含硫化氢的可燃气流的处理的利记博彩app

文档序号:5019360阅读:452来源:国知局
专利名称:含硫化氢的可燃气流的处理的利记博彩app
背景技术
本发明涉及处理含硫化氢的可燃气流的方法和设备。
含硫化氢的气流(有时称作“酸性气流”)一般是在炼油厂和天然气加工装置中生成。因为硫化氢有毒,所以这种气流不应直接排放到大气中。处理含硫化氢的气流(如果需要,已预先浓缩)的常规方法是采用克劳斯法处理。在这种方法中,部分气流的硫化氢内容物在采用加热炉形式的加热阶段中燃烧以形成二氧化硫。随后所述二氧化硫与残留的硫化氢在加热炉内反应以形成硫蒸气。硫化氢与二氧化硫之间的反应不完全。将来自加热炉的废气流冷却并一般通过冷凝从冷却的废气流中抽出硫。所得的气流仍包含残留的硫化氢和二氧化硫,使该气流通过一系列阶段,使它们在这些阶段中发生残留的硫化氢与残留的二氧化硫之间的催化反应。在每阶段的下游抽出所得的硫蒸气。为了形成能安全排放到大气中的气流,可煅烧来自硫抽出处理最下游的废气或进行更进一步处理,例如通过壳牌-克劳斯法尾气硫回收过程(SCOT)或比冯-斯屈莱特福法硫磺回收过程(Beavon)处理。
可用空气支持硫化氢在所述过程的初始部分的燃烧。发生的反应所采用的化学计量法为使较大体积量的氮气(当然是存在于助燃的空气中)流过所述处理过程并由此设定在给定大小的加热炉中可处理含硫化氢气流的速率的最高限度。可通过使用工业制造的氧气或富氧空气支持硫化氢的燃烧来提高这个最高限度。
通常,根据气流中所含硫化氢的浓度而提供的代替空气的工业纯氧会导致加热炉中产生过高的温度,这易于引起破坏,特别是对加热炉的耐热衬里产生破坏。已知各种提供空气的富氧程度而不产生过高温度的方法。例如,联合王国专利申请2 173 780 A公开了通过将液态水引入到加热炉的火焰带中来调节所述温度。美国专利序号5 352 433公开了特别有利的方法,其中通过在两个独立的加热炉中实施硫化氢的燃烧来提高克劳斯法的生产能力或生产量。因此,燃烧产生的总热量在两个加热炉之间分配,不需要使用外部的或循环的温度调节器。由此生产能力可比其它方法得到更大程度的提高。
一般,当在两个独立的加热炉中实施硫化氢的燃烧时,可通过在现有的装置中翻新改进另外的加热炉和适当的热交换装置来实施该方法。
本发明的目的是提供从含硫化氢的气流中回收硫的方法和装置,其中所述方法及装置可灵活操作、有效控制并还能至少提供一些用工业纯氧或富氧空气实施的优点。
发明概述根据本发明提供了处理大量可燃的含硫化氢气流的方法,所述方法包括以下步骤(a)操作第一克劳斯装置从第一种含硫化氢的可燃气流中回收硫,所述第一克劳斯装置包括一系列阶段,这些阶段依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段;所述次系列阶段包括催化克劳斯阶段和其下游的第二硫冷凝器;(b)在至少一个另外的热克劳斯阶段中燃烧部分第二种可燃气流的硫化氢内容物;(c)给所述另外的热克劳斯阶段提供具有氧气摩尔分数为至少0.25的助燃气体以支持在所述阶段中硫化氢的燃烧,所述助燃气体由从空气中分离出来的纯的或不纯的氧气流形成,或由空气与所述纯的或不纯的氧气流的混合物形成;(d)从所述另外的热克劳斯阶段抽出包含硫化氢、二氧化硫、水蒸汽和硫蒸气的废气流并在另外的硫冷凝器中从所述废气流中除去硫蒸气以形成贫硫废气流;(e)在所述第一热克劳斯阶段的下游和所述次系列中的催化克劳斯反应的初始部分的上游的区域中混合所述贫硫废气流和经过第一克劳斯装置处理的第一种可燃气体;(f)产生第一控制信号,该信号为第二种可燃气体或其至少一种可燃组分进入所述另外的热克劳斯阶段的流速的函数;(g)产生第二控制信号,该信号为在所述贫硫废气流中的硫化氢/二氧化硫的摩尔比的函数;并且(h)使用所述控制信号设定供给所述另外的热克劳斯阶段的助燃气体的速率。
本发明也提供了用于处理大量含硫化氢的可燃气流的装置,该装置包括a)用于从第一含硫化氢的可燃气流中回收硫的第一克劳斯装置,该装置具有一系列阶段,所述阶段依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段,其中所述次系列阶段包括催化克劳斯反应阶段和第二硫冷凝器;b)至少一个另外的热克劳斯阶段,该阶段用于燃烧部分第二种含硫化氢的可燃气流的硫化氢内容物;c)至少一个用于提供具有至少0.25的氧气摩尔分数的助燃气体进入所述另外的热克劳斯阶段的入口,所述助燃气体由从空气中分离出来的纯的或不纯的氧气流形成,或由空气与所述纯的或不纯的氧气流的混合物形成;d)用于从所述另外的热克劳斯阶段排出包含硫化氢、二氧化硫、水蒸汽和硫蒸气的废气流的出口;e)用于从所述废气流中抽出硫蒸气以形成贫硫废气流的另外的冷凝器,所述冷凝器具有与来自所述另外的热克劳斯阶段的出口相连的入口;f)贫硫废气流的出口,该出口与第一克劳斯装置的一个区域相连,其中所述区域位于第一热克劳斯阶段的下游和开始催化克劳斯反应的位置的上游;g)产生第一控制信号的设备,其中所述信号为进入所述另外的热克劳斯阶段的第二种可燃气流或其至少一种可燃组分的流速的函数;h)产生第二控制信号的设备,其中所述信号为在所述贫硫废气中的硫化氢与二氧化硫的摩尔比的函数;和i)响应所述控制信号,以设定供给所述另外的热克劳斯反应阶段的助燃气体的速率的设备。
本发明的方法及装置提供了许多优点第一,含硫化氢的可燃气体通过速率比可对照的装置的大得多,其中可对照装置省略了所述另外的热克劳斯阶段和另外的硫冷凝器;第二,产生作为硫化氢与二氧化硫的比例的函数的第二控制信号有助于实现对本发明的方法和装置的稳定控制;第三,所述另外的热克劳斯阶段和另外的硫冷凝器可容易地翻新改进成先前标准的一个或多个克劳斯装置,而不需要对这种装置和其所用的过程控制设备做出重大改变。实际上,先前的标准装置可完全如在添加所述新设备之前一样操作;第四,所述另外的热克劳斯阶段可用来为两个或多个独立的克劳斯装置提供贫硫废气混合物。
如果形成的助燃气体为第一种空气流和第二种从空气中分离出的纯的或不纯的氧气的混合物,则第一种和第二种气流可在所述另外的热克劳斯阶段中原位混合。不要求所述混合完全。优选在所述助燃气体中的氧气摩尔分数为至少大约0.7。将这么一种富氧助燃气体提供至单一的另外的热克劳斯阶段会易于导致产生过高的温度,特别是如果第二种含硫化氢的可燃气体混合物具有高摩尔分数的硫化氢(例如大于大约0.7)时更是如此。这种倾向可通过向所述单一的另外的热克劳斯阶段提供调节流体来抵消。这种调节流体可为,例如液态二氧化碳、取自所述另外的硫冷凝器的下游的循环流或取自独立来源的二氧化硫。但是,优选串联使用两个另外的热克劳斯阶段以限制在每个独立的阶段中发生燃烧的硫化氢的量。优选在所述两个另外的热克劳斯阶段中间具有热交换设备。如有需要,可在中间热交换设备的下游但在所述两个另外的热克劳斯阶段的更下游的上游使用中间硫冷凝器。
第二种可燃气流可具有与第一种含硫化氢的可燃气流相同的组成或与其不同的组成。例如,所述第二种可燃气流除硫化氢外还可包含氨,但是第一种可燃气流可基本不含氨。在所述另外的热克劳斯阶段或多个热克劳斯阶段中使用所述具有摩尔分数为至少大约0.7的助燃气流使得可以在那里产生一个燃烧领域,所述燃烧领域具有至少一个有局部高温的特别适合分解氨的燃烧带。
优选在第一克劳斯装置的一个区域将贫硫废气流导入第一种可燃气体混合物中,其中所述区域在第一硫冷凝器的下游并在任何再热炉的上游,所述再热炉形成部分第一次系列阶段或形成唯一一个次系列阶段。但是,可以在一个不同的位置进行气流的混合。例如,贫硫废气流可与第一种可燃气流在正好位于第一硫冷凝器上游的区域中混合。
产生第一控制信号的设备一般包含测量助燃气体进入到所述另外的克劳斯阶段的流速的流量计,流量计与第一阀控制器一起进行操作。
优选产生第二控制信号的设备包含分析器(典型的分析器为红外类型,能够测量硫化氢与二氧化硫两者的浓度)、计算硫化氢与二氧化硫摩尔比的设备以及将计算的硫化氢与二氧化硫的摩尔比和预先设定的所要求的比例进行对比的设备。测量出其间任何的偏差都可用做第二控制信号以调节助燃气体到所述另外的一个或多个热克劳斯阶段的流量。优选提供给所述另外的一个或多个热克劳斯阶段的助燃气体的速率主要由用于产生第一控制信号的设备来控制。为此目的,使所述助燃气体的总流量的至少较大部分或主要部分流经至少一个第一主流速控制阀,所述控制阀与产生第一控制信号的设备一起操作。如果所述助燃气体为从空气中分离出来的纯的或不纯的氧气流,则可只有一个第一主流量控制阀。另一方面,如果所述助燃气体为由空气流与从空气中分离出来的纯的或不纯的氧气流形成的混合物,则可在第一空气流的管道上安装第一主流速控制阀并且在第二氧气流的管道上安装第二主流速控制阀。如有需要,可通过分析第二种可燃气流来增强一级控制。所述第二控制信号对助燃气体进入所述另外的一个或多个克劳斯阶段的流速的一级控制进行微调。为此目的,优选有至少一个与所述控制阀或每个主控制阀平行的二级(或微调)控制阀,所述二级控制阀与产生第二控制信号的设备一起进行控制。一般,仅有较少部分的助燃气流通过所述二级控制阀或每个二级控制阀。可采用这个控制方案的许多不同变体中的任一种,这取决于所述助燃气体是以单一气流形式还是以多气流形式提供给一个或多个所述另外的热克劳斯阶段。如果这种供给是以单一气流形式,可安装单一的主控制阀并且部分气流可从旁路通过主控制阀并流经二级控制阀。换句话说,如果助燃气体是以多气流的形式供给,每种气流可具有各自的主控制阀,并且至少一种气流可流经二级控制阀而从旁路通过其相应的主控制阀。
可使用作为选择的具有第一和第二控制信号的控制方案。例如,在该方案中可具有单一控制阀和具有设定值的控制装置,使用所述第二控制信号以重新设定这个点。在另一种作为选择的方案中可有一条供应空气至另外的热克劳斯阶段的管道和另一条供应纯或不纯氧气的管道,在每条管道上附加有主流量控制阀并且可安装产生第二控制信号的设备,使得第二控制信号到达任一主流量控制阀。总之,优选使用二级或微调阀,因为对单一的、较大的控制阀进行较小的调节以实现细调时可能会出现困难。
优选有类似安装的流量控制阀以控制通入所述第一克劳斯装置的热克劳斯阶段的空气或富氧空气的流量。因此,一个通过了小部分空气或富氧空气总量的流量控制阀优选响应于由分析器产生的信号,其中通过的空气或富氧空气流向第一热克劳斯阶段,而所述分析器具有一个或多个感应器,位于所有次系列的下游。同时另一个通过空气或富氧空气的主流量的流量控制阀优选根据预期流向第一克劳斯装置的第一可燃气体的流量来设定并且可根据任何检测到的与硫化氢的特定流量和/或特定的摩尔比之间的偏差来调节。
优选根据本发明的方法包括操作至少一个用于从至少三分之一的含硫化氢的可燃气体中回收硫的第二克劳斯装置,该装置包括一系列阶段,依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段,其中所述次系列阶段包括催化克劳斯反应阶段和第二硫冷凝器。在正常的操作中,仅有部分贫硫废气流与所述第一种可燃气流混合,剩余的贫硫废气流与第三种可燃气流在第一热克劳斯阶段的下游和催化克劳斯反应中的初始部分的上游的区域中混合。
这种排列的一个优点是当为了进行常规维护而关闭第一克劳斯装置、第二克劳斯装置和另外的热克劳斯阶段中的任一个时可继续生产硫。
附图简述现在通过参考附图由实施例来描述本发明的方法和装置,其中

图1至3分别为用于处理大量含硫化氢的可燃气流的装置的第一、第二和第三个实施例的流程示意图。
所述图不是按比例绘制。为了容易说明,从图中省略了各种流量控制阀和截止阀以及其它设备。在两个或多个附图中的相同部分由相同的编号指示。
详细描述在图1中,举例说明了第一克劳斯装置2、第二克劳斯装置4以及用于从含硫化氢的气流中回收硫的另外的设备6。经管道8将第一种含硫化氢的可燃气流引入第一克劳斯装置2中。在炼油厂中,第一种含硫化氢的可燃气流的来源可为所谓的“胺气”源或所谓“酸性水汽提气”的来源,其中典型的“胺气”包含超过80%体积的硫化氢(剩余部分的大多数为二氧化碳),典型的“酸性水汽提气”包含大约20到大约35%体积的硫化氢以及大约30到大约45%体积的氨气,同时剩余部分包括水蒸汽和二氧化碳。在另一个实施例中,第一种含硫化氢的可燃气流为酸性水汽提气和胺气的混合物。
第一种含硫化氢的可燃气流从管道8流入燃烧器10(可为轴向或切向尖端混合型(tip mixed kind)),燃烧器10对加热炉12进行加热,加热炉12组成克劳斯装置的加热阶段。为了支持第一种含硫化氢气体混合物的可燃组分的燃烧,将空气或富氧空气流经管道16进料至燃烧器10中。空气或富氧空气与第一种含硫化氢的可燃气流的流量的相对比率为燃烧器10接收每摩尔氧气同时接收大约2摩尔硫化氢。因此,提供了足够的氧气以支持燃烧进入燃烧器10的总流量大约三分之一的硫化氢分子。也提供了足够的添加的氧分子以确保完全燃烧任何存在于第一种含硫化氢可燃气体混合物中的氨气或烃。
在加热炉12中燃烧硫化氢形成了水蒸汽和二氧化硫。所得的二氧化硫在炉12内与残留的硫化氢反应形成了硫蒸气和更多的水蒸汽。也发生了其它的化学反应。例如,一些硫化氢热离解成氢和硫。发生各种其它的反应需依赖加热炉12中具体的操作条件。例如,一氧化碳(由二氧化碳的热离解作用或由二氧化碳与硫化氢的反应形成)与硫蒸气反应形成氧硫化碳。也可形成二硫化碳。
气体混合物包含硫化氢、二氧化硫、硫蒸气、水蒸汽、二氧化碳、氢和一氧化碳并且也包括痕量的氧硫化碳和二硫化碳,气体混合物流出加热炉12进入废热锅炉14,在废热锅炉14中一般将气体混合物冷却至大约250至大约350℃。如此冷却的气体混合物从废热锅炉14流入硫冷凝器,在其中气体混合物进一步冷却,一般冷却至大约110至大约180℃。所述硫冷凝器18也冷凝了至少一些在气体混合物中的硫蒸气。将所得的冷凝物输送至硫密封槽中(没有标出)。
因为硫化氢与二氧化硫之间的克劳斯反应没有进行完全,离开冷凝器18中的气体混合物包括比例可观的二氧化硫和硫化氢。为了从其中提取更多的硫,将所述气体混合物输送通过第一个阶段的次系列20和第二个相似阶段的次系列22,其中次系列20包括硫化氢与二氧化硫之间的催化反应,次系列22包括硫化氢与二氧化硫之间的催化反应。次系列20依次为再热炉24,在再热炉24中一般将气体混合物的温度加热至大约200至大约250℃。从再热炉24流出的气体混合物流经第一催化克劳斯反应器26,在反应器26中硫化氢与二氧化硫在例如活化氧化铝催化剂的作用下发生反应。结果形成了更多的硫蒸气和水蒸汽。所得的气体混合物流出催化反应器26进入另一个硫冷凝器28,在硫冷凝器28中一般将气体混合物冷却至大约110至约150℃并冷凝在催化反应器中形成的硫蒸气。将所得的冷凝物输送到硫密封槽中(没有标出)。将贫硫气体混合物输送到第二系列22中。所述第二系列依次由另外的再热炉30、另外的催化克劳斯反应器32以及另外的硫冷凝器34组成。这些单元操作与在第一系列20中的各个单元的类似。
根据其中残留的硫化合物的浓度,离开另外的硫冷凝器34的气体混合物可输送至焚化炉(没有标出)和排放到大气中。或者,可将气体混合物输送至水解反应器(没有标出),在所述反应器中水解并氢化存在于气体混合物中的组分。在所述水解反应器中,用水蒸汽在催化剂作用下水解残留的氧硫化碳和二硫化碳以制备硫化氢,所述催化剂的例子如用钴和钼浸渍的氧化铝。这种催化剂是本领域所熟知的。同时,将残留的元素硫和二氧化硫氢化形成二氧化硫。水解与氢化在大约300到大约350℃下通过前述浸渍的氧化铝催化剂的作用下实施。所得的气体混合物主要由硫化氢、氮气、二氧化碳、水蒸汽和氢气组成,该混合物离开所述水解反应器并首先流到水冷凝单元(没有标出),然后流入一个分离单元(没有标出),在其中由例如化学吸收分离出硫化氢。适合的吸收剂为甲基二乙基胺。如有必要,可将如此回收的硫化氢循环至燃烧器10中。
将第二种含硫化氢的可燃气流输送至另外的设备6。第二种含硫化氢的可燃气流可具有与第一种可燃气流相同或不同的组成。如果具有独立的胺气和酸性水汽提气体来源,并且如果使用空气(不含丰富的氧)来支持第一克劳斯装置2的加热炉12中的燃烧,则通常优选将胺气输送至第一克劳斯装置2和将酸性水汽提气体输送至另外的设备6。
第二种含硫化氢的可燃气流流经管道40到燃烧器42中,其中燃烧器42轴向或切向燃烧对组成热克劳斯阶段的加热炉44进行加热。为了支持第二种含硫化氢的可燃气流的可燃组分的燃烧,将助燃气体经管道45供给燃烧器42,优选助燃气体具有至少为大约0.8的氧气摩尔分数。燃烧器42可为尖端混合型。优选所述助燃气体为工业纯氧或富氧空气。选择到燃烧器42的气流的各自的流速,这样在操作中加热炉44的耐热衬里(没有标出)绝对不会达到大约1650℃或更高温度。通常,提供助燃气体的速率会因此明显小于燃烧第二种可燃气流的硫化氢内含物的三分之一的需求量。
在加热炉44中发生的反应基本上与上述那些关于第一克劳斯装置2的加热炉12的反应相同。但是,使用氧气摩尔分数为至少0.8的助燃气体有利于硫化氢的热离解作用。因此,所得气体中的氢气比例一般大于第一克劳斯装置2中的相应部分。含硫化氢、二氧化硫、硫蒸气、水蒸汽、氢气和二氧化碳以及一般的氮气、一氧化碳及痕量的氧硫化碳和二硫化碳的废气流44离开炉44并进入废热锅炉46中,在废热锅炉46中一般将废气流冷却到大约500至大约600℃。
所得的冷却废气流流入第二克劳斯加热炉48中。将另外的助燃气体经管道50供给加热炉48,其中管道50为管道45的分支。所述助燃气体经喷枪(没有标出)进入加热炉48中。
结果,燃烧了部分来自加热炉44的已冷却的废气流的硫化氢内容物。由于离开废热锅炉46的废气流一般具有比较高的温度,所以易于发生硫化氢的燃烧。
设定硫化氢分子和氧气分子进入加热炉44和48的流量的相对比率,使得离开加热炉48的废气流中硫化氢与二氧化硫的摩尔比一般为大约1.5∶1到大约3∶1。在另外的废热锅炉52中一般将废气混合物冷却至大约250到大约350℃。包含与离开废热锅炉46的气体混合物种类相同(但比例不同)的已冷却的废气混合物现在流入硫冷凝器54中,在硫冷凝器54中其进一步冷却至大约110到大约150℃并且至少冷凝了部分硫蒸气。将所得的冷凝物输送至硫密封槽(没有标出)。一般将所得的贫硫废气流分为两个子气流。一个子气流与从第一克劳斯装置2流出的气流在位于冷凝器18的下游但在再热器24上游的区域中混合。其余流出硫冷凝器54的贫硫废气流以下述方法使用。
第三种含硫化氢的可燃气流经管道60送入第二克劳斯装置4。空气或富氧空气经管道62送入第三克劳斯装置4。所述第二克劳斯装置4包含燃烧炉64,燃烧炉64对组成热克劳斯阶段的加热炉66进行加热。离开加热炉66的废气在废热锅炉68中冷却。在硫冷凝器70中从已冷却的废气流中冷凝硫并且将所得的冷凝物输送至硫密封槽(没有标出)。离开冷凝器70的贫硫气体混合物依次流到两个催化克劳斯阶段的次系列72和74中。上游系列72依次包含再热器76、第一催化克劳斯反应器78和硫冷凝器80。第二次系列74同样包括再热器82、催化克劳斯反应器84和硫冷凝器86。除了将来自另外的设备6的硫冷凝器54的贫硫废气的另一部分在冷凝器70的下游但在再热器76的上游区域中引入所述流经克劳斯装置4的气体混合物中外,其余第二克劳斯装置4的操作与第一克劳斯装置2的相似,在本文中不再描述。
供应另外的设备6使得可以提高两个克劳斯装置的总生产量。通过在另外的设备6中使用比在克劳斯装置2和克劳斯装置4中使用的更富氧的助燃气体,可以缩减添加的非反应性气体(具体为氮气和二氧化碳)的量。另外的设备6一般可为改进的克劳斯装置2和4。通过另外的设备处理更多的进料,并减少进料通过克劳斯装置2和4的热阶段,可增加整体进料速率同时保持相对稳定的通过克劳斯装置2和4催化阶段的流量。
根据本发明,通过实施控制使得来自另外的设备的含硫化氢和二氧化硫的贫硫废气混合物添加至克劳斯装置2和4催化阶段不会扰乱其操作。附图1举例说明了第一克劳斯装置2的控制流程图。分析器90放在冷凝器34的下游并产生传送到阀控制器92的控制信号,阀控制器92将硫化氢与二氧化硫的真实摩尔比(或其函数)和该比例的预设值(或这个比例的函数)相比较。如果两个值之间有差别,就重新设置微调阀94以调节空气或富氧空气经微调管道96到管道16的流量,从而使硫化氢与二氧化硫的摩尔比的感应值回到预设值。
微调管道96仅运送了富氧空气的总流量的一小部分到克劳斯装置2的管道16中。有一个主流量控制阀98与微调阀94平行。这个阀可根据完全氧化任何存在于第一可燃气流中的氨或烃以及按选择的比例氧化其硫化氢内容物成为二氧化硫和水蒸汽所需的空气或富氧空气的计算流量进行设置。流量计100测量了进入第一克劳斯装置2的第一种可燃性气流的流速并产生代表流速的信号给阀,所述信号传输到阀控制器中,当测定的流速与指定的不同时,阀控制器就重新设置主流量控制阀98。所述控制方案可以第一种可燃气流的组成为基础,其中所述组成根据过去的经验或过去的分析作假定,或者通过产生辅助控制信号的运转分析器或运转分析器组(没有标出)确定。当在没有添加来自另外的设备6的硫冷凝器54的贫硫废气下操作所述克劳斯装置2时,上述控制的安排能够为第一克劳斯装置2提供稳定的操作。
当操作另外的设备6时,所述氧气或富氧空气的主要部分经主流量控制阀110流入管道46中。由流量计114测定第二种可燃气流的流速,其中该流量计将代表第二种可燃气流流速的信号传输到阀控制器112。阀控制器112产生了决定主流量控制阀状态的第一控制信号,结果根据第二种可燃气流的供应速率的任何变化自动调整供应到另外的设备6的氧气或富氧空气的速率。其中设置分析器104使得能够立即在硫冷凝器54的下游测定在贫硫废气流中硫化氢和二氧化硫两者的浓度。分析器104将代表硫化氢与二氧化硫的摩尔比的信号传输到阀控制器106。所述阀控制器产生了第二控制信号并传输给管道109中的“微调”流量控制阀108。微调流量控制阀108能响应第二控制信号以对流入另外的设备6的氧气或富氧空气的总流速做小的调节,这样贫硫废气流中的硫化氢与二氧化硫的摩尔比保持在选定值。
结果,可满意地维持催化克劳斯阶段的运转并且离开硫冷凝器34(与催化克劳斯反应器32相连)的尾气中的硫化合物的比例不会超过设定的最大值。如果与所需的摩尔比有任何偏差,所述分析器可探测到这个偏差,相应地调节与第一克劳斯装置2有关的微调阀94。考虑到离开硫冷凝器54的贫硫废气流中的硫化氢与二氧化硫的较高的浓度,如果没有分析器104和阀控制器106,则很难实现稳定操作整个装置的目的。
一般,提供另外的流量的控制阀120和122使得能够让离开所述冷凝器54的贫硫废气流适当地在第一克劳斯装置2与第二克劳斯装置4之间分配。虽然没有显示,但是第二克劳斯装置4与其阀控制设备的联系类似于与克劳斯设备2与其阀控制器的联系。
可对附图1中显示的装置和设备做各种改变和修改。例如,可在废热锅炉46和附加设备6的第二热克劳斯段48中间安装中间硫冷凝器(没有标出)并且操作废热锅炉46以使从中通过的气体混合物降低至更低的温度。在另一个实施例中将空气和氧气分别进料到另外的设备6中,可用来自所述分析器的控制信号来控制与空气供应管道或与氧气供应管道相连的微调阀。
图2举例说明了另一个修改,其中将第二热克劳斯阶段48和与其相连的废热锅炉52从附加设备6中省略。相反,将离开硫冷凝器54的贫硫废气流由泵200循环至第二种含硫化氢的可燃气体混合物中。所述循环气流改变了在没有循环气流时将在第一克劳斯加热炉44中产生的温度,并由此使使用具有高氧气摩尔分数的助燃气体比在没有循环气流的情况时更有可能。此外,废热锅炉46在比图1所显示的设备更低的温度下操作。在其它方面,图2中显示的装置和设备与那些在图1中显示的相似。
现在参考图3,其中显示了进一步的改进,其中再次省略了图1中显示的附加设备6的第二热克劳斯加热炉48和废热锅炉52。在这种情况下,通过管道300直接注射例如液态水的流体到加热炉44的火焰带(没有标出)内以改变降低第一加热炉44的温度的目的。
权利要求
1.一种处理大量含硫化氢的可燃气流的方法,所述方法包括以下步骤(a)操作第一克劳斯装置从第一种含硫化氢的可燃气流中回收硫,所述第一克劳斯装置包括一系列阶段,这些阶段依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段;所述次系列阶段包括催化克劳斯阶段和其下游的第二硫冷凝器;(b)在至少一个另外的热克劳斯阶段中燃烧部分第二种含硫化氢的可燃气流的硫化氢内容物;(c)给所述另外的热克劳斯阶段提供具有氧气摩尔分数为至少0.25的助燃气体以支持在所述阶段中硫化氢的燃烧,所述助燃气体由从空气中分离出来的纯的或不纯的氧气流形成,或由空气与所述纯的或不纯的氧气流的混合物形成;(d)从所述另外的热克劳斯阶段抽出包含硫化氢、二氧化硫、水蒸汽和硫蒸气的废气流,并在另外的硫冷凝器中从所述废气流中除去硫蒸气以形成贫硫废气流;(e)在所述第一热克劳斯阶段的下游和所述次系列中的催化克劳斯反应的初始部分的上游的区域中混合至少部分贫硫废气流和经过所述第一克劳斯装置处理的第一种可燃气体;(f)产生第一控制信号,所述信号为第二种可燃气体或其至少一种可燃组分进入所述另外的热克劳斯阶段的流速的函数;(g)产生第二控制信号,所述信号为在所述贫硫废气流中的硫化氢/二氧化硫的摩尔比的函数;并且(h)使用所述控制信号设定供给所述另外的热克劳斯阶段的助燃气的速率。
2.权利要求1的方法,其中所述助燃气具有大约0.7的氧气摩尔分数。
3.权利要求1或权利要求2的方法,其中具有单一的另外的热克劳斯阶段。
4.权利要求4的方法,其中将选自液态水、液态二氧化碳、二氧化硫以及取自所述另外的硫冷凝器下游的循环流的温度调节流体供给所述单一的另外的热克劳斯阶段。
5.前述权利要求中任一项的方法,其中将所述贫硫气流在位于所述另外的硫冷凝器下游的区域中引入到经过第一克劳斯装置处理的第一种可燃气体中。
6.前述权利要求中任一项的方法,所述方法还包括操作第二克劳斯装置以从第三种含硫化氢的可燃气流中回收硫,所述第二克劳斯装置具有一系列阶段,所述阶段依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段;其中所述次系列阶段包括催化克劳斯反应阶段和第二硫冷凝器,并且仅有部分所述贫硫废气流与所述第一种可燃气流混合,所述贫硫废气流的剩余部分在第一热克劳斯阶段的下游和催化克劳斯反应的初始部分的上游的区域中与经过第二克劳斯装置处理的第三种可燃气流混合。
7.用于处理大量含硫化氢的可燃气流的装置,所述装置包括a)用于从第一含硫化氢的可燃气流中回收硫的第一克劳斯装置,所述装置具有一系列阶段,所述阶段依次包括第一热克劳斯阶段、第一硫冷凝器和至少一个次系列阶段,其中所述次系列阶段包括催化克劳斯反应阶段和第二硫冷凝器;b)至少一个另外的热克劳斯阶段,所述阶段用于燃烧部分第二种含硫化氢的可燃气流的硫化氢内容物;c)至少一个用于提供具有至少0.25的氧气摩尔分数的助燃气体进入所述另外的热克劳斯阶段的入口,所述助燃气体由从空气中分离出来的纯的或不纯的氧气流形成,或由空气与所述纯的或不纯的氧气流的混合物形成;d)用于从所述另外的热克劳斯阶段排出包含硫化氢、二氧化硫、水蒸汽和硫蒸气的废气流的出口;e)用于从所述废气流中抽出硫蒸气以形成贫硫废气流的另外的冷凝器,所述冷凝器具有与来自所述另外的热克劳斯阶段的出口相连的入口;f)贫硫废气流的出口,该出口与所述第一克劳斯装置的一个区域相连,其中所述区域位于所述第一热克劳斯阶段的下游和开始催化克劳斯反应的位置的上游;g)产生第一控制信号的设备,其中所述信号为进入所述另外的热克劳斯阶段的第二种可燃气流或其至少一种可燃组分的流速的函数;h)产生第二控制信号的设备,其中所述信号为在所述贫硫废气中的硫化氢与二氧化硫的摩尔比的函数;和i)响应所述控制信号,以设定供给所述另外的热克劳斯反应阶段的助燃气体的速率的设备。
8.权利要求7的装置,其中所述用于产生所述第一控制信号的设备包括用于测量进入所述另外的克劳斯阶段的助燃气体流速的流量计,所述流量计与第一阀控制器一起操作。
9.权利要求7的装置,其中所述用于产生第二控制信号的设备包含用于测量贫硫废气中硫化氢和二氧化硫的浓度的分析器、用于从测定的浓度计算硫化氢与二氧化硫摩尔比的设备以及将计算出的硫化氢与二氧化硫摩尔比与预先设定的摩尔比进行对比的设备。
10.权利要求7到9中任一项的装置,所述装置还包括至少一个能使所述助燃气流的主要部分流过的主流量控制阀和能使所述助燃气流的次要部分流过的微调流量控制阀,其中所述主流量控制阀与用于产生所述第一控制信号的设备一起操作并且所述微调流量控制阀与用于产生所述第二控制信号的设备一起操作。
全文摘要
在包括第一热克劳斯阶段的第一克劳斯装置中处理第一种含硫化氢的可燃气流。在至少一个另外的热克劳斯阶段中燃烧部分第二种含硫化氢的可燃气流的硫化氢内容物。燃烧是在具有氧气摩尔分数为至少大约0.25的富氧空气或在氧气助燃下进行。所得的二氧化硫与残留的硫化氢反应形成硫化物蒸气,所述硫化物蒸气从另外的热克劳斯阶段的废气中冷凝出来形成贫硫废气流。产生的第一个控制信号为第二种气体流速的函数。也产生了作为贫硫废气流中的硫化氢/二氧化硫的摩尔比的函数的第二个控制信号。控制信号可应用于设定供给第二热克劳斯阶段的助燃气的速率。
文档编号B01D53/52GK1353671SQ00808456
公开日2002年6月12日 申请日期2000年4月4日 优先权日1999年4月7日
发明者R·L·申德尔 申请人:美国Boc氧气集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1