专利名称:将合成气转化为高级烃的方法
技术领域:
本发明涉及一种在费-托催化剂的存在下,将一氧化碳和氢(合成气)转化为液体烃产物的方法。
在费-托反应中,一氧化碳和氢的气体混合物在多相催化剂的存在下反应得到具有相对较宽分子量分布的烃混合物。该产物主要是直链的饱和烃,通常其链长多于5个碳原子。反应大量放热,并因此使得去热成为制约所有费-托反应的首要因素之一。这使得工业方法由固定床操作转向了淤浆系统。所述淤浆系统采用了催化剂颗粒在液体介质中的悬浮液,使得整体温控和局部温控(在单独的催化剂颗粒附近)与固定床操作相比明显改善。
已知费-托法采用淤浆鼓泡塔,其中催化剂主要通过由合成气传递的能量分布和悬浮于淤浆中,所述合成气是由淤浆鼓泡塔底部的气体分配装置产生的,例如参见US5252613所述。
费-托法还可以通过,例如US5776988描述的将液体介质物流通过催化剂床以负载并分散催化剂而操作。在该方法中,催化剂更均匀地分散于整个液体介质中,使得方法的可操作性和生产能力得到改善。
但是,在费-托法的操作方式中还需要进一步的改进。
本发明涉及一种在包括高度剪切混合区和后混合区的系统中,在升高的温度和压力下,通过将气体反应物与悬浮液接触,使气体反应物转化为液体烃产物的方法,所述悬浮液含有悬浮于液体介质中的催化剂,其中该方法包括a)将含有悬浮于液体介质的催化剂的悬浮液通过高度剪切混合区,在该区域中含有气体反应物的气体反应物流与悬浮液混和;b)从高度剪切混合区向后混合区流注含有气体反应物和悬浮液的混合物;c)在后混合区中将至少部分气体反应物转化为液体烃产物,形成含有悬浮于液体介质的催化剂和液体烃产物的产物悬浮液;d)从产物悬浮液中分离含有未转化气体反应物的气体物流;e)将分离的气体物流循环至高度剪切混合区;和f)将至少部分产物悬浮液循环至高度剪切混合区。
与常规费-托法相比,本发明方法的优点在于增强了高度剪切混合区和后混合区内的质量传递,这改善了气体反应物、液体介质和固体催化剂的接触,并因此促进了气体反应物向液体烃产物的催化转化。毫无疑问,气体反应物向液体烃产物的转化在高度剪切混合区中开始,尽管主要的转化通常发生在后混合区中。
气体反应物优选含有一氧化碳和氢的混合物(合成气)。优选,合成气中氢与一氧化碳的体积比是2∶1。
合成气可以使用本领域已知的任何方法制备,包括烃的部分氧化、蒸汽转化和自热转化。关于这些合成气生产技术的讨论参见“Hydrocarbon Processing”V78,N.4,87-90,92-93(1999年4月)和“Petrole et Techniques”,N.415,86-93(1998年6月-8月)。还可预计通过在微结构反应器中部分催化氧化烃得到合成气,如“IMRET3Proceeding of the Third International Conferenee onMicroreaction Technology”,Editor W Ehrfeld,SpringerVerlag,1999,187-196页中的例子。或者按照EP0303438所述,通过含烃原料的短接触时间部分催化氧化得到合成气。优选通过如“Hydrocarbon Engineering”,2000,5,(5),67-69中的“CompactReformer”;“Hydrocrarbon Processing”,79/9,34(2000年9月);“Today’s Refinery”,15/8,9(2000年8月);W099/02254;和WO200023689所述的方法制备合成气。
液体烃产物优选含有链长多于5个碳原子的烃的混合物。液体烃产物适合含有链长为5-约90个碳原子的烃的混合物。优选烃的大部分,例如多于60重量%,具有的链长为5-30个碳原子。
适宜地,液体介质含有一种或多种所述液体烃产物,这具有不需从该液体介质分离所述液体烃产物的优点。
高度剪切混合区可以是后混合区内或部分在后混合区外的系统的一部分,例如高度剪切混合区可凸出后混合区的壁外,使得高度剪切混合区将其内容物流注入后混合区。系统可含有多个高度剪切混合区,优选多达250个高度剪切混合区,更优选少于100个,最优选少于50个,例如10-50个高度剪切混合区。优选大多数高度剪切混合区向一个后混合区流注,其优点在于明显降低了商用费-托装置的尺寸。优选大多数高度剪切混合区均匀分布在后混合区之内或部分分布于后混合区之外,例如高度剪切混合区均匀分布在后混合区的顶部或顶部附近。优选高度剪切混合区沿向下的方向将气体反应物和悬浮液的混合物流注入后混合区中。
高度剪切混合区可含有适于充分混合或将气体物流充分分散于悬浮液中的任何装置,例如转子-定子装置或注射-混合喷嘴,所述悬浮液是固体悬浮于液体介质中。
注射-混合喷嘴如文丘里流量计有利地操作(参见“ChemicalEngineers’Handbook”,J.H.Perry著,第三版(1953),1285页,图61),优选注射混合器(参见“Chemical Engineers’Handbook”,J.H.Perry著,第三版(1953),1203页,图2和“ChemicalEngineers’Handbook”,R.H.Perry和CH Chilton著,第五版(1973)6-15页,图6-31),或最优选液体喷射器(参见“Unit Operations”,G G Brown等著,第四版(1953),194页,图210)。或者,以“气体鼓风”或“气体助推”喷嘴操作注射混合喷嘴,其中气体膨胀用于驱动喷嘴(参见“Atomisation and Sprays”,Arthur H Lefebvre著,Hemisphere Publishing Corporation,1989)。在以“气体鼓风”或“气体助推”喷嘴操作注射混合喷嘴之处,将催化剂悬浮液在充分高的压力下加入喷嘴,使得悬浮液通过喷嘴,同时气体反应物流在充分高的压力下加入喷嘴,在喷嘴中达到高度剪切混合。
气体反应物流适合于在至少20bar,优选至少30bar的压力下加入高度剪切混合区中。悬浮液在高度剪切混合区的压降通常在1-6bar、优选2-5bar,更优选3-4bar的范围内。本发明方法的优点在于在气体反应物流含有经“紧密重整(Compact Reformer)”法得到的合成气时,合成气的压力通常在20bar以上。因此,在将合成气加入本发明工艺之前,不需要降低合成气的压力,由此提供能量有效的重整/费-托联合方法。特别地,经“紧密重整(Compact Reformer)”法得到的合成气的压力通常足够高,使得在“气体鼓风”或“气体助推”喷嘴中达到高度剪切混合。
作用于高度剪切混合区中的悬浮液的剪切力应足够高,使气体反应物流被打碎为直径30μ-10mm,优选30μ-3000μ,更优选30μ-300μ的气泡。
循环至高度剪切混合区的产物悬浮液(下面称作“悬浮液循环物流”)优选在高度剪切混合区和后混合区之外冷却,以帮助从系统中除去反应放热,例如将悬浮液循环物流通过热交换器。优选将悬浮液循环物流冷却至低于后混合区内的悬浮液的温度不超过12℃。
优选通过位于后混合区的悬浮液中的热交换器,例如传热管在后混合区内提供额外的冷却。
含有未转化气体反应物的气体物流可以在后混合区之内或在外部气液分离区中从产物悬浮液中分离。除了未转化的气体反应物之外,分离的气体物流可含有汽化的低沸点液体烃产物、气化的水副产物和具有1-3个碳原子的气体烃,例如甲烷、乙烷和丙烷。
在将分离的气体物流(以下称为“气体循环物流”)循环至高度剪切混合区之前,可采用,例如将气体循环物流通过热交换器的方法将其冷却,以帮助从系统中除去反应放热。在将气体循环物流冷却至低于其露点时,所有汽化的低沸点液体烃产物和所有汽化的水副产物从气体循环物流中冷凝出来,并且优选采用适合的分离方法,例如用液体分离器装配热交换器,将这些冷凝的液体从系统中除去。随后采用适合的分离手段,例如滗析器从冷凝的低沸点液体烃产物中分离水副产物。随后将低沸点烃产物循环至高度剪切混合区和/或后混合区中。可将新鲜的气体反应物加入热交换器的上游或下游的气体循环物流中。在新鲜的气体反应物未被预冷却之处,优选将新鲜的气体反应物加入热交换器上游的气体循环物流中。循环至高度剪切混合区的气体物流优选含有的新鲜气体反应物为5-50体积%。
优选从气体循环物流中取出吹扫物流(purge stream),以防止气体副产物,例如甲烷在系统中聚积。如果需要,可从吹扫物流中分离任何气体中间产物(具有2-3个碳原子的气体烃)。所述气体中间产物优选循环至系统中,在那里将其转化为液体烃产物。
将含有低沸点烃(例如戊烷、己烷或己烯)的物流优选导入高度剪切混合区和/后混和区。不希望受任何理论束缚,可认为在高度剪切混和区和/或后混和区中的低沸点烃(以下称为“低沸点溶剂”)的汽化帮助和增强气体反应物、液体介质和固体催化剂的混和,并因而增加了气体反应物向液体烃产物的转化。此外,低沸点溶剂的汽化也帮助去除一些反应放热,由此使产物的选择性更为可控,并使气体副产物,例如甲烷的生成最小化。毫无疑问,低沸点溶剂可在后混和区和高度剪切混合区中汽化。气体循环物流因此可含有汽化的低沸点溶剂,以及汽化的低沸点液体烃产物、汽化的水副产物、未转化的气体反应物和具有1-3个碳原子的气体烃。如上所述,气体循环物流可以在循环至高度剪切混合区之前被冷却。任何汽化的低沸点溶剂可与任何汽化的低沸点液体烃产物和任何汽化的水副产物一起在将气体循环物流冷却至其露点以下时冷凝。优选将冷凝的液体如上所述从系统中除去,并随后使用适合的分离方法(也如上所述)从冷凝的液体中分离水副产物。残余的冷凝液体可随后循环至高度剪切混和区和/或后混合区。
出于实际的原因,后混合区在本发明的工艺过程中不能全部填充悬浮液,因此在一定高度的悬浮液以上,含有未转化气体反应物的气帽存在于后混合区的顶部。气帽的体积适合地不超过后混合区体积的40%,优选不超过30%。高度剪切混合区可以高于或低于后混合区中的悬浮液液面向后混合区流注。高度剪切混合区排料低于悬浮液液面的优点在于改进了后混合区中气体反应物和悬浮液的接触。
在后混合区具有气帽时,气体循环物流可从气帽中抽出。还考虑可将后混合区装配上塔顶冷凝器或冷却器,以便从气帽中的气体除去热量。在后混合区装配塔顶冷凝器或冷却器时,气体循环物流可从塔顶冷凝器或冷却器中抽出(即间接从后混合区中抽出)。可收集在冷凝器或冷却器中冷凝的任何低沸点液体烃产物和低沸点溶剂并将其循环至高度剪切混合区或后混合区(在分离所有水副产物之后)。
在本发明方法中使用的催化剂可以是已知在费一托合成中有效的任何催化剂。例如,负载或非负载的VIII族金属是已知的费-托催化剂。在这些金属中,优选铁、钴和钌,特别优选铁和钴,最优选钴。
优选的催化剂负载于无机耐高温氧化物上。优选的载体包括二氧化硅、氧化铝、二氧化硅-氧化铝、IVB族氧化物、氧化钛(主要以金红石形式),且最优选氧化锌。载体所具有的表面积通常小于约100m2/g,优选小于50m2/g,更优选小于25m2/g,例如约5m2/g。
催化金属通常以约1-100wt%的催化活性量存在,在铁基催化剂的情况下可达到上限,优选2-40wt%。助催化剂可加入催化剂,并且是费-托催化剂领域公知的。助催化剂包括钌、铂或钯(在不是主催化剂金属的情况下)、铼、铪、铈、镧和锆,且通常以少于主催化金属的量存在(除了钌以等量存在),但助催化剂与金属的比例应至少为1∶10。优选助催化剂为铼和铪。
本发明方法的另一优点是气体反应物流与催化剂悬浮液在高度剪切混合区的彻底混和使得所用催化剂颗粒的尺寸与传统淤浆方法相比更小。因此,催化剂具有的颗粒尺寸小于50微米、优选小于40微米,例如在5-30微米的范围内。与之相反,传统淤浆方法通常采用颗粒尺寸大于40微米的催化剂。催化剂颗粒尺寸更小的优点包括降低了本发明方法对于甲烷(气体副产物)的选择性,还减少了较重烃产物的形成。不希望受任何理论的限制,相信可以通过研磨更大尺寸的催化剂颗粒,例如研磨具有大于50微米的颗粒尺寸的催化剂,在系统内就地形成颗粒尺寸优选小于40微米的催化剂颗粒。
优选流注入后混合区的催化剂悬浮液含有小于40wt%的催化剂颗粒,更优选10-30wt%的催化剂颗粒,最优选10-20wt%的催化剂颗粒。
在本发明的优选实施方案中使用了注射-混和喷嘴。已经发现,气体反应物流、液体介质和固体催化剂的彻底混和可在注射-混和喷嘴中实现,导致了在后混合区中气体反应物向液体烃产物的高转化率。通过注射-混和喷嘴流注入后混合区的悬浮液至少部分经,例如淤浆泵循环至注射-混和喷嘴。注射混和喷嘴可通过位于其侧壁的至少一个开口(文丘里喷嘴)吸入气体反应物流。或者,如上所述,气体反应物流可在高压下经位于其侧壁的至少一个开口(“气体鼓风”或“气体助推”喷嘴)供应至注射-混和喷嘴。使用“气体鼓风”或“气体助推”喷嘴作为高度剪切混合区的优点在于减少了淤浆泵的负荷。
多于一个注射-混和喷嘴、优选高达150个、更优选少于100个、最优选少于50个,例如10-50个注射-混和喷嘴向一个后混合区流注。
适合地,后混合区包括容器,例如罐式反应器或管式回路导管,注射-混和喷嘴位于容器壁的任何位置(例如罐式反应器的顶部、底部或侧壁)。
在后混合区的容器是罐式反应器的情况下,产物悬浮液从罐式反应器中抽出并至少部分循环至注射-混和喷嘴。当注射-混和喷嘴位于罐式反应器的顶部且悬浮液从罐式反应器的底部除去时,可达到很好的混和效果。因此罐式反应器优选在其顶部带有至少一个注射-混和喷嘴,且悬浮液循环物流优选从罐式反应器的底部抽出。优选悬浮液循环物流至少部分经回路导管(淤浆循环管线)循环至注射-混和喷嘴的顶部,然后通过注射-混合喷嘴将其注入罐式反应器的顶部,同时通过一个或多个位于注射-混和喷嘴侧壁上的开口引入气体反应物流。优选热交换器位于回路导管上以除去反应热。
在后混合区的容器是管式回路导管的情况下,单一的注射-混和喷嘴可向管式回路导管流注。悬浮液可经,例如位于管式回路导管中的泵或推进器循环至注射-混和喷嘴。热交换器可以沿着管式回路导管长度的至少一部分而排列,优选沿着管式回路导管的基本上整个长度排列,由此提供温控。或者将一系列注射-混和喷嘴环绕管式回路导管分布。在上述分布中,各个注射-混和喷嘴向管式回路导管的部分流注,所述部分通过,例如位于管式回路导管该部分中的泵或推进器将悬浮液循环至回路中的下一个注射-混和喷嘴中。热交换器可以沿管式回路导管各部分的至少一部分排列,优选沿管式回路导管各部分的基本上整个长度排列,由此提供温控。可以预测,气体反应物和催化剂悬浮液在管式回路导管中的混和如此充分,以致于不需要气帽。在省略气帽的情况下,产物悬浮液与夹带和/或溶解的气体(未转化的气体反应物、具有1-3个碳原子的气体烃、汽化的低沸点液体烃产物、汽化的水副产物和任选汽化的低沸点溶剂)一起从管式回路导管中抽出,并且含有夹带和/或溶解气体的气体循环物流在外部气液分离区中从产物悬浮液中分离出来。
在后混合区的容器(例如罐式反应器或管式回路导管)带有气帽的情况下,气体循环物流有利地通过容器壁,从气帽中抽出,并循环至注射-混和喷嘴。如上所述,将气体反应物从气帽向注射-混和喷嘴循环的优点在于采用这种方式,可通过冷却热交换器中的气体循环物流有利地控制容器中悬浮液的温度,所述热交换器位于高度剪切混合区和后混合区的容器之外。如果在新鲜的气体反应物冷却(热交换器的上游)或被预冷却之前,将其加入气体循环物流中,所述温控可进一步得到改善。也可以通过位于罐式反应器中悬浮液液面以下的热交换器,例如传热管,并通过悬浮液循环物流的外部冷却方式控制罐式反应器中悬浮液的温度。
本发明的方法优选在180-280℃,更优选190-240℃的温度下进行。
本发明的方法优选在5-50bar,更优选15-35bar,通常为20-30bar的压力下进行。
本发明的方法可以以间歇或连续的方式操作,优选后者。
在连续方法中,部分产物悬浮液连续从系统中除去并转入适合的分离设备,在那里将液体介质和液体烃产物与催化剂分离。适合的分离设备的例子包括旋液分离器、过滤器、重力沉降分离器和磁选分离器。或者,通过蒸馏从催化剂中分离液体介质和液体烃产物。随后将分离的液体转入产物纯化步骤,在此从液体烃产物中除去水副产物和液体介质。如上所述,可使用液体烃产物中的一种或多种作为液体介质简化纯化步骤,此时不需要从液体烃产物中分离液体介质。催化剂可作为浓缩的淤浆循环至后混合区。新鲜催化剂可加入循环淤浆中或直接加入后混合区。
为了防止水副产物在系统中积聚,优选将至少部分水副产物从悬浮液循环物流中除去。可通过在热交换器的下游从悬浮液循环物流中取出侧流达到上述目的。(如上所述)从催化剂中分离侧流的液体组分,并在残余的分离后的液体组分循环回到高度剪切混合区之前将水副产物从分离后的液体中除去(亦如上所述)。分离后的催化剂可作为浓缩的淤浆循环至后混合区(如上所述)。
可以预计,通过将分离后的液体(其中已经除去了水)的一部分循环回到高度剪切混合区,可将从系统中除去水副产物合并入产物分离步骤。
由纯化步骤得到的液体烃产物可进入加氢裂解步骤,例如催化加氢裂解步骤,其中使用了含有选自钴、钼、镍和钨的金属载体催化剂,所述金属负载于诸如氧化铝、二氧化硅-氧化铝或沸石的载体材料上。优选催化剂含有负载于氧化铝或二氧化硅-氧化铝的钴/钼或镍/钼。适合的加氢裂解催化剂包括Akzo Nobel、Criterion、Chevron或UPO供应的催化剂。优选的催化剂是Akzo Nobel供应的KF 1022TM,为氧化铝载钴/钼催化剂。
下面借助附图
举例说明本发明。
液体介质中的催化剂悬浮液经管线(2)循环至注射-混和喷嘴(1)。通过注射-混和喷嘴(1)侧壁上的一个或多个开口,悬浮液中引入含有一氧化碳和氢的气体反应物流,所述气体反应物流经管线(3)引入注射-混和喷嘴(1)。新鲜的气体反应物经管线(4)引入管线(3),通过管线(3)未转化的气体反应物从气帽(5)循环,所述气帽存在于容器(6)的上半部,该容器的下半部装有催化剂在液体介质和液体烃产物的混合物中的悬浮液(7)。附图中的虚线(8)表示容器(6)中悬浮液(7)的上液面。
通过在热交换器(9)中冷却的方式,将通过管线(3)的气体混合物保持在正确的操作温度下。适合地,热交换器(9)是具有水阱的冷凝器,所述水阱用于从系统中除去水副产物。吹扫物流(10)从管线(3)中取出,以防止在气帽(5)中形成气体副产物。任选在容器(6)中的悬浮液(7)的液面以下装配热交换器(11),例如冷却管,以帮助除去反应放热。
任选将低沸点烃液体物流(低沸点溶剂)经管线(12)引入注射-混和喷嘴(1),或经管线(13)引入容器(6)。低沸点烃液引入系统的情况下,在热交换器(9)中冷凝。冷凝的低沸点烃液在滗析器(未示出)中与冷凝的水副产物分离。分离后的低沸点烃液随后循环至系统中。
经过注射-混和喷嘴(1)下半部的出口,催化剂、液体介质、液体烃产物和未转化的气体反应物的混合物通入容器(6),低于悬浮液(7)的液面(8)。未转化的气体反应物随后分离至气帽(5)。
悬浮液(7)经管线(14)从容器(6)的底部抽出,并通过泵(15)和管线(2)将至少部分悬浮液循环至注射-混和喷嘴(1)。通过在热交换器(16)中冷却的方式,将管线(2)中循环的悬浮液保持在正确的操作温度下。
经管线(17)从系统中抽出部分悬浮液(7)。采用适合的分离装置(18),例如旋液分离器、过滤器、重力沉降分离器或磁选分离器或选择通过蒸馏,从悬浮的催化剂中分离液体介质和液体烃产物。分离的催化剂可作为淤浆,经淤浆泵(19)和管线(20)返回容器(6)。分离的液体介质和液体烃产物可由分离设备(18)通入纯化区(未示出)。
可从管线(2)中将部分悬浮液抽出,并沿管线(21)通入分离设备(22),在此悬浮液的液体组分从催化剂中分离(例如如上所述)。随后将分离的液体沿管线(23)通入滗析器(24),在此将水副产物经管线(25)从系统中除去。残余的液体随后经管线(26)再次引入管线(2)。从滗析器(24)中分离出的催化剂作为淤浆经管线(27)引入管线(20)。
权利要求
1.一种在包括高度剪切混合区和后混合区的系统中,在升高的温度和压力下,通过将气体反应物与悬浮液接触,使气体反应物转化为液体烃产物的方法,所述悬浮液含有悬浮于液体介质中的催化剂,其中该方法包括a)将含有悬浮于液体介质的催化剂的悬浮液通过高度剪切混合区,该区域中含有气体反应物的气体反应物流与悬浮液混和;b)将含有气体反应物和悬浮液的混合物流注入后混合区;c)在后混合区中将至少部分气体反应物转化为液体烃产物,形成含有悬浮于液体介质的催化剂和液体烃产物的产物悬浮液;d)从上述产物悬浮液中分离含有未转化气体反应物的气体物流;e)将所分离的气体物流循环至高度剪切混合区;和f)将至少部分上述产物悬浮液循环至高度剪切混合区。
2.权利要求1的方法,其中气体反应物流在高度剪切混和区中被打碎为直径为30μ-3000μ的气泡。
3.权利要求1或2的方法,其中在至少30bar的压力下,向高度剪切混和区中加入气体反应物流。
4.上述任一权利要求的方法,其中高度剪切混和区中的压降为1-6bar。
5.上述任一权利要求的方法,其中气体循环物流在循环至高度剪切混和区之前被冷却。
6.上述任一权利要求的方法,其中产物悬浮液在循环至高度剪切混和区之前被冷却。
7.上述任一权利要求的方法,其中含低沸点烃的物流被引入高度剪切混和区和/或后混和区。
8.上述任一权利要求的方法,其中系统含有多个高度剪切混和区,所述多个高度剪切混和区向单一的后混和区流注。
9.上述任一权利要求的方法,其中高度剪切混和区是注射-混和喷嘴。
10.权利要求9的方法,其中后混和区是罐式反应器,在其顶部或顶部附近具有至少一个注射-混和喷嘴,且其中产物悬浮液从罐式反应器的底部或底部附近抽出,并至少部分经淤浆循环管线和淤浆泵循环至注射-混和喷嘴。
11.权利要求10的方法,其中罐式反应器在悬浮液的液面以上含有气帽,注射-混和喷嘴在高于或低于该悬浮液液面处向容器流注,且气体循环物流从气帽中抽出并循环至上述注射-混和喷嘴。
12.权利要求10或11的方法,其中淤浆循环管线装配有热交换器。
13.权利要求9的方法,其中后混和区包括装配有至少一个注射-混和喷嘴的管式回路导管,并且产物悬浮液至少部分经过位于管式回路导管中的泵或推进器循环至注射-混和喷嘴。
14.权利要求13的方法,其中热交换器沿着管式回路导管的部分或基本上整个长度排列。
15.上述任一权利要求的方法,其中气体反应物包含一氧化碳和氢的混合物。
16.上述任一权利要求的方法,其中液体烃产物包含具有5-约90个碳原子的链长的烃的混合物。
17.上述任一权利要求的方法,其中催化剂是负载于二氧化硅、氧化铝、二氧化硅-氧化铝、氧化钛或氧化锌上的铁、钴或钌。
18.上述任一权利要求的方法,其中催化剂具有的颗粒尺寸在5-30微米的范围内。
19.上述任一权利要求的方法,其中向后混和区流注的悬浮液含有10-30wt%的催化剂颗粒。
20.上述任一权利要求的方法,其中后混和区保持在180-280℃的温度和5-50bar的压力下。
21.一种装置,包括多个高度剪切混和区、单个后混和区、具有第一端点和第二端点的气体循环管线和具有第一端点和第二端点的淤浆循环管线,其中a)各个高度剪切混和区具有第一入口,用于在液体介质中的催化剂悬浮液;至少一个第二入口,用于含气体反应物的气体物流;以及位于后混和区内的出口,用于从高度剪切混和区向后混和区流注上述气体反应物和悬浮液的混合物;b)后混和区具有第一出口,用于在后混和区的底部或底部附近将产物悬浮液出料;以及第二出口,用于后混和区的顶部或顶部附近的气体循环物流;c)淤浆循环管线的第一端点与后混和区的第一出口相连,并且淤浆循环回路的第二端点与高度剪切混和区的第一入口相连;以及d)气体循环管线的第一端点与后混和区的第二出口相连,并且气体循环管线的第二端点与高度剪切混和区的第二入口相连。
22.权利要求21的装置,其中淤浆循环管线装配有淤浆泵和热交换器。
23.权利要求21或22的装置,其中气体循环管线装配有热交换器。
24.权利要求21-23任一项的装置,其中高度剪切混和区是注射-混和喷嘴。
25.权利要求24的装置,其中装置具有10-50个注射-混和喷嘴。
全文摘要
一种在包括高度剪切混合区和后混合区的系统中,使合成气转化为高级烃产物的方法,其中该方法包括a)将催化剂在液体介质中的悬浮液通过高度剪切混合区,在此悬浮液与合成气混和;b)从高度剪切混合区向后混合区流注合成气和悬浮液的混合物;c)在后混合区中将至少部分合成气转化为高级烃产物,形成含有悬浮于液体介质的催化剂和高级烃的产物悬浮液;d)从产物悬浮液中分离含有未转化合成气的气体物流;e)将分离的气体物流循环至高度剪切混合区;和f)将至少部分产物悬浮液循环至高度剪切混合区。
文档编号B01J8/22GK1399619SQ00816270
公开日2003年2月26日 申请日期2000年11月22日 优先权日1999年11月26日
发明者G·W·凯特利, B·奈, D·纽顿 申请人:英国石油勘探运作有限公司