(例如,入口12c,出口14c)的任何材料制成。用于外壳11c的有用的材料的实例包括金属或聚合物材料,例如,环氧、聚碳酸酯、聚乙烯以及诸如此类的材料。外壳11c具有至少两个分离的部分,这样,可获得进入到包含的过滤器元件415和其它元件。多个部分可通过卡锁、夹具、皮带,或其它合适的固定机构固定在一起。在一优选的实施例中,入口12c也起作将多个部分保持在一起的一搭锁的作用。外壳11c的外部包括一安装支架31c,其类似于上述的支架31a、31b,以便相对于周围的设备和结构定位和固定过滤器组件10c。
过滤器组件10c与上述过滤器组件10a、10b不同之处在于,通过过滤器组件10c的噪音路径不同于空气流动路径。在各个过滤器组件10a、10b中,噪音所循的路径与空气流动路径相同但方向相反。即,噪音对着空气传播通过过滤器组件10a、10b。在该第三实施例中,噪音进入过滤器组件10c通过出口14c,然后,前进到噪音抑制元件19c并被衰减。空气流通过入口12c进入过滤器组件10c,通过过滤器元件415、吸附元件430,并通过出口14c退出。与过滤器组件10a、10b不同,其中,空气分别地通过噪音抑制元件19a、19b,但正常的空气流动路径不通过噪音抑制元件19c。
再者,与上述的过滤器组件10a、10b不同,过滤器组件10c使用一种结构,其中,过滤器元件415与噪音抑制元件19c一体地形成。术语“一体地”是指过滤器元件415基本上永久地附连在或其它方法连接到噪音抑制元件19c上,这样,除了恶意的或破坏性的动作之外,过滤器元件415不会从噪音抑制元件19c上拆开。在所示的实施例中,通过在噪音抑制元件19c周围卷绕多层的过滤器介质,构造成过滤器元件415;噪音抑制元件19c起作过滤器元件415的内芯。具体的制作过滤器元件415的细节在上述过滤器元件15a中已有描述,除了过滤器介质卷绕在噪音抑制元件19c周围之外。较佳地,吸附元件430也与过滤器元件415和噪音抑制元件19c形成为一体。应该理解的是,在其它的设计中,任何的过滤器元件415、吸附元件430和噪音抑制元件19c可互相拆卸。
噪音抑制元件19c包括第一共鸣器421和第二共鸣器422(见图23)。噪音通过出口14c(图22)进入到过滤器组件10c,并被第一共鸣器421和第二共鸣器422衰减。第一共鸣器421通常具有由带有相当小直径的一细长管限定的较小的体积。第二共鸣器422比第一共鸣器421具有较大的体积,并且环形地和径向地定位在第一共鸣器421的周围。第二共鸣器422具有一非平面或非平的第一端424,以及一相对的非平面或非平的第二端425。非平面或非平的第一端424、425最大程度地减小回音和较佳地衰减噪音。在第二共鸣器422的特定的实施例中,第一端424是上凸的,其中,它向内弯向共鸣器422,而第二端425是下凹的,其中,它向外弯离共鸣器422。第一端422包括多个周向间隔的小孔454,以使声波通过其间。即,诸小孔起作声波进入第二共鸣器422的入口。对于第一共鸣器421,一颈部451起作声波进入第一共鸣器421的入口。
由共鸣器421、422衰减的诸频率取决于不同的尺寸,例如,占据的体积、长度、直径、颈部451的直径、小孔的数量、端部424、425的曲率等。在该实施例中,第一共鸣器421构造成比第二共鸣器422衰减更高的频率。此外,第一共鸣器421衰减更宽范围的频率;即,第一共鸣器421具有比第二共鸣器422更宽的衰减范围。
图25用曲线图方式示出过滤器组件10c的衰减的能级和频率,其中,第一共鸣器421衰减约1000赫兹峰值频率的声音,而第二共鸣器422衰减约540赫兹峰值频率的声音。两个共鸣器421、422的合成的声音衰减,跨越一典型的双螺杆压缩机的基本的频率范围。当将过滤器介质卷绕在第二共鸣器422上,以制成过滤器元件415时,设计来共鸣或衰减一要求频率的第一共鸣器421,也可起作用于安装在心轴上的接纳器。组合的共鸣器结构19c起作为一颗粒过滤器介质卷绕在其上的卷轴。
在所示的优选的实施例中,过滤器组件10c,特别是外壳11c具有一约不大于500毫米的长度,较佳地约不大于400毫米。此外,大致为圆柱形的过滤器组件10c具有一约不大于300毫米的直径,较佳地约不大于260毫米。一较佳的一体的过滤器元件415、吸附元件430和噪音抑制元件19c的诸具体的特征示于图24中。本技术领域内的技术人员将会认识到,过滤器组件10c,以及诸如过滤器元件415、吸附元件430,以及噪音抑制元件19c的变化的尺寸,通常取决于使用过滤器组件的系统内的过滤器组件10c所分配占据的体积。
在过滤器组件10c所设计应用的优选的实施例中,过滤器元件415具有约不大于240毫米的长度“F”(“F主长”),较佳地不大于约200毫米。在优选的实施例中,“F”不大于约191毫米。在此距离中,不大于约50毫米,较佳地不大于约20毫米,被吸附元件430占据为尺寸“C”。在优选的实施例中,“C”不大于约6.2毫米。折裥的过滤器介质412,在“FM”量测的,占据不大于约200毫米,较佳地不大于约180毫米。在优选的实施例中,“FM”不大于约150毫米。由过滤器元件415占据的直径“DF”通常不大于约290毫米,较佳地不大于约270毫米。在优选的实施例中,过滤器元件415具有约230毫米的直径“DF”。
对于获得图25的所要求的声音抑制特性,噪音抑制元件19a占据外壳11c内的组合的过滤器元件415、吸附元件430,以及噪音抑制元件19c的大部分直径。在如图21至24所示的实施例中,噪音抑制元件19a包括第一共鸣器421和第二共鸣器422。第一共鸣器421在颈部451处具有约23毫米的直径“DR1”,而第二共鸣器422具有约267毫米的总长“LR2”,第二共鸣器422的一部分延伸超过过滤器元件415;第二共鸣器422延伸距离“L”,超过过滤器元件415的密封系统460约37毫米。
如本技术领域内的技术人员将会认识到,由第一共鸣器421和第二共鸣器422占据的特定的体积实现噪音抑制元件19c的声音衰减特性。具体来说,共鸣器421、422的长度和直径DR1和DR2是共鸣器所要求的声音衰减特性的函数。
在组合的过滤器元件415、吸附元件430,以及噪音抑制元件19c的典型的特定实施例中,当噪音抑制元件19c占据组合的过滤器元件415、吸附元件430,以及噪音抑制元件19c的直径的50至90%时,由噪音抑制元件19c占据的过滤器单元10c的横截面积约为25至81%,较佳地,噪音抑制元件19c的直径约为总直径的60至80%,其仅代表总横截面面积的约36至64%。在优选的实施例中,当噪音抑制元件19c具有约178毫米的直径,而过滤器元件415具有约230毫米的直径时,噪音抑制元件19c占据77%的直径,但仅占60%的面积。
过滤器元件、吸附元件,以及噪音抑制元件的其它组合的结构也可用于根据本发明的过滤器组件中。应该理解的是,噪音抑制元件可包括任何数量的共鸣器。再者,如上所述,过滤器元件、其外壳和/或吸附元件(例如,碳元件)可形成声音的衰减。这些组合的结构提供一单一的、可拆卸的和可更换的单元,该单元可去除颗粒的或物理的污染物,化学的污染物,并也提供声音衰减或抑制。
在继续讨论过滤器组件的第四实施例之前,将描述图1中的设备101的剩下的部件,包括燃料电池102。
燃料电池在图1中,本发明的过滤器组件10与其一起操作的设备101包括燃料电池102。燃料电池是具有中间夹有电解液的两个电极(一阳极和一阴极)的装置。已知的主要类型的燃料电池构造在本说明书的背景技术中已有描述。它们均具有如下扼要讨论的诸特征,但在操作温度和操作效率上有变化。氢燃料源导向阳极,在那里,氢电子被释放,留下带正电荷的离子。自由电子通过外电路到达阴极,在此过程中,提供一电流,其可用于外电路的电源。带正电荷的离子通过燃料电池的电解液扩散到阴极,在那里,离子与电子结合,与氧复合形成水,水是该过程的副产物。为了加快阴极的反应,通常使用一催化剂。通常在燃料电池反应中使用的催化剂的实例包括镍、铂、钯、钴、铯、钕,以及其它地球上稀有金属。
质子交换膜(PEM)型燃料电池由于其低温操作,高功率密度,以及快速改变功率输出以满足功率变换要求的能力,所以是普遍用于车辆动力的燃料电池的结构。PEM燃料电池通常简单称之为“低温燃料电池”,因为其低的操作温度,通常约为70至100℃,有时高达200℃。这里示出的优选实施例中的燃料电池102较佳地是PEM型,低温结构。高温燃料电池因其较高的操作温度通常对化学污染物不敏感。然而,高温燃料电池对颗粒污染物和某些形式的化学污染物敏感,因此,高温燃料电池可从这里所述的过滤器装置中得益。两种类型的燃料电池,低温和高温,通常与噪音设备组合使用。
各种燃料电池可从市场上购得,例如,加拿大的Vancouver市的Ballard PowerSystem,Inc.;康涅狄格州的International Fuel Cells;康涅狄格州Rocky Hill的Proton Energy Systems;马萨诸塞州的American Fuel Cell Corp.;德国的埃尔兰根市的西门子公司;德国的Smart Fuel Cell GmbH;密西根州的底特律市的General Motors;以及日本的Toyota Motor Corporation。
各具有一阳极、阴极和电解液的单个的燃料电池构造成“堆叠”,以提供所要求的外部功率数。应该认识到,本发明的原理将有益于通常任何的燃料电池结构。例如,一典型的乘客汽车利用一产生约200KW功率的燃料电池堆叠。诸如一乘客小汽车的较小的车辆利用一产生约1KW功率或不到的燃料电池堆叠。
在燃料电池技术领域内的技术人员将会认识到,本发明的过滤器组件的原理将有益于通常的任何种燃料电池和任何种燃料电池结构。
能被各种燃料电池接受的污染物水平的阈值取决于燃料电池的设计。例如,已知碳氢化合物(甲烷和重质的)、氨、二氧化硫、一氧化碳、硅树脂,以及诸如此类的化合物,占据催化剂的空间并阻止这些场所的反应。因此,这些污染物在其进入到燃料电池的反应性区域之前,需要加以清除。
能够接受的污染物的精确的水平,以及污染物的类型,将根据所用催化剂、操作条件,以及催化过程效率的要求而变化。本发明的过滤器组件在空气被使用于燃料电池之前,从大气的空气中去除污染物,并应用于低温和高温操作的燃料电池组件中。
压缩机和其它噪音发生设备如上所述,设备101通常还包括某些发出噪音(声波)的空气移动设备或空气处理机构,例如,压缩机、风扇、鼓风机,或泵。该设备提供空气(氧化剂)到燃料电池102。遗憾的是,诸如转子、叶轮、瓣、翼片、活塞以及空气移动设备的其它各种零件,产生噪音或声波。在许多例子中,产生的声波的频率范围在3赫兹至30,000赫兹内,有时高达50,000赫兹,在一米内测量达85至135分贝的水平。尽管并不是所有从空气移动设备中发射出的噪音都是不可接受的,但本发明的各种组件针对与系统特别产生噪音的部分相关的噪音分布中最烦人的部分来减小其噪音。
一种与燃料电池102结合使用的通用型的压缩机104是由瑞典的OpconAutorotor AB公司出品的“Lysholm”双螺杆式压缩机。这种类型的压缩机通常具有约160至1100赫兹范围的噪音输出,并在一米内高达135分贝的水平。另一通用的压缩机是“Roots blower”压缩机。其它普遍使用的压缩机包括活塞式压缩机、膜片式压缩机、离心式压缩机,以及轴流式压缩机。每一种压缩机具有一与其操作相关的噪声或频率分布。这种分布取决于压缩机的类型,并可依赖于诸如输入和输出流量之类的变量。对于许多压缩机,频率分布包括一个以上的频率峰值。
压缩机可从市场上购得,例如,加利福尼亚州的Camarillo的Paxton Products;威斯康星州的Kenosha的Pneumatic,Inc.;康涅狄格州的Newtown的StandardPneumatic Products,Inc.;科罗拉多州的Boulder的Vairex Corporation;加利福尼亚州的Torrance的Honeywell Engines&Systems。这些压缩机通常具有大的空气流量,通常约为10克/秒至400克/秒。
一种可用于燃料电池102的空气移动设备包括电气驱动涡轮增压器、压缩机扩展器等。
在力图优化燃料电池102的操作中,进入燃料电池102的空气可进行加湿,通常接近其饱和点。要求高水平的湿度是为了将燃料电池102的电解膜变干及不能携带带电荷的离子的任何可能性降到最小。这种加湿可发生在压缩机104的上游,过滤器组件10的下游。或者,较佳地可使这种加湿发生在压缩机104的下游。较干的空气更适合通过压缩机104。
压缩机放流装置尽管诸如过滤器元件15a的过滤器元件存在于压缩机104的上游,以便从进入的空气流中去除诸如颗粒和化学品之类的污染物,污染物质可被系统本身,例如被压缩机104引导到空气流中。除了产生噪音,快速旋转的转子、叶轮、瓣、翼片或压缩机104的活塞可舍弃出微小的颗粒,或者从缝隙或折缝或其它隐藏的角落中驱逐出来,或者从移动部件的表面上出来。一种类型的污染物是钼的颗粒,它们是由压缩机内部零件上的涂层造成的,在操作过程中,涂层不断弱化或被破坏。压缩机单元104还可以是流体污染物源,例如,从压缩机或其密封中泄漏出来的油或油脂,并进入到空气供应气流中。如果允许进入到燃料电池的堆叠中,则这样的污染物可证明对于燃料电池102的有效的或高效的操作是非常损害或有害的。
一压缩机放流装置或排出装置103用虚线示于图1中。在某些过程中,在压缩机104或其它空气移动设备的下游,可能要求或有利地包括一诸如装置103的放流装置,以便去除压缩机产生的或从空气供应气流中来的污染物,和/或进一步从系统中抑制噪音。例如,装置103可具有一特别的过滤器、一化学品过滤器、一声音抑制器,或其任何的组合。装置103的特定的结构和布置可随不同的燃料电池组件构造明显地改变,并取决于过滤器组件10的过滤器元件15对颗粒和化学去除所要求的效率,以及取决于对过滤器组件10的声音抑制的要求。如上所述,某些压缩机104本身可产生物理的、化学的,或两种类型的污染物到在过滤器组件10的下游的空气流中,这将需要由装置103来进行处理。此外,由于放流装置103在系统中的位置(即,在压缩机104的下游并紧密靠近燃料电池102),过滤的类型和特性以及可被装置103有效地使用的部件材料,可以显著地不同于被过滤器元件15使用的材料。还有,装置103可包括一增加通过其间的空气的湿度的加湿器。此外,或者,装置103可包括一疏水、浮动截止阀、或其它的装置来去除积累的多余的水。合适的阀的结构的实例公开在美国专利Nos.6,009,898(Risch等人)和6,209,559(Risch等人)。
排出装置103的一实施例在图15和16中表示为排出装置103a。排出装置103a包括一限定一入口312a和一出口314a的外壳311a。来自压缩机104的空气通过入口312a进入到排出装置103a,并通过出口314a退出到燃料电池102。来自压缩机104的空气通常将处于升温和升压的状态,例如,370°F至400°F,以及约3个大气压。因为这些条件,外壳311a最好是不锈钢合金。例如,316SS或321SS。
图15和16的实施例包括一声音抑制元件319a。抑制元件319a包括一声阻塞321a和一共鸣器322a;各声阻塞321a和共鸣器322a分别定位在腔室331a、332a内。腔室331a、332a由外壳311a和挡板335a形成。声阻塞321a和共鸣器322a可设计成衰减一要求的峰值频率或一频率范围。呈现在压缩机104下游的声音通常与交会压缩机104上游的过滤器组件10的声音相同,或至少类似,除了在下游的情形中,空气流动和被抑制的声音均沿相同的方向流动。有关声音抑制元件和共鸣器的详细信息已在上面提供。
排出装置103的另一实施例在图17至20中示为排出装置103b。排出装置103b类似于排出装置103a,其类似之处在于,排出装置103b包括一限定有一入口312b和一出口314b的外壳311b,使空气通过入口312b进入,通过出口314b退出。图17至20的实施例还包括一含有共鸣器322b的声音抑制元件319b。类似于排出装置103a,排出装置103b具有两个声音衰减腔室331b、332b,它们由外壳311b和分离挡板335b限定。
排出元件103b包括一过滤器元件315,其用来从通过排出元件103b的空气中去除颗粒物质、油和周围的盐。过滤器元件315能耐受出现在排出元件103b内的高温和压力。过滤器元件315的一个实例包括安装在两个端帽315a、315b之间的折裥介质的延伸部。较佳地,打孔的内和外衬垫或套筒316a、316b分别定位在介质附近,以提供对介质的支承和保护;这样的套筒或衬垫是众所周知的。套筒,特别是外套筒,可附连到外壳311b上,这样,当过滤器元件315从排出组件130b中拆卸和更换时,过滤器元件315可滑入和滑出外套筒。
过滤器元件315的过滤器介质应能承受住压缩机104下游的工况,即,升高的温度和压力,例如,370°F至400°F,以及约3个大气压,通常高水平的湿度或潮气。过滤器元件315的有效的介质实例包括一由芳族载体(诸如“高熔点芳族聚酰胺”材料)承载的聚四氟乙烯(PTFE)膜,其可从宾夕法尼亚州Feasterville的Tetratec Corporation购得。还要求使用膨胀的PTFE膜,因其不允许盐和诸如油之类的石油制品渗透通过其间。美国专利No.6,123,751(Nelson等人)介绍PTFE的诸多优点。其它有用的介质是玻璃纤维介质。
过滤器元件315可呈多种物理的形状,例如,卵形或长圆形,类似于外壳311b的形状,或者过滤器元件315可以是圆形的。也可使用平面的过滤器板。
端帽315a是一“闭合的端帽”,其中,它横贯延伸并覆盖过滤器介质的端部,这样,不能获得通过端帽315a进入到过滤器元件315的端部的流体流。端帽315a基本上是覆盖在过滤器元件315的端部上的、能按照要求拆卸的一盖子,例如,通过拆除诸如六角螺母317的连接机构。一O形环364在端帽315a和过滤器介质的外部之间提供气密的密封,所述过滤器介质可以是打孔的外套筒或衬垫。过滤器元件315可从外壳311b上拆卸和更换。
端帽315b是一“敞开的端帽”,即,敞开的端帽315b包括一开孔,较佳地位于中心。通常是过滤器元件315的一永久性部件的端帽315b坐落在座表面370上,具体来说,坐在密封座或边缘373上。一O形环374在边缘373和端帽315b之间提供一气密的密封。
上游过滤器组件-压缩机-排出过滤器组件的组合本发明的一实施例的一实例,其组合与压缩机流体连通的上游过滤器和下游排出过滤器组件,该实例示于图26-28中的空气移动系统500中。空气移动系统500适用于燃料电池操作系统中,该系统可用于遥控交通摄像头或车辆雷达探测系统,它们使用一堆叠的PEM燃料电池,以提供通常约小于1KW的总功率输出。这样的低功率燃料电池应用,较之上述的较大功率的应用,要求显著少的氧化剂(例如,空气)量,因此,这些系统可利用小得多的压缩机或其它的空气移动设备;这反过来又显著地减小组件的过滤部分的总体尺寸要求。
空气移动系统500具有一提供干净的过滤过的空气到压缩机504的上游过滤器组件501。一排出过滤器组件503位于压缩机504的下游,以去除任何的污染物,它们可能是被压缩机504引入到空气流中的污染物,或者是在空气流引入到燃料电池之前,还未被过滤器组件501去除的污染物。在该实施例中,压缩机504是小体积的翼片式压缩机,提供约0.1克/秒至0.15克/秒的空气流量。压缩机504的直径约为5厘米。
参照图26和27,过滤器组件501具有一大致圆柱形外壳511,其具有一第一端511a和一相对的第二端511b,外壳限定一入口512和一出口514。外壳511的直径类似于压缩机504的直径,约为5厘米。脏空气通过入口512进入过滤器组件501,干净气体通过出口514退出。入口512占据基本上与外壳511的横截面面积相同的一面积。外壳511包括一支架523,其可用来按照要求安装过滤器组件501。
一颗粒筛516横贯入口512延伸,其去除大的颗粒和污染物,并保护下面将要描述的过滤介质。筛516可去除树叶、碎片、纸和其它大的污染物。定位在筛516下游的是颗粒过滤介质518。介质518可以是任何普通使用的、或合适的过滤介质,诸如纸或纤维素、玻璃纤维、聚合物的平纹棉麻织物等。介质518去除颗粒的污染物,通常约为0.01微米和以上。介质518可包括一诸如一聚合物的毫微纤维的表面层或处理。一用于介质518的较佳的表面层是混合有尼龙共聚物和防水添加剂的聚合物,美国专利申请系列号No.09/871,583对此已有描述,并且可以EON过滤介质的商标名从唐纳森公司购得。过滤介质518横贯整个入口512的范围延伸,并较佳地形成一对外壳511无泄漏的配装,这样,通过入口512进入的所有空气必须通过介质518。
定位在介质518下游的是一吸附过滤元件520。吸附元件520可以是上述的任何种吸附材料,但在该实施例中,是粘结在一起的碳颗粒群。如上所述的模制的或挤出成形的碳材料可交替地用作吸附元件520。吸附元件520较佳地横贯外壳511的整个横截面延伸,以形成一无泄漏的配装,这样,通过外壳511的所有空气必须通过吸附元件520。吸附元件520也可提供一定程度的声音衰减。
吸附元件520的下游设置有一用于保持吸附元件520的筛522,平纹棉麻织物522阻止疏松的碳颗粒和其它的材料从元件520逃逸和通过而跑到压缩机504中。在吸附元件520的下游和筛522的下游还有一筛526,其紧固地支承平纹棉麻织物522和吸附元件520,以及它与筛516之间的介质518。
空气通过入口512进入,并通过筛516、过滤介质518、吸附元件520、筛522和筛526,通过出口514退出。出口514呈现在一体积519中,该体积的尺寸和形状适于接纳压缩机504的一部分,该部分具有压缩机入口(未示出)。在所示的实施例中,外壳511包括一用作阻挡压缩机504的台肩或其它部件。压缩机504可占据整个体积519,或体积519的一部分仍保持空置。体积519的任何空置部分可对从压缩机504发出的声波提供一定量的声音的衰减。
外壳511较佳地与压缩机504形成一无泄漏的密封,这样,通过过滤器组件501和出口514的空气,然后直接通入和通过压缩机504,而未通过过滤器组件501的空气不污染压缩机504的内部。可使用橡胶密封或任何类型的软而可压缩的密封。或者,或额外地,可使用一咔哒配装的密封。从压缩机504的入口,空气通过压缩机504并通过出口504b退出。如上所述,通过压缩机504的空气流量约为0.1克/秒至0.15克/秒。对于这样的流量,具有约5厘米直径的过滤器组件501的尺寸是足够的。
出口504b与排出过滤器组件503的入口直接流体连通地连接,图28更为详尽地示出上述情形。排出过滤器组件503去除诸如金属颗粒或润滑油雾之类的污染物,它们可由压缩机504造成,或可通过压缩机504的上游的过滤器组件501而未被去除。
排出过滤器组件503具有一大致圆柱形外壳531,其限定入口532和出口534。偏离外壳531的中心的入口532和出口534,各具有一明显小于外壳531的直径的直径。来自压缩机504的空气通过入口532进入排出过滤器组件503,干净空气通过出口534退出。外壳531包括一支架533,其可用来按照要求安装排出过滤器组件503。
一筛536在入口532的下游,且较佳地延伸外壳531的直径,筛536将颗粒去除材料540保持在其规定的体积内。筛536通常不去除任何来自空气流中的颗粒,因诸小孔通常足以大而允许气流无阻挡地通过。颗粒以及可选择的液体污染物陷落在去除的材料540中。去除材料540可以是任何合适的过滤介质,或其它适于去除要求的污染物的材料。去除材料540横贯外壳531的整个范围延伸,并较佳地形成一对外壳531的无泄漏的配装,这样,通过入口532进入的所有空气必须通过材料540。
在如图28所示的实施例中,去除材料540包括一第一深度的加载材料542和一第二深度的加载材料544。合适的深度加载材料的实例是玻璃纤维,其呈密编的纤维席垫的形式。材料542和材料544在编席的密度、纤维的尺寸、任何的添加剂和在纤维上的涂层,或其它特性上可互相有所不同。
定位在去除材料540下游的是一颗粒过滤介质548。介质548可以是任何普通使用或合适的过滤介质,例如,纸、玻璃纤维、聚合物的平纹棉麻织物等。介质548阻止疏松的纤维和或其它的材料从去除材料540中逃逸和通过而跑到定位在组件500下游的燃料电池中。一较佳的介质548包括混合有尼龙共聚物和防水添加剂的聚合物,美国专利申请系列号No.09/871,583对此已有描述,并且可以EON过滤介质的商标名从唐纳森公司购得。在介质548的下游还有筛546,它对介质548提供支承。空气经过去除材料540和介质548而通过排出过滤器组件503,通过出口534退出,并前进到燃料电池的下游。
然而,应该理解的是,即使在上述的描述中陈述了许多本发明的特征和优点,以及本发明的结构和功能上的诸多细节,但这样的描述仅是说明性的,并不意图以附后的权利要求书之外的任何的方式来限制本发明的范围。本发明并不局限于所述的实施例,或用于任何特定类型的燃料电池,或使用本文所述的特定的部件、结构或材料。本发明涵盖落入附后的权利要求书的广义范围内的所有变化的改型和变体。
权利要求
1.一过滤器组件,包括(a)一外壳,其具有一入口和一出口,入口构造成接收脏空气到过滤器组件,而出口构造成从过滤器组件提供干净空气;(b)一在外壳内的过滤器元件,过滤器元件包括一个构造和布置成从脏空气中去除颗粒污染物的颗粒过滤器部分;以及(c)一在外壳内的声音抑制元件,声音抑制元件构造和布置成对通过过滤器组件的声音提供在一米内的至少6分贝的宽频带的声音衰减。
2.如权利要求1所述的过滤器组件,其特征在于,过滤器元件还包括一布置来从脏空气中去除化学污染物的化学过滤器部分。
3.如权利要求2所述的过滤器组件,其特征在于,化学过滤器部分包括一吸附材料。
4.如权利要求3所述的过滤器组件,其特征在于,吸附材料从包括下列物质的组群中选择活性碳、浸渍碳、活性碳纤维、离子交换树脂、离子交换纤维、氧化铝、活性氧化铝、分子筛,以及硅石。
5.如权利要求4所述的过滤器组件,其特征在于,吸附材料具有一碱性表面,并构造和布置成去除酸性污染物,酸性污染物至少是下列物质中的一个硫氧化物、氮氧化物、硫化氢、氯化氢,以及挥发的有机酸和非挥发的有机酸。
6.如权利要求4所述的过滤器组件,其特征在于,吸附材料具有一酸性表面,并构造和布置成去除碱性污染物,碱性污染物至少是下列物质中的一个氨、胺、氨基化合物、氢氧化钠、氢氧化锂、氢氧化钾、挥发的有机碱和不挥发的有机碱。
7.如权利要求1-6中任何一项所述的过滤器组件,其特征在于,颗粒过滤器部分定位在径向地靠近声音抑制元件。
8.如权利要求1-7中任何一项所述的过滤器组件,其特征在于,颗粒过滤器部分构造成提供直通的流动。
9.如权利要求1-8中任何一项所述的过滤器组件,其特征在于,声音抑制元件包括一共鸣器。
10.如权利要求1-9中任何一项所述的过滤器组件,其特征在于,声音抑制元件至少局部地由所述外壳限定。
11.如权利要求1-10中任何一项所述的过滤器组件,其特征在于,声音抑制元件构造和布置成对通过过滤器组件的声音衰减至少达10分贝。
12.如权利要求1-11中任何一项所述的过滤器组件,其特征在于,声音抑制元件在高达约1350赫兹的频率范围内,衰减声音至少达6分贝。
13.一发电的系统,该系统包括(a)一燃料电池组件,其具有一氧化剂入口端口和一燃料入口端口,并构造成从分别进入氧化剂入口端口和燃料入口端口的一氧化剂和一燃料中产生电能;(b)一根据权利要求1-12中任何一项所述的过滤器组件,该过滤器组件构造成提供干净空气到燃料电池组件的氧化剂入口端口。
14.如权利要求13所述的系统,其特征在于,还包括一空气压缩机。
15.如权利要求14所述的过滤器组件,其特征在于,空气压缩机是一双螺杆压缩机。
16.如权利要求14-15中任何一项所述的系统,其特征在于,还包括一压缩机放流过滤器组件,其包括(a)一外壳,其具有一入口和一出口,入口构造成接收来自压缩机的空气;以及(b)一在外壳内的过滤器部分,并与入口流体连通,过滤器部分构造和布置成从来自压缩机的空气中去除污染物。
17.如权利要求16所述的系统,其特征在于,压缩机放流过滤器组件还包括一在外壳内的声音抑制元件,声音抑制元件构造和布置成提供在一米内至少6分贝的宽频带的声音衰减。
18.如权利要求16-17中任何一项所述的系统,其特征在于,压缩机放流过滤器组件的过滤器部分包括聚四氟乙烯。
全文摘要
一种用于燃料电池的过滤器组件,其用来从进入的脏空气流中去除颗粒污染物和化学污染物。过滤器组件还包括一声音抑制元件,其减小从诸如压缩机之类的任何设备中发出的声波或噪音。过滤器组件可包括一去除物理的或颗粒的污染物的颗粒过滤器部分,一去除化学污染物的化学过滤器部分,或者可两者兼而有之。
文档编号B01D46/42GK1646802SQ02808145
公开日2005年7月27日 申请日期2002年4月11日 优先权日2001年4月11日
发明者E·斯特纳森, W·M·内曼, R·T·卡内帕 申请人:唐纳森公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1