专利名称:血液分析测定的起始方法
本申请要求美国临时申请号60/093,421(1998年7月20日提交)的权益。
本发明涉及一项液体用医疗诊断装置,该装置是用于检测生物液体中分析物(analyte)的浓度或其特性的;更具体地说,是涉及当所述液体表现出某些特征时,开始这样一种检测的方法。
多种医学诊断方法涉及到对生物液体,如血液、尿液、或唾液的测试,且都基于某种液体或该液体的成分,比如血清的物理性特征的改变。所述特征可以是电的、磁的、流体性的或光学的特点。当监测光学特点时,进行这些步骤时可采用透明的或半透明的装置容纳生物液体和试剂。所述液体对光吸收的改变与该液体中分析物的浓度或液体特性有关联。一般来说,使光源位于该装置的一个表面附近,而检测仪邻近相对的表面。该检测仪可检测透射通过液体样品的光线。或者,将光源和检测仪置于该装置的同一侧,此时所述检测仪可检测由样品散射和/或反射的光线。最后,可将反射仪置于或邻近于相反的表面。光线在其中首先穿过样品区域,然后二次反射穿过样品的这后一种类型的装置,被称作“穿透反射(transflectance)”装置。在本说明书和所附权利要求中提到的“光线(light)”,应该理解为包括红外线和紫外线光谱,以及可见光。提到的“光吸收”是指当一束光线穿过介质时涉及到的光强度的减弱;因此,它包括“真实的”光吸收及散光。
Wells等在1994年2月3日公布的WO94/02850中说明了一种透明的测试装置的实例。他们的装置包含一个透明或半透明的、不透气的、刚性的或半刚性的密封池。将测试物质置于所述池中,和一种或多种测试试剂一起置于预定的位置。恰好在开始测试前,才打开池并将样品导入。测试试剂和样品中的分析物的结合,导致测试结束时所选择的试剂的光学特性如颜色的改变。可通过视觉或用光学仪器读取所述结果。
美国专利号3,620,676(于1971年11月16日授权Davis)公开了一种液体比色指示器。所述指示器包括一个可压缩的“半球型腔室”。将所述球型腔室压缩并释放以形成可从来源处抽吸液体并通过半管型腔室的吸力,所述腔室有一个铭刻在其腔壁上的指示器。对流入指示器的液体的唯一控制是所述球型腔室的压迫程度以及当该球型腔室释放时,浸入所述液体来源的指示器入口的长度。
美国专利号3,640,267(1972年2月8日授权于Hurtig等)公开了一种收集体液样品的容器,该容器包括一个有弹性、可压瘪腔壁的室。在将所述容器入口放置于被收集的液体内之前,先挤压所述腔壁。当所述腔壁被释放时,它们被恢复成非压瘪状态,通过所述入口将液体吸入。同上面讨论的Davis的装置一样,对流入指示器的液体的控制是非常有限的。
美国专利号4,088,448(1978年5月9日授权于Lilja等)公开了一种可允许与试剂混合在一起的样品进行光学分析的小杯。将所述试剂包被于腔室的壁上,然后装满液体样品。所述样品与所述试剂混合在一起,导致可测定的光学的变化。
下面讨论的一些专利公开了用于稀释和/或分析生物液体样品的装置。这些装置包括可控制样品流动的阀状设计。
美国专利号4,426,451(Columbus发表于1984年1月17日)公开了一种多区域的液体用装置,该装置具有用于控制区域之间的液体的流动的压力性活动装置。该装置利用了在液体的弯液面(meniscus)上的压力平衡,所述弯液面位于具有不同横切面的第一区域和第二区域的界面上。当第一和第二区域二者均处于大气压力下,表面张力产生反压力(back pressure)使液体弯液面停止从第一区域到第二区域。这个界面或“止动接头”(stop junction)的结构使所述液体仅在对第一区域内液体施加足以推动弯液面到第二区域的外部压力时才流入第二区域。
美国专利号4,868,129(1989年9月19日授权于Gibbons等)公开了在止动接头内的反压力可被第一区域中液体上的流体静力学的压力所克服,例如第一区域中具有液体柱。
美国专利号5,230,866(1993年7月27日授权于Shartle等)公开了一种具有多个止动接头的液体用装置,在此装置中所述表面张力引起的反压力在止动接头处被增强,例如,通过在第二区域捕获(trapping)和压迫气体。然后在对第一区域施加额外的流体静力学压力以促使液体流入第二区域之前,将所述被压迫气体排放出去。通过改变并联的多个止动接头的反压力,可形成具有较低的最大反压力的“破裂接头”(rupture junctions)。
1995年12月5日授权于Schembri等的美国专利号5,472,603(也参见美国专利号5,627,041),公开了应用离心力克服止动接头内的反压力。当流动停止时,所述第一区域处于大气压力加上由离心产生的小于克服反压力所需要的压力。所述第二区域处于大气压力下。为重新开始流动,对第一区域施加额外的离心压力,以克服所述弯液面的反压力。所述第二区域仍然处于大气压力下。
欧洲专利申请号EP 0 803 288(Naka等发表于1997年10月29日)公开了一种用于分析样品的装置和方法,它包括通过抽吸将样品吸到所述装置中,然后在分析区使样品和试剂发生反应。通过光学或电化学装置进行分析。在替换实施方案中,有多个分析区和/或一个旁路通道。这些区域间的流动不需应用止动接头即可达到平衡。
美国专利号5,700,695(1997年12月23日授权于Yassinzadeh等)公开了一种用于收集和处理生物液体的仪器,该仪器应用“热压室”提供用于将样品移动通过所述仪器的动力。
美国专利号5,736,404(1998年4月7日授权于Yassinzadeh等)公开了一种用于测定血液样品凝血时间的方法,该方法涉及到导致样品的一端在通道中振摇。所述振摇动作可通过交替增加和减少样品上压力来产生。
EP 0 922 954 A2公开了一种在测试带(test strip)上确认液体样品的存在的方法,该方法是通过对参数的第一和第二导数,如对液体和试剂的混合物的反射的监测来进行的。
本发明提供用于检测显示“红细胞钱串”排列的生物液体的分析物浓度或特性的起始方法。“红细胞钱串形成”涉及红血球细胞的堆积,这种现象对于这种液体(通常是全血)提供一种独特的光学征象。所述方法包括a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理特性的量器。
b)将所述装置插入所述量器中,包括(ⅰ)样品港(sample port),用于将生物液体的样品引入到所述装置中。
(ⅱ)检测区,在其中进行所述分析物浓度或物理特性的测定。
(ⅲ)管道,它具有第一端和第二端,用以提供液体从第一端的样品港到检测区的通道。
c)将所述生物液体的样品施加于样品港。
d)照亮样品港并在预先确定的时间内监测由样品散射的光线,并且e)仅在这段时间内,所述散射光首先突然增强,然后减弱时,检测该分析物浓度或物理特性,如果所述生物液体是全血,则用所述量器进行检测。
在其它实施方案中,本发明的方法仅在生物液体是全血时,才使其对生物液体的分析物浓度或物理特性的检测有效。所述方法包括
a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理性特性的量器。
b)将所述装置插入该量器中,包括(ⅰ)样品港,用于将生物液体的样品引入到该装置中。
(ⅱ)检测区,在其中进行所述分析物浓度或物理特性的测定。
(ⅲ)管道,它具有第一端和第二端,用以提供液体从第一端的样品港到检测区的通道。
c)将所述生物液体的样品施加于样品港。
d)照亮样品港并在预先确定的时间内监测由样品散射的光线,e)检测分析物浓度或物理特性,并且f)仅在这段时间内,所述散射光首先突然增强,然后减弱时,使所述检测有效,如果所述生物液体是全血,则用该量器进行检测时方为有效。
在另一个实施方案中,本发明包括一种检测生物液体的分析物浓度或物理特性的起始方法,包括a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理特性的量器。
b)将所述装置插入该量器中,包括(ⅰ)一透明的样品港,用于将生物液体的样品引入到所述装置中。
(ⅱ)检测区,在其中进行所述分析物浓度或物理特性的测定。
(ⅲ)具有第一端和第二端的管道,用以提供液体从第一端的样品港到检测区的通道。
c)将所述生物液体的样品施加于样品港。
d)照亮样品港,并在预先确定的时间内监测经样品透射的光线,并且e)仅在这段时间内,所述透射光首先突然减弱,然后增强时,检测所述分析物浓度或物理特性,如果所述生物液体是全血,则用所述量器进行检测。
本发明的方法对用于检测血液的分析物浓度和特性的多种装置具有广泛的应用范围。但它特别适用于测定全血的凝血酶原时间(PT时间)。在这种情况下,所述检测区具有催化血液凝块串联(cascade)的组成成分。
图1是适用于本发明的装置的平面图。
图2是图1中所述装置的分解图。
图3是图1中所述装置的透视图。
图4是用于本发明方法的量器的图解。
图4A描绘了图4中量器的一个元件的替代实施方案。
图5是鉴别液体是否为全血的曲线图表。
图6是应用图4中的量器进行PT时间测定的资料图表。
图7是图1中所述装置的替代实施方案的平面图。
图7A、7B和7C描绘了将样品加入到图7所述装置中的时间顺序。
图8是包括多个检测区和一个旁路通道的装置的图解。
本发明涉及一种用于分析某些生物液体,尤其是全血的液体用装置的检测的起始方法。所述装置与合适的量器结合,它通常是将血液的物理性参数或血液的成分与血液或血液成分中的分析物浓度或物理特性联系起来的类型。尽管有多种物理性参数,如电的、磁的、流体的或光学的参数可形成检测的基础,但光学参数的变化是优选的基础,并且下述细节(details)也涉及光学的装置。类似地,所述方法可适用于多种装置的设计,包括涉及毛细填充管(capillary fill)的装置;然而,我们提供特别适用的装置的细节,包括一个样品施加区;一个用于产生抽吸力将血液样品吸入到所述装置中的囊;一个样品在其中经历光学参数变化,如光散射的检测区;以及一个止动接头,以便在检测区填充后,精确地使流动停止。(将本发明的方法应用于其它装置和用于其它检测时,仅涉及常规实验。)所述装置的检测区优选基本为透明的,因此,该区域可被一面的光源照亮而在相对的一面检测透射的光。对样品的检测其参数可能没有变化,但所述样品通常在检测区经历了改变,并且该透射光线的变化是令人感兴趣的分析物或液体特性的量度。可替代地,从液体样品散射的光或从样品穿过并在第二次(通过在对面的反射器)反射回来的光可通过与光源在同一面的测定器来检测。
这种类型的装置适用于多种血液的分析测试,如检测生化或血液学特性、或测定蛋白质、激素、碳水化合物、脂类、药物、毒素、气体、电解质的浓度等。有关文献已说明了进行这些测试的步骤,文献中已说明的所述测试如下(1)产色素因子Ⅻa的测定(以及其它凝血因子)Rand,M.d.等Blood,88,3432页(1996).(2)因子Ⅹ的测定Bick,R.L.血栓形成和止血障碍Clinical andLaboratory Practice.Chicago,ASCP Press,1992.(3)DRVVT(稀释鲁塞尔蝰蛇毒试验)Exner,T.等Blood Coag.Fibrinol1,259页(1990).(4)蛋白的免疫比浊和免疫比浊测定法Whicher,J.TCRC Crit.Rev.Clin Lab Sci 18213页(1983).(5)TPA测定Mann,K.G.等,Blood,76,755页(1990);和Hartshorn,J.N.等,Blood,78,833页(1991).(6)APTT (部分组织促凝血酶原激酶激活时间的测定)Proctor,R.R.和Rapaport,S.I.Amer.J Clin.Path,36,212页(1961);Brandt,J.T.和Triplett,D.A.Amer.J.Clin.Path76,530页(1981);和Kelsey,P.R.Thromb.Haemost.52,172页(1984).
(7)HbAlc测定(糖基化血红蛋白的测定)Nicol,D.J.等,Clin.Chem 29,1694页(1983).
(8)总血红蛋白Schneck等,Clinical Chem32/33,526页(1986);和美国专利4,088,448.(9)因子ⅩaVinazzer,HProc.Symp.Dtsch.Ges.Klin.Chem203页(1977),由Witt,I编辑。
(10)氮氧化物的比色测定Schmidt,H.H.等,Biochemica,2,22页(1995).本发明的方法特别适于在测定血液凝集时间一“凝血酶原时间”或“PT时间”的所述装置中应用,而与这种装置有关的细节将在下面说明。为应用上述所列的那些项目所需要的适合所述方法和装置的修改仅需常规实验。
图1是适用于本发明方法的装置10的平面图。图2是所述装置的分解图而图3是其透视图。在压缩囊14之后,将样品施加于样品港12。很明显,与囊14的切断部分(cutout)邻近的层26和/或层28的区域必须为有弹性的,才能使囊14被压缩。约0.1mm厚的聚酯具有适合的弹性和弹力。优选顶层26为约0.125mm厚度,底层28为约0.100mm厚。当释放囊时,抽吸力抽吸样品经过通道16到达检测区18,优选该区含有试剂20。为确保检测区18可被样品充满,囊14的容积最好至少约等于通道16和检测区18的容积之和。如果从下面照亮检测区18,则层28与检测区18邻近的部位必须是透明的。对于PT试验,试剂20含有组织促凝血酶原激酶,它没有通常在冻干试剂中所见到的膨胀试剂。
如图1、2和3所示,止动接头22邻近囊14和检测区18;然而,通道16的延续部位可能延长到止动接头22的一面或两面,将止动接头与检测区18和/或囊14分开。当样品到达止动接头22时,样品停止流动。对于PT测定来说,当样品到达此处时,停止样品的流动是很重要的,这可促使红细胞出现可再生的钱串形成(rouleauxformation),这在应用本文说明的方法以监测血液凝集,是一个重要的步骤。注意到这种红细胞钱串的形成是可逆的,并且当血液从通道16穿过时,较早在样品港中形成的所述红细胞钱串将消除。止动接头的操作原则在美国专利5,230,866中有说明,此专利通过引用结合到本文中。
如图2所示,所有上述元件由夹在顶层26和底层28之间的中间层24内的切断部分形成。层24最好为双面胶胶带。止动接头22由层26和/或28之间的额外的切断部分形成,其与层24中的切断部分排成直线,并与密封层30和/或32密封。如所示的,止动接头优选在层26和28两者中均包含切断部分、并具有密封层30和32。止动接头22的每个切断部分至少与通道16一样宽。图2还显示了覆盖样品港12的可选择性滤膜12A。所述滤膜可将红血球细胞与全血样品分离开,并且/或可能含有某些能与血液相互作用的试剂以提供额外的信息。由于这些在下文将变得清楚的理由,所述红血球细胞必须可从“下面”看见,因此如果所述膜将红细胞过滤出去,则膜必须是透明的。可选择性反射器18A可能在、或邻近于层26的表面并且位于检测区18的上方。如果存在反射器,所述装置则变成穿透反射装置(transflectance)。
应用图1、2和3的条带的方法可通过参考图4所示量器的所述元件的图解来理解。应用者进行的第一步是启动量器,从而使条带检测器40、样品检测器42、检测系统44和可选择性加热器46供给能量。第二步是将条带插入。所述条带最好是不透明的,至少在其局部面积上是不透明的,这样插入的条带能挡住检测器40b的LED40a的照明光。(更优选,所述中间层是由不透明的材料形成的,这样使背景光线不能进入检测系统44。)从而使检测器40b感觉到条带已被插入并且触发囊的启动器48以压缩囊14。然后作为第三和最后一步,量器显示仪50指引应用者将样品施加于样品港12,这是应用者起动检测顺序所必须进行的。
对所述装置进行正当的操作以使感觉到已施加了“合适的”样品(如全血)是重要的。因此,如果一些非全血样品引起可被检测器42b检测到的光线改变时,则所述量器必然不报告测定结果。所述改变可能由条带移动、物体(如手指)被带入到样品港附近、甚或将血清加入到样品港12中所引起。这些因素的每一件均可导致错误的结果。为避免这一类型的错误,本发明优选的方法包括用LED 42a照亮样品港12并用正交定位于条带10的平面上的检测器42b测定漫反射(如“散射”)光。如果全血样品已被施加到样品港12,由于在血液样品中的散射,由42b检测到的信号会突然增强,然后由于红细胞象钱币样的堆积(钱串形成)而减弱。
图5描绘了作为时间的函数(t)的散射光强度(I)的这种突然增强及随后的减弱,它是血液样品的特征-曲线A。同时还显示-曲线B是非全血样品的不同特征的曲线。
在另一实施方案中,如图4A所示,透射光取代了散射光而被测定。在这个例子中,钱串形成现象导致被测定的信号突然减弱,然后增强(如曲线A的反转曲线)。
检测系统42被程序化为,首先对于全血来说第一需要的是图5所示的信号类型,(曲线A或它的反转曲线,根据情况而定),然后导致启动器48释放囊14以使样品进入通道16。当然,与简单地允许样品先不经检测是否全血相比,上述检测需要一延迟时间(优选地,至少约5秒)。然而,在释放囊14时,所述延迟实际上并不影响下文所说明的读数。释放囊14可在通道16内产生吸力将样品抽过检测区18到止动接头22。从LED44a来的光线通过检测区18,而检测器44b可监测到通过正在凝集的样品透射的光。当具备多个检测区时,检测系统44的每个检测区均包括一个配对(pair)的LED/检测器(象44a和44b)。所述透射光对时间函数的分析(如下所述)提供了PT时间的计算,其显示在量器显示仪50上。样品温度最好由加热器46维持在约37℃。
在另一实施方案中,在任何情况下,均可释放囊14,但仅在被检测器42检测到样品征象时,所述分析物浓度/物理特性的检测才有效。如果未检测到所述征象,应用者将在显示仪50上看到错误的信号。
图6描绘了典型的“血凝块信号(clot signature)”曲线,其中来自检测器44b的电流被绘为时间的函数。首先在时间1由44b在检测区检测到血液。在点1和2之间的时间间隔A内,所述血液充满检测区。在这一时间间隔内,电流的下降是由于光线被红细胞散射所致,并且由此得到血细胞比容的检测近似值。在点2,样品已充满检测区并且处于静止状态,样品是通过止动接头而停止流动的。然后在点2和3之间的时间间隔内,钱串形成使得经过样品透射的光增强(并较少散射)。在点3,血凝块形成终止了钱串形成并且经过样品的透射光达到了最大量。从点1和3之间的间隔B或点2和3之间的间隔,可计算PT时间。此后,血液从液体形态改变为半固体凝胶,同时伴随光透射的减弱。在最大点3和终点4之间,电流C的降低与样品中的纤维蛋白原有关。
绘于图2并在上述说明的装置最好由分层的热塑塑料层26和28叠合在两侧表面上均具有粘贴剂的热塑塑料的中间层24而形成。如形成图1所示元件的切断部分可由对层24、26和28的激光切割或冲切而形成。或者,所述装置可由模制塑料形成。塑料片28表面最好是亲水性的。(塑料薄膜9962,由3M,St.Paul.MN提供)。然而,所述表面并非必须是亲水性的,因为所述样品的流动将充满所述装置而不需毛细力。因此,塑料片26和28可以是不经处理的聚酯或本领域已知的其它热塑塑料片。同样,由于在填充过程中不包括重力,所述装置可在任何方向下应用。不象具有排出孔的毛细填充装置,样品可经孔泄漏,本发明的装置在加入样品之前,通过样品港通气,这意味着第一次插入所述量器的条带的部分没有开口,降低了污染的风险。
图7是另一个实施方案的平面图,其装置适用于本发明的方法,其中所述装置包括一个连接通道16与囊14的旁路通道52。通过参考图7A、7B和7C可理解所述旁路通道的功能和操作,该图描绘了将样品吸入到装置10内用于检测的时间顺序。
图7A描绘了当囊14被压缩时,应用者将样品施加于条带之后的状态。这可通过施加一滴或数滴血液完成。当所述量器测定样品是否由全血组成之时,将所述样品保留在这里。如果样品是全血,则消除所述囊的压缩。
图7B描绘了消除所述囊的压缩之后的状态。通道16入口内产生的降压开始抽吸样品进入检测区18。当所述样品到达止动接头22时,样品遇到促使其停止并使额外的样品吸入到旁路通道内的反压力。
图7C描绘了获取读数时的状态。检测区18内的样品处于静止状态。样品也充满通道16的一部分、或全部(如所显示的)。
图8描绘了适于于本发明方法的装置的优选实施方案。它是一个包括旁路通道152的多通道装置。旁路通道152在所述装置内的用途与在上文说明的图7装置中的旁路通道52的用途相类似。检测区118含有组织促凝血酶原激酶。检测区218和318最好含有对照品,更优选,是下文说明的对照品。检测区218含有组织促凝血酶原激酶、牛洗出物和重组Ⅻa因子。所选成分通过抵消抗凝剂(如苄丙酮香豆素)的作用来使血液样品的凝血时间正常化。检测区318含有组织促凝血酶原激酶和牛洗出物,以部分克服抗凝剂的作用。因此,在所述条带上有三种检测,主要的重点测量,即样品的PT时间是在检测区118检测的。然而,只有当检测区218和318的检测结果在预先确定的范围内,所述检测才是有效的。如果这些对照检测中的任何一个或二者都在这个范围之外,则表示需重新测试。延长的止动接头122可使所有三个检测区内的流动停止。
下述实施例证实适用于本发明方法的装置,但并不意味着有任何限制意义。
实施例1适用于本发明方法的条带制法如下首先使一个夹在两个释放衬垫之间的双面胶胶带(RX675SLT,由Scapa Tapes,windsor,CT提供)进入分层和旋转冲切加工系统。图7表示的是除止动接头之外的、通过顶部的释放衬垫和胶带但不通过底部的释放衬垫而切割的图形。该底部的释放衬垫随后同从胶带上切割的部分一起被作为废料清除出去。将处理成亲水性的聚酯膜(3M9962,由St.Paul,MN提供)层迭到胶带暴露的底部的一面。然后通过应用喷墨打印头51612A(Hewlett Packard,Corvallis,OR)经气泡喷墨打印(bubble jet printing)将试剂(组织促凝血酶原激酶,由Ortho Clinical Diagnostics,Raritan,NJ提供)打印在聚酯膜的试剂区18上。在未处理的聚酯膜(AR1235,由Adhesives Research,Glen Rock,PA提供)上切割出样品港并随后对齐、层迭到双面胶的顶部(在除去释放层之后)。然后通过夹层的三层冲切止动接头。最后,将具单面粘贴胶(MSX4841,由3M,St.Paul,MN提供)的条带施加于聚酯层的外侧以密封所述止动接头。
实施例2按照与实施例1说明的类似的步骤制备图8描绘的条带类型。被喷印到区118P、218P和318P的试剂分别是组织促凝血酶原激酶;组织促凝血酶原激酶、牛洗出物和重组Ⅻa因子;以及仅有组织促凝血酶原激酶和牛洗出物。所述牛洗出物(血浆柠檬酸钡牛洗出物)由Haemotologic Technologies,Burlington,VT提供,而重组Ⅻa因子由American Diagnostica,Greenwich,Ct提供。
应用本实施例的条带对全血样品进行的检测对于每个检测区均产生图6所示的曲线类型。对照(检测区218P和318P)的曲线资料被用于对检测区118P的曲线资料定性(qualify)。因此,测定的PT时间可比用单一检测区的条带测定更可靠。
已对本发明进行了全面的说明,对于本领域熟练的技术人员而言,很明显可在不背离本发明的精神和范围下进行多种修饰和改变。
权利要求
1.一种对生物液体的分析物浓度或物理特性进行检测的起始方法,它包括a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理特性的量器,b)将所述装置插入所述量器中,包括(ⅰ)样品港(sample port)用于将生物液体的样品引入到所述装置中的样品港(sample port),(ⅱ)检测区,在其中进行所述分析物浓度或物理特性的测定,(ⅲ)管道,它具有第一端和第二端,用以提供液体从第一端的样品港到检测区的通道,c)将所述生物液体的样品施加于样品港,d)照亮样品港,并在预先确定的时间内监测由样品散射的光线,并且e)仅在这段时间内,所述散射光首先突然增强然后减弱时,检测所述分析物浓度或物理特性,如此所述量器仅在该生物液体是全血时方进行检测。
2.权利要求1的方法,其中所述预先确定的时间至少为约5秒钟。
3.一种用于使生物液体的分析物浓度或物理特性的检测有效的方法,它包括a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理性特性的量器,b)将所述装置插入所述量器中,它包括(ⅰ)样品港,用于将生物液体的样品引入到所述装置中,(ⅱ)检测区,在其中进行所述分析物浓度或物理性特性的测定,(ⅲ)管道,具有第一端和第二端,用以提供液体从第一端的样品港到检测区的通道,c)将所述生物液体的样品施加于样品港,d)照亮样品港并在预先确定的时间内监测由样品散射的光线,e)检测分析物浓度或物理性特性,并且f)仅在这段时间内,所述散射光首先突然增强然后减弱时,使所述检测有效,仅在生物液体为全血时,由此所述量器进行检测时方为有效。
4.一种对生物液体的分析物浓度或物理性特性进行检测的起始方法,它包括a)提供在液体用诊断装置上检测血液样品的分析物浓度或物理性特性的量器,b)将所述装置插入所述量器中,它包括(ⅰ)一透明的样品港,用于将生物液体的样品引入到所述装置中,(ⅱ)检测区,在其中进行所述分析物浓度或物理特性的测定,(ⅲ)管道,它具有第一端和第二端,用以提供液体从第一端的样品港到检测区的通道,c)将所述生物液体的样品施加于样品港,d)照亮样品港,并在预先确定的时间内监测经样品透射的光线,并且e)仅在这段时间内,所述透射光首先突然减弱然后增强时,检测所述分析物浓度或物理特性,如此所述量器仅在该生物液体是全血时方进行检测。
5.权利要求4的方法,其中所述预先确定的时间至少为约5秒钟。
全文摘要
一个特殊的光学征象,仅在首先确信全血样品进入所述装置后,才允许液体用医疗诊断装置检测全血的分析物浓度或特性,特别是凝血时间。合适的装置具备一端用于将样品引入的样品港和另一端用于将样品抽吸到检测区的囊。该装置连接的量器首先检测特殊光学征象,仅当样品是全血时,才将样品抽吸到检测区。通道从样品港携带样品到检测区,止动接头使样品停止流动。在与检测区的试剂相互作用后,该量器检测血液样品的物理特性—通常为透光率。
文档编号B01L3/00GK1281146SQ0011886
公开日2001年1月24日 申请日期2000年6月16日 优先权日1999年7月16日
发明者R·J·沙特勒 申请人:生命扫描有限公司