专利名称:用于加工、储存和运输液化天然气的改进系统的利记博彩app
技术领域:
本发明涉及用于加工、储存和运输液化天然气(LNG)的系统,更具体地讲涉及在比通常的LNG系统显著提高的压力和温度下用于加工、储存和运输液化天然气的的一个新系统。
背景技术:
在下面的说明中定义了许多术语。为了方便起见,直接在权利要求书的前面给出了一个术语表。
许多天然气能源位于偏远地区,它们离任何天然气使用场所都相当远。有时可利用输送管路将生产的天然气输送到使用场所。当通过管道将天然气输送到使用场所不可行时,此时经常将生产出的天然气加工成LNG以便运输到市场。LNG是典型通过特制油轮来运输的,然后在离使用场所附近的输入端将其储存和重新汽化。一般而言,用于将天然气液化、运输、储存和再次汽化的设备相当昂贵,典型的普通LNG工程可能的成本在50~100亿美元,其中包括场地开发费。大型的“地表”LNG工程需要最小的天然气资源约为280Gm3(10TCF(10万亿立方英尺))而且LNG客户一般也使用大型设备。而经常在偏远地区发现的天然气资源却小于280Gm3(10TCF)。甚至对于满足最小约为280Gm3(10TCF(10万亿立方米))天然气资源而言,也要求各方例如LNG供应商、LNG运输船和大型设备的LNG客户签订20年或更多时间的长期合同以便将天然气以LNG经济地加工、储存、运输。只要潜在的LNG客户具有可供选择的气体资源,诸如管道气体,普通的LNG传输链经常在经济上不具备竞争力。
图1给出了一般的LNG工厂在温度约为-162℃(-260°F)和大气压下生产LNG的示意图。天然气进入一般的LNG厂时的典型压力为在4830kPa(700psia)~7600kPa(1100psia)且温度为21℃(70°F)~38℃(100°F)。在一般的两级LNG厂中,最高约需要350,000制冷马力才可将天然气的温度降到非常低约为-162℃(-260°F)的出口温度。在一般的LNG生产过程中,必须充分地除去天然气中的水、二氧化碳、含硫的化合物,如硫化氢,其它酸气,正戊烷和包括苯的重质烃,使其降低到百万分之几(ppm)的水平,否则这些混合物将冻结,从而在加工设备中引起堵塞。在一般的LNG厂,需要气体处理设备以除去二氧化碳和酸性气体,所述气体处理设备典型采用化学和/或物理溶剂再生处理,而且这要求有相当的资金投入。同时,只要涉及到那些厂中的其它设备,其实施费用高。干床脱水机,如分子筛,用于脱水汽。洗涤塔和分馏设备用于去除能够引起堵塞问题的烃。因为汞能够对由铝构成的设备产生破坏,因此在一般的LNG厂中也要将其去除。此外,在天然气中可能存在的氮,其大部分在加工后都要去除,这是因为氮在一般的LNG运输过程中不会以液相存在,而且不希望在传输过程中LNG容器存在气态的氮。
一般的LNG厂使用的容器、管路和其它设备典型至少部分地由铝或含镍的钢(如9%(重量)镍)制成,以便获得极端冷加工温度下的所需的断裂韧性。除了它们在一般厂中的用途外,在LNG船和输入端,典型采用具有良好低温断裂韧性的昂贵材料,如铝和含镍钢(如9%(重量)镍)来盛载LNG。
含镍钢通常用于低温结构用途,例如,镍含量超过3%(重量)的钢具有低的DBTTs(在这里定义韧性的一种度量方法),但同时具有相对低的拉伸强度。典型的,通用的3.5%(重量)的镍、5.5%镍和9%镍钢分别具有-100℃(-140°F),-155℃(-250°F)和-175℃(-280°F)的DBTTs,而且其拉伸强度最高分别为485MPa(70ksi)、620MPa(90ksi)和830MPa(120ksi)。为了获得这些强度和韧性的组合,一般这些钢都进行了昂贵的处理,如双退火处理。在低温应用情况下,目前工业上之所以采用这些工业含镍钢是因为它们好的低温韧性,但设计必须围绕着它们相对较低的拉伸强度来进行。为了满足承载、低温用途,这种设计一般要求钢的厚度过大。结合所要求的钢的厚度而造成的高成本,因此在承载、低温用途时这些含镍钢趋于昂贵。
在运输过程中,典型的一般LNG船使用通称为Moss球的大型球形容器来储存LNG。这些船各自的目前成本超过2.3亿美元。在中东生产LNG并将其输送到远东,这是一个典型的常规项目,它可能需要7~8艘这样的船,其总费用大约为16~20亿元。
从以上叙述可以确定,仍存在着对于加工、储存和运输LNG到贸易市场的更经济的系统的需求,这使得偏远地区的天然气资源可与可供选择的能源进行更有效的竞争。而且,偏远地区的小型天然气需要一个系统使其商业化,否则这些小型天然气将因为经济原因开发不起来。除此之外,需要更经济的汽化和运输系统来经济地生产LNG,从而吸引小客户。
因此,本发明的主要目的在于提供一种更经济的用于加工、储存、从遥远的能源地将LNG运输到贸易市场的系统,而且在于将储备限度和所需的市场显著地减少使LNG项目经济可行的程度。实现这些目标的一种途径是在比通常LNG厂更高的压力和温度下来生产LNG,例如在高于大气压且温度高于-162℃(-260°F)。然而在增大的压力和温度下,加工、储存和运输LNG的一般思想已经在工业出版物中讨论过了,这些出版物一般讨论了用含镍钢(如9%(重量)镍)或铝制造的运输容器,而且二者均满足设计要求,但材料造价极其昂贵。例如在由Witherby&Co.有限公司发行的1979年第一版、1993年第二版的“海上天然气”,在其第162~164页,题为“新技术的开发”一文中,Roger Ffooks讨论了Liberty船Sigalpha在1380kPa(200psig)和-115℃(-175°F)下运输MLG(中等液化气)或者在7935kPa(1150psig)和-60℃(-75°F)下运输CNG(压缩天然气)所进行的变换。Ffooks指出尽管技术上已经得到了证实,但这两个思想都没有遇到“买主”—主要由于储存的费用高。根据Ffooks所参考的一篇关于CNG用途的文章,例如在-60℃(-75°F),设计目标为低合金可焊接淬火并回火钢,该钢具有好的强度(760MPa(110ksi))和好的操作条件下的断裂韧性。(参见R.J.Broeker的“运输天然气的新方法”一文,International LNGConference,Chicago,1968)。这篇论文同时指出对于MLG用途,例如在相当低的温度-115℃(-175°F),铝合金的成本最低。同时在第164页的the Oeean Phoenix Transport design中,Ffooks讨论了对于由9%镍钢或铝合金制成的罐在约为414kPa(60psig)这样相当低的压力下的工作情况;而且再次指出这个思想并没有显现出提供商业化所需的足够的技术或资金优势。同时可参见(i)美国专利3298805,该专利讨论了使用9%镍钢或高强铝合金来制造用于运输压缩的天然气的容器;(ii)美国专利4182254,该专利讨论了由9%镍或类似的钢制成的油罐运输LNG,LNG处于-100℃(-148°F)~140℃(-220°F)温度和4~10大气压下(例如407kPa(59psia)~1014kPa(147psia));(iii)美国专利3232725,该专利讨论了采用由含1-2%镍的钢构造的容器运输天然气,如在温度为-62℃(-80°F)或某些情况下为-68℃(-90°F)而且压力至少为345kPa(50psi)的情况下,天然气处于浓相单一液体状态,该压力高于气体操作温度下的沸点压力,而含1~2%镍的钢经由如淬火并回火后确保其极限拉伸强度接近120,000psid;(iv)C.P.Bennett发表的“中温下LNG的海上运输”,CME March 1979,该文讨论了采用储存油罐运输LNG的研究,LNG处于在3.1Mpa(450psi)和-100℃(-140°F)下,油罐由9%镍钢或3.5%镍经淬火并回火的钢制成,其壁厚为9.5英寸。
尽管这些思想在工业出版物上进行了讨论,但据我们的了解,LNG目前没有在压力显著高于大气压和温度显著高于-162℃(-260°F)下进行商业化的加工、储存和运输。这可能是因为迄今为止尚未构思出在此压力和温度下加工、储存、运输、配置LNG的经济的系统。
因此,本发明的一个特殊目的在于提供在比通常的LNG系统显著提高的压力和温度下用于加工、储存和运输液化天然气的经济的得到改善的新系统。
本发明概述与上面所述的本发明的目的相一致,提供用于储存加压液化天然气(PLNG)的系统,该加压液化天然气处于约为1035kPa(150psia)~7590kPa(1100psia)宽的压力范围和约-123℃(-190°F)~-62℃(-80°F)大的温度范围下。所述容器由包含了含镍低于9%的超高强度低合金钢材料构造,该材料具有足够强度和断裂韧性来盛载所述的加压液化天然气。该钢具有超高强度,如拉伸强度(如本文所定义)大于830Mpa(120ksi)且DBTT(如本文定义)低于约-73℃(-100°F)。为了将成本减至最低程度,钢优选的镍含量低于7%(重量),更选的镍含量低于5%(重量)。另外,提供用于加工和运输PLNG的系统。本发明的系统在约为1035kPa(150psia)~7590kPa(1100psia)大的压力范围和约-123℃(-190°F)~-62℃(-80°F)大的温度范围下生产PLNG,而且采用本发明的容器来储存和运输PLNG。
本发明提供用于将天然气处理加工成PLNG、储存PLNG和将PLNG运输到用户站点的系统。本发明的系统包括(i)在约为1035kPa(150psia)~7590kPa(1100psia)的压力范围和约-123℃(-190°F)~-62℃(-80°F)的温度范围下用于将天然气转变为PLNG的加工厂,其中加工厂基本由下列构成(a)接收设备,它用于接收天然气流并除去天然气中的液体烃;(b)脱水设备,它用于从天然气中将足够的水蒸汽除去以避免天然气冻结在PLNG温度和压力下;(c)液化设备,它用于将天然气转变为PLNG;(ii)储存容器,由含镍低于9%而且拉伸强度大于830Mpa(120ksi)且DBTT低于约-73℃(-100°F)的超高强度低合金钢构成;(iii)输出终端(a)包括用于储存PLNG的储存容器和用于将PLNG传输到在运输船上安装的运输容器中的设备,或者可选择的(b)基本由用于将PLNG传输到在运输船上安装的运输容器中的设备组成;(iv)用于将PLNG运输到输入终端的运输船,它包括运输储存容器,和可选择地包括安装在船上的用于将PLNG转换成气体的汽化设备(v)输入终端,(a)包括输入储存容器(其中输入储存容器为地面基地、或基于浮船或基于近海固定结构)用于将PLNG从运输储存容器传输到输入储存容器的设备和用于将PLNG汽化以便传输到管路或用户设备中的设备,或可选择的(b)基本由输入设备组成(其中输入设备为地面基地,或基于浮船或基于近海固定结构),包括用于从运输储存容器接收PLNG并用于将PLNG转换成气体并将气体传输到管路或用户设备中的汽化设备,或可选择(c)基本由用于通过装在船上的汽化设备将PLNG转换成气体并将所转换的气体传输到在码头的管路或用户设备的设备组成,或通过在近海处下锚连接例如单锚腿下锚(SALM)来完成。
附图的简要描述参照下列详细描述和其中的相关附图,可更好地了解本发明的优点。
图1给出了(现有技术)用于生产一般LNG的工厂示意图。
图2给出了用于生产本发明的PLNG的工厂示意图。
图3A说明了用于运输本发明PLNG的一艘示范船的端视图。
图3B说明了用于运输本发明PLNG的一艘示范船的侧视图。
图3C说明了用于运输本发明PLNG的一艘示范船的俯视图。
图4A说明了用于运输本发明PLNG并在船上装有PLNG汽化器的一艘示范船的端视图。
图4B说明了用于运输本发明PLNG在船上装有PLNG汽化器的一艘示范船的侧视图。
图4C说明了用于运输本发明PLNG在船上装有PLNG汽化器的一艘示范船的俯视图。
图5A说明了在给定的缺陷长度下的临界缺陷深度作为CTOD断裂韧性和残余应力的函数的曲线。
图5B说明了缺陷的几何尺寸(长度和深度)。
同时本发明将结合优选的实施方案进行描述,应该理解的是本发明没有因此受到限制。相反,正如附上的权利要求书所述,本发明试图覆盖所有的替代物、修改和等效物,这都包含在本发明的实质和范围内。
本发明的详细描述PLNG储存容器获得PLNG工厂和本发明的运输船系统的关键是用于储存和运输PLNG的储存容器,此时的PLNG在约为1035kPa(150psia)~7590kPa(1100psia)的压力范围和-123℃(-190°F)~-62℃(-80°F)的温度范围下生产。用于PLNG的储存容器由包含超高强度低合金钢的材料构成,该合金钢有足够强度和断裂韧性来用于本发明的PLNG的操作条件,例如压力和温度。该合金钢的拉伸强度大于830MPa(120kpsi),优选的拉伸强度大于860MPa(125kpsi),更优选的拉伸强度大于900MPa(130kpsi)。在一些应用中,优选的钢的拉伸强度高于930MPa(135kpsi),更优选的钢的拉伸强度高于965MPa(140kpsi),甚至更优选的钢的拉伸强度约高于为1000MPa(145kpsi)。同时优选的钢的DBTT低于-73℃(-100°F)。此外,提供用于在1725kPa(250psia)~4830kPa(700psia)压力范围和-112℃(-170°F)~-79℃(-110°F)温度范围下储存加压液化天然气的容器,其中所述的容器(i)由含镍低于9%的超高强度低合金钢材料构成(ii)该储存容器有足够强度和断裂韧性来盛载所述的加压液化天然气。
根据本发明用于构造容器的超高强度低合金钢优选含有低含量的昂贵合金,例如镍。优选的镍含量小于9%(重量),更优选的镍含量小于7%(重量),更优选的镍含量小于5%(重量)。更优选这些钢含有为提供所需断裂韧性所必须的最低程度的镍。优选这样超高强度低合金钢的镍含量小于3%(重量),更优选镍含量小于2%(重量),甚至更优选镍含量小于1%(重量)。
优选地这种钢可焊接。这些超高强度低合金钢与当前可利用的铝和工业含镍钢(例如9%(重量))的替代物相比可以更显著低的成本促进用于运输PLNG的容器的构成。用于构造本发明储存容器的钢优选没有经过回火。然而,具有必要的强度和断裂韧性的回火钢也可用于构造本发明的储存容器。
对于熟练的技术人员而言,这将是很熟悉的,在设计用于运输加压的低温液体,例如PLNG的容器时,采用却贝V形切口(CVN)测试,更具体地讲是通过采用韧性-脆性转变温度(DBTT)来估计断裂韧性并控制断裂。DBTT描述了结构钢中的两个断裂区域。当温度低于DBTT时,却贝V形切口测试中的破坏趋向于以低能量解理(脆性)断裂的形式发生;当温度高于DBTT时,破坏趋向于以高能量韧性断裂的形式发生。由焊接钢构造的容器,该焊接钢用于运输PLNG和其它承载、低温使用,正如通过却贝V形切口测试所确定的,该容器的DBTT必须低于结构的使用温度以避免发生脆性断裂。根据设计、使用条件和/或可适用的分类协会的要求,所要求的DBTT温度可在低于使用温度5℃~30℃(9°F~54°F)之间变化。
对于熟练的技术人员而言,这将是很熟悉的,在设计由焊接钢构造供运输加压低温液体例如PLNG使用的容器时,应考虑的操作条件包括操作压力和温度以及可能施加到钢和焊接件(参见术语表)的附加应力。标准的断裂力学测试,例如(i)临界应力强度因子(KIC),它用来测量平面应变的断裂韧性(ii)裂纹尖端张开位移(CTOD),它可用于测量弹塑性的断裂韧性,熟练的技术人员对二者是很熟悉的,二者可以用于钢和焊接件的断裂韧性。例如,正如在BSI出版物《熔焊结构中裂纹评估方法的综述》(“Guidance on methods for assessing theacceptability of flaws in fusion welded structures”)中所介绍的,一般适用于钢结构的设计的工业代码经常指定为“PD 64931991”,根据钢和焊接件(包括HAZ)和施加到容器上的应力的断裂韧性,它可用于确定容器的最大允许缺陷尺寸。熟练的技术人员可以通过以下内容来开发断裂控制程序从而减轻断裂的发生,这些包括(i)合理设计容器以便使施加的应力最小(ii)合理控制制造质量以便使缺陷达到最小程度(iii)合理控制所施加的使用期限周期载荷和应力(iv)合理的检测程序以便用于可靠地检测裂纹和缺陷。用于本发明系统的优选设计原则是“失效前预知”,对于熟练的技术人员而言,这是很熟悉的。这里的这些考虑一般参考了“已知的断裂力学原理”。
下列是的一个非限制实例,在一个程序中应用这些已知的断裂力学原理来计算给定的缺陷长度下的临界缺陷深度,用于断裂控制设计便于防止根据本发明的容器产生断裂。
图5B给出了一个长315深310的裂纹。根据下列用于压力容器的设计条件,PD 6493用于计算图5A给出的临界缺陷尺寸曲线300的值
对于这个实例来说,假定表面缺陷长度为100毫米(4英寸),例如位于滚焊中的轴向缺陷。参照图41,对于残余应力水平为15,50和100%的屈服应力而言,曲线300给出了临界缺陷深度的值,它是CTOD断裂韧性和残余应力的函数。残余应力可在制造和焊接时产生;而且除非采用例如后焊接热处理(PWHT)或机械应力释放将焊接应力减轻,PD6493推荐在焊缝中(包括焊接HAZ)采用屈服应力100%的残余应力值。
根据钢在最低适用温度下的CTOD断裂韧性,容器的制造应适于降低残余应力,而且可执行检测程序(用于初始检测和使用期检测)来将探测并测定的缺陷与临界缺陷尺寸进行比较。在这个实例中,如果钢在最低服役温度下的CTOD韧性为0.025毫米(通过实验试样测定)而且残余应力减至钢的屈服应力的15%,那么临界缺陷深度的值约为4毫米(见图5A中的指向320)。根据相似的计算过程,这对于熟练的技术人员是非常熟悉的,临界缺陷深度可根据不同的缺陷长度和几何形状来确定。通过这个信息,可以开发质量控制程序和检测程序(技术、可探测的缺陷尺寸、频率)来确保缺陷在达到临界缺陷深度或在达到设计意义的载荷之前将缺陷探测出并进行补救。根据公开的CVN、KIC和CTOD断裂韧性之间的经验关系,0.025毫米的CTOD断裂韧性一般对应于37J的CVN值。这个实例决没有试图限制这个发明。
本发明的容器和其它组件优选由具有卓越低温韧性的超高强度低合金钢的不连续板构造。这里,容器和其它组件的合适接缝优选具有与超高强度低合金钢板相同的强度和韧性。在一些情况下,强度的不足匹配在数量级为5%~10%时可认为是低应力部位。具有优选性能的接缝可由任何合适的连接技术来完成。在此的实例部分描述了典型的连接技术。尤其优选的连接技术包括气保护熔化极电弧焊接(GMAW)和钨极惰性气体保护焊(TIG)。对于某些操作条件(正如由此实例部分所描述的),可采用埋弧焊(SAW)、电子束焊(EBW)和激光焊接(LBW)。
PLNG厂上面所描述的储存容器使本发明的PLNG生产方法切实可行,该方法在1035kPa(150psia)~7590kPa(1100psia)大的压力范围和-123℃(-190°F)~-62℃(-80°F)的大的温度范围下生产PLNG,生产和运输PLNG优选压力范围约为1725kPa(250psia)~7590kPa(1100psia)和温度范围-112℃(-170°F)~-62℃(-80°F)。生产和运输PLNG更优选压力范围约为2415kPa(350psia)~4830Pa(700psia)和温度范围-101℃(-150°F)~-79℃(-110°F)。甚至生产和运输PLNG更优选压力下限约为2760kPa(400psia)和温度下限约为-96℃(-140°F)。在优选的范围内,理想的温度和压力的组合依赖于正被液化的天然气的成分和经济条件。熟练的技术人员可以通过参考标准工业出版物和/或进行气泡温度平衡计算来确定成分参数的影响。另外,熟练的技术人员通过参考标准工业出版物来确定和分析不同经济条件的影响。例如,一个经济条件便是当PLNG温度变冷时,需要的制冷马力增加;然而,PLNG增加压力及降低温度也使得PLNG密度增大,而且因此减少了必须运输的体积。当PLNG温度变高而且压力增加时,在储存和运输容器中需要更多的钢,但制冷成本降低而且工厂的效率提高了。
下面的描述主要集中在本发明系统与一般用于生产PLNG的系统相比在经济上的优势差异。图2给出了根据本发明生产PLNG的一个示范厂的示意图。出于比较目的,图1给出了生产普通LNG的一个示范厂的示意图。如图1所示,用于生产普通LNG的一个示范厂包括原料气体接收设备62、气体处理设备52、脱水/去除汞设备56、制冷设备63、原料洗涤塔设备64、分馏设备65、液化设备66和氮剔除设备54。而在用于本发明的加工厂中,可令人满意地使用标准天然气液化设备,可以去除普通LNG厂中的几个步骤,而且大大降低了冷却天然气所需的能量。因此在PLNG生产中,在普通的LNG生产中用于提供能量的天然气能转变成适于销售的PLNG。参照图2,PLNG生产步骤优选包括(i)用于去除液体烃的原料气体接收设备10(ii)脱水设备12和(iii)液化设备14。骤冷设备16和分馏机组18可用于生产补充液化设备14使用的制冷剂。液化设备14所需的部分或全部制冷剂可选择由其它渠道生产和/或提供。熟知的制冷方法可用于获得所需的低温PLNG。这些过程可以包括例如单一的制冷剂、多成分的制冷剂、串级制冷循环或这些制冷循环的组合。另外,在制冷过程中可以采用膨胀涡轮。与普通的LNG厂相比,根据本发明,在PLNG厂中所必须的制冷马力的极大减少导致了资金成本的大幅度降低,操作费用成比例降低,而且效率和可靠性提高了,这样在经济上极大地促进了液化天然气的生产。
用于生产本发明的PLNG与普通的LNG加工厂生产的比较如下。参照图1和图2,因为在PLNG厂8中(图2)的液化温度要比普通LNG厂50(图1)高(普通的LNG厂在约-162℃(-260°F)和大气压下生产普通LNG),气体处理设备52(图1)用于除去可冻结成分例如二氧化碳、含硫的混合物、正戊烷以上的烃和苯,在普通的LNG厂50中需要有这个设备,而在PLNG厂中通常不需要有这个设备,这是因为这些自然产生的成分通常不会冻结而且由于高的操作温度不会在PLNG厂的设备中引起堵塞问题。如果PLNG厂正在生产的天然气中存在着相当高含量的二氧化碳、含硫的混合物、正戊烷以上的烃和苯,如有需要这里可以增加一些气体处理设备。另外,氮在普通LNG厂50(在剔除氮设备54中)中必须去除,因为在运输普通的LNG过程中氮将不保持为液相。在PLNG厂8中,中等程度的氮无需去除,这是因为在PLNG操作压力和生产温度下氮与液化的烃一起保持为液相。此外,在普通的LNG厂中50(在汞去除设备56中)需将汞去除。因为PLNG厂8是在比普通LNG厂50相当高的温度下操作的,而且因此在PLNG厂8的容器、管道和其它设备中不需要使用铝,故在PLNG厂8一般不需要汞去除设备。在天然气的成分所允许的情况下,这种将所需的气体处理、氮剔除和汞去除的设备省略的能力在技术和经济上显示出优势。
在本发明优选的操作压力和温度下,可采用含镍3.5%(重量)的钢用于在最冷操作地区PLNG厂8生产管路和设备,而对于在普通LNG厂50中同样的设备,一般需要更昂贵的9%镍(重量)含量的钢或铝。与普通的LNG厂相比,这为PLNG厂8另外显著降低成本创造了条件。为了在经济上获得超过普通LNG厂的优势,优选采用在PLNG厂8的操作条件下具有足够强度和断裂韧性的高强低合金钢来构造PLNG厂8的管路和相关组件(例如法兰、阀门和接头)、压力容器和其它设备。
再次参照图1,普通LNG厂50生产的LNG由位于输出终端的一个或多个储存容器51来储存。现在参照图2,PLNG厂8生产的PLNG可由位于输出终端一个或多个储存容器9来储存,而该储存容器由本发明的超高强度低合金钢构造。在本发明的另外一个实施例中,,PLNG厂8生产的PLNG可传输到PLNG运输船上的一个或多个储存容器9中,而该储存容器9由本发明的超高强度低合金钢构造,对于PLNG运输船,下面将进一步给予描述。
根据这个发明,PLNG厂可作为一个高峰修整厂来允许以PLNG形式储存天然气。例如,普通的LNG输入终端接收船运的LNG,储存LNG并将LNG汽化以便将其传输到气体配置管道网。所储存的LNG当它温度升高时产生蒸气(“汽化”)。通常,汽化从LNG储存容器中分离并伴随着汽化的LNG传输到气体配置管道网。在气体需求量低的期间,汽化可能超过所需用于传输到管道网的蒸气体积。在这种情况下,汽化一般进行再次液化并以LNG形式储存直到高峰期需要时为止。采用本发明,汽化能再次液化成PLNG并将其储存直到高峰期需要时为止。在另外一个实例中,一家提供给客户气体用于家庭和商业加热的公司典型在需求高峰期通过汽化LNG得到额外的天然气以配置给客户。在高峰修整厂,与其采用LNG不如采用PLNG可能更经济。
PLNG运输容器本发明的PLNG运输容器包含由上述超高强度低合金钢构造的储存容器。PLNG运输容器优选海上运输船,例如船,它从PLNG输出终端到PLNG输入终端是通过一片水域来进行的。PLNG产品的密度低于普通LNG的密度。典型地,PLNG产品的密度约为(或低于)普通LNG的密度的75%。因此,本发明系统所需的船队的总运输体积约为用于传输普通LNG的普通项目的船队的125%或更高,这样便可运输来自更高效率的工厂和来自由低密度所增加的体积而增加的产品。图3A、3B、和3C给出了为携带PLNG而设计的高能力船的示范。该示范PLNG船30装有48个头部半球形的圆柱形储存容器32。容器也可为球形。正如熟练技术人员所熟悉的,容器的数量和尺寸依赖于高强度低合金钢的实际强度、容器的壁厚和设计压力。
估计PLNG船的成本低于普通的LNG船,而且其运输能量显著大于当前运输普通LNG的最大的船。
在本发明的一个优选的实施例中,容器在约-101℃(-150°F)~-79℃(-110°F)温度下盛载PLNG,而且这要求采取一些形式的绝热。目前可采用工业可得到的具有好的低温绝热性能的工业绝热材料。
正如在下面输入终端中所详细讨论的,PLNG船的设计在满足客户需要和使成本最低的选择上呈现出灵活性。该船可通过装载或卸载PLNG来满足特殊的能力的设计。它可设计为在短期内(典型为12小时)装载/卸载或以不超过工厂的生产率的较低的速率装载/卸载。如图4A、4B、4C所示,如果客户希望将它的输入成本减至最低,PLNG船可设计为在船上装有汽化设备来直接将气体传输给客户。示范PLNG船40装有44个储存容器42和装在船上的汽化设备44。
PLNG船比普通的LNG船有许多优点。这些优点包括显著大的运输能力;较低的成本;使装载能力更容易适于满足客户需要的能力;以液体形式传输PLNG或将PLNG在船上汽化成气体以用于运输的能力;低的泵送成本,因为PLNG处于比普通LNG的大气压(约为100kPa(14.7psia))较高的压力(2415kPa(350psia)~4830Pa(700psia))下;短的构造时间,因为容器和相关的管路能预先制造并吊装到位,因此将装上船所需的劳动花费减至最低。
PLNG输入和输出终端PLNG输出终端可包括码头、储存罐和转运泵。PLNG输入终端可包括码头、储存罐、转运泵和汽化设备。在输出终端和输入终端的PLNG储存容器可优选由超高强度低合金钢构造,该合金钢在本发明的PLNG系统的包括压力和温度的操作条件下具有足够的强度和韧性。任选地,在PLNG输出终端和/或输入终端可省去储存罐。在输出终端没有储存罐的PLNG系统,生产的PLNG直接从PLNG工厂运输到PLNG运输船上的运输储存容器中。在输入终端没有储存罐的PLNG系统,输入终端基本由汽化设备组成,或可选择PLNG船队上的各个运输船在船上装有标准的汽化设备来直接将PLNG转变成管道质量气体。例如对于在输入终端和输出终端都没有储存容器的情况,需要在PLNG运输船队中增加两艘PLNG运输船以超过典型采用输入和输出终端运输和传输PLNG到市场所需要的船的数量。因此,当其它PLNG运输船正在运输时,所增加的一艘PLNG运输船在输出终端下锚,或这艘船正在注入或储存PLNG,而所增加的另外一艘PLNG运输船停泊输入终端直接将PLNG输送到市场。在运输船上装有汽化器时,这种下锚可以在近海,例如单个锚腿下锚(SALM)。这些替代比普通的LNG系统在经济上更优越,而且可显著地降低输出和输入终端的成本。
实施例PLNG储存容器实例正如上面所讨论的,根据本发明,用于储存和运输PLNG的容器优选由其镍含量低于9%而且拉伸强度高于830MPa(120ksi)的钢板来构造。根据上面所解释的已知的断裂力学原理,任何超高强度低合金钢只要在操作条件下具有足够的韧性来盛载PLNG,便可用于构造本发明的用于储存和运输PLNG的容器,优选DBTT低于约-73℃(-100°F)的这种钢。
在钢铁制造技术上的最近进展使得制造新的具有卓越低温韧性的超高强度低合金钢成为可能。例如,授权给Koo等人的三个美国专利5531842、5545269和5545270,它们描述了新的钢和用于加工这些钢的方法来生产具有拉伸强度约为830MPa(120ksi)、965Mpa(140ksi)或更高的钢板。为了所制造的超高强度低合金钢在焊接时,不仅在基体钢中而且在热影响区(HAZ)都具有卓越低温韧性,在上述文献中所描述的钢的和加工方法已经得到改进。这些超高强度低合金钢同时具有超过标准工业可得到的超高强度低合金钢的改善的韧性。在题为“具有优良低温韧性的超高强度钢”的共同未决的临时专利申请中,描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为60/068194;在题为“具有优良低温韧性的超高强度奥氏体时效钢”的共同未决的临时专利申请中,描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为60/068252;在题为“具有优良低温韧性的超高强度双相钢”的共同未决的临时专利申请中,描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为60/068816。(以下它们将集体称为“钢铁专利申请”)。
在钢铁专利申请中所描述的和下面的实例中所进一步描述的新钢尤其适于构造本发明的用于储存和运输PLNG的容器,其优选厚度约为2.5厘米(1英寸)和更大尺寸的钢板,因为这些钢具有下列特性(i)在基体钢和焊接的热影响区,DBTT小于约-73℃(-100°F),优选的DBTT约低于约-107℃(-160°F)。(ii)拉伸强度大于830MPa(120kpsi),优选的拉伸强度大于860MPa(125kpsi),更优选的拉伸强度大于900MPa(130kpsi)。(iii)优良的可焊性。(iv)沿厚度方向显微组织和性能充分均匀(v)超过标准工业可得到的超高强度低合金钢的韧性的改善的韧性。甚至更优选的是,这些钢的拉伸强度大于930MPa(135kpsi),或约大于965MPa(140kpsi)或约大于1000MPa(145kpsi)。
第一个钢实例正如上面所讨论的,题为“具有优良低温韧性的超高强度钢”的共同未决的美国临时专利申请,其优先权日为1997年12月19日,该申请被美国专利商标局(USPTO)确定的申请号为60/068194,该申请提供了适于供本发明使用的钢的描述。它提供了制备超高强度钢板的一种方法,这种超高强度钢板的显微组织主要包括回火细晶板条马氏体、回火细晶下贝氏体或其混合物,其中该方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(i)钢坯充分均匀(ii)所有铌和钒的碳化物、碳氮化物充分溶解(iii)钢坯产生细化的初始奥氏体晶粒;(b)在第一个温度范围下,将钢坯经一个或多个道次的热轧形成钢板,此时奥氏体发生再结晶;(c)在高于Ar3转变温度且低于Tnr温度的范围下,经一个或多个道次热轧将钢板进一步轧制变形;(d)以10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火钢板,使其达到淬火停止温度,该淬火停止温度低于Ms转变温度加上200℃(360°F)的值;(e)停止淬火;(f)将钢板回火处理,回火温度约为400℃(752°F)~Ac1转变温度,优选的回火温度接近Ac1转变温度,但不包括Ac1转变温度,给定充足的回火时间以便产生硬化粒子的析出,例如这些硬化粒子可以是ε-铜,Mo2C,或铌和钒的碳化物和碳氮化物。产生硬化粒子析出的充足时间主要依赖于钢板的厚度、钢板化学成分和回火温度,而且这个时间可由熟练的技术人员来确定。(参见术语表中主要的有关硬化粒子、Tnr温度、Ar3转变温度、Ms转变温度、Ac1转变温度和Mo2C的定义)为了确保在室温和低温下的韧性,根据这个第一个钢实例,优选具有这样显微组织的钢,显微组织主要包括回火细晶板条马氏体、回火细晶下贝氏体或其混合物。优选充分使形成的脆性成分如上贝氏体、孪生马氏体和MA减至最小程度。正如这个第一个钢实例所采用的,在权利要求书中,“主要”指的是至少为50%(体积)。更优选的是,显微组织至少包括60%~80%(体积)回火细晶板条马氏体、回火细晶下贝氏体或其混合物。甚至更优选的是显微组织至少包括90%(体积)回火细晶板条马氏体、回火细晶下贝氏体或其混合物。最优选的是完全包括100%(体积)回火细晶板条马氏体的显微组织。
在一个实施例中,根据这个第一个钢实例加工的钢坯在通常方式下进行制造,该钢坯包含铁和下列合金元素,优选下列表I中给出的重量范围
表I<
>有时在钢中添加钒(V),优选的钒含量不超过约0.10%(重量),更优选的钒含量为0.02%(重量)~0.05%(重量)。
有时在钢中添加铬(Cr),优选的铬含量不超过约1.0%(重量),更优选的铬含量为0.2%(重量)~0.6%(重量)。
有时在钢中添加硅(Si),优选的硅含量不超过约0.5%(重量),更优选的硅含量为0.01%(重量)~0.5%(重量),甚至更优选的硅含量为0.05%(重量)~0.1%(重量)。
有时在钢中添加硼(B),优选的硼含量约高达0.0020%(重量),更优选的硼含量为0.0006%(重量)~0.0010%(重量)。
优选至少包含1%(重量)镍的钢。如果期望提高焊接后的性能,钢中的镍含量可增加到约为3%以上。镍的重量每增加1%,钢的DBTT预计降低10℃(18°F)。镍含量优选低于9%(重量),更优选的镍含量低于6%(重量)。为了降低钢的成本,优选的镍含量为最低程度的含量。如果镍含量增加到超过3%(重量),锰含量可能降低到0.5%(重量)~0.0%(重量)。因此,从更广的意义上而言,优选的锰含量最高约为2.5%(重量)。
另外,在钢中的剩余物的含量优选为尽可能低。磷(P)的含量优选为小于0.01%(重量)。硫(S)的含量优选为小于0.004%(重量)。氧(O)的含量优选为小于0.002%(重量)。
稍微更详细一点,这里所描述根据这个第一个实例的钢,它的制备过程为首先形成所需成分的坯料;然后将坯料加热到约955℃~1065℃(1750°F~1950°F);在第一个温度范围下,例如高于Tnr温度,将钢坯经一个或多个道次的热轧形成钢板,其轧制压缩比为30~70%,此时奥氏体发生再结晶;然后在高于Ar3转变温度且低于Tnr温度的第二温度范围下,经一个或多个道次将钢板进一步热轧变形,其轧制压缩比为40~80%。随后以10℃/秒~40℃/秒(18°F/秒~-72°F/秒)的冷却速率淬火热轧钢板,使其达到合适的QST(术语表中已定义),该淬火停止温度低于Ms转变温度加上200℃(360°F)的值,此时停止淬火。在这个第一个钢实施例中,随后将钢板空冷至室温。这个过程用于生产优选主要包括细晶板条马氏体、细晶下贝氏体或其混合物的显微组织,或更优选的完全包括100%细晶板条马氏体的显微组织。
根据这个第一个钢实例,钢中直接淬火得到的马氏体具有高的强度,但在约为400℃(752°F)~Ac1转变温度之间进行回火,可改善它的韧性。在这个温度范围内对钢进行回火同时会减少淬火应力,而淬火应力的减少反过来会提高韧性。在回火能提高钢的韧性的同时,通常会导致显著损失钢的强度。在本发明中,可通过析出强化来弥补回火所造成的强度损失。在马氏体结构的回火过程中,细化铜的沉淀和混合的碳化物和/或碳氮化合物产生的弥散强化用于优化强度和韧性。这个第一个钢实例的钢的独特的化学性质允许回火在400℃~650℃(752°F~1200°F)大的温度范围下进行,而此时淬火得到的强度并没有任何明显的损失。钢板优选在400℃(752°F)~低于Ac1转变的温度下回火足够时间以便析出硬化粒子(如本文所定义)。这个处理促使钢板的显微组织转变到主要为回火细晶板条马氏体、回火细晶下贝氏体或其混合物。此外,引起析出硬化粒子的充足时间主要依赖于钢板的厚度、化学成分和回火温度,而且这个时间可由熟练的技术人员来确定。
第二个钢实例正如上面所讨论的,题为“具有优良低温韧性的超高强度马氏体时效钢”的共同未决的临时专利申请,其优先权日为1997年12月19日,被美国专利商标局(USPTO)确定的申请号为60/068252,该申请提供了适于供本发明使用的钢的描述。它提供了制备超高强度钢板的一种方法,这种超高强度钢板具有微观层状显微组织,该显微组织包括2%(体积)~10%(体积)的奥氏体薄膜层和90%(体积)~98%(体积)的主要细晶板条马氏体和细晶下贝氏体,所述的方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(i)钢坯充分均匀(ii)基本上所有铌和钒的碳化物、碳氮化物充分溶解(iii)钢坯产生细化的初始奥氏体晶粒;(b)在第一个温度范围下,将钢坯经一个或多个道次的热轧形成钢板,此时奥氏体发生再结晶;(c)在高于Ar3转变温度而低于Tnr温度的第二个范围下,经一个或多个道次将钢板进一步热轧变形;(d)以10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火钢板,使其达到淬火停止温度(QST),该淬火停止温度低于Ms转变温度加上100℃(180°F)的值;(e)停止淬火。在一个实施例中,这个第二个钢实例的方法而且包括将钢板从QST空冷到室温这个步骤。在另外一个实施例中,这个第二个钢实例的方法而且包括在将钢板空冷到室温前要将钢板保持在QST基本等温高达5分钟这个步骤。而在另外一个实施例中,这个第二个钢实例的方法而且包括在将钢板空冷到室温前从QST开始以1.0℃/秒(1.8°F/秒)的速率缓慢冷却钢板,冷却时间最高达5分钟。而在另外一个实施例中,本发明的方法而且包括在将钢板空冷到室温前从QST开始以低于1.0℃/秒(1.8°F/秒)的速率缓慢冷却钢板最高达5分钟。这种处理促使钢板的微观组织的转变为2%(体积)~10%(体积)的奥氏体薄膜层和90%(体积)~98%(体积)的主要细晶板条马氏体和细晶下贝氏体。(参见术语表中有关Tnr温度、Ar3转变温度、Ms转变温度的定义)为了确保室温和低温下的韧性,微观层状显微组织中的板条优选主要包括下贝氏体和马氏体。优选充分使形成的脆性成分如上贝氏体、孪生马氏体和MA减至最小程度。正如这个第二个钢实例所采用的,在公开中,“主要”指的是至少为50%(体积)。微观组织的剩余物可以包括额外的细晶板条马氏体、额外的细晶下贝氏体或铁素体。更优选的是,显微组织至少包括60%~80%(体积)板条马氏体和下贝氏体。甚至更优选的是显微组织至少包括90%(体积)下贝氏体和板条马氏体。
在一个实施例中,根据这个第二个钢实例加工的钢坯在通常方式下进行制造,该钢坯包含铁和下列合金元素,优选下列表II中给出的重量范围表II
有时在钢中添加钒(V),优选的钒含量不超过约1.0%(重量),更优选的钒含量为0.2%(重量)~0.6%(重量)。
有时在钢中添加硅(Si),优选的硅含量不超过约0.5%(重量),更优选的硅含量为0.01%(重量)~0.5%(重量),甚至更优选的硅含量为0.05%(重量)~0.1%(重量)。
有时在钢中添加硼(B),优选的硼含量不超过约0.0020%(重量),更优选的硼含量为0.0006%(重量)~0.0010%(重量)。
优选至少包含1%(重量)镍的钢。如果想提高焊接后的性能,钢中的镍含量可增加到约为3%以上。镍的重量每增加1%,钢的DBTT预计降低10℃(18°F)。镍含量优选低于9%(重量),更优选的镍含量低于6%(重量)。为了降低钢的成本,优选的镍含量为最低程度的含量。如果镍含量增加到超过3%(重量),锰含量可以降低到0.5%(重量)~0.0%(重量)。因此,从更广的意义上而言,优选的锰含量最高约为2.5%(重量)。
另外,在钢中的剩余物的含量优选尽可能低。磷(P)的含量优选为小于0.01%(重量)。硫(S)的含量优选为小于0.004%(重量)。氧(O)的含量优选为小于0.002%(重量)。
稍微更详细一点,这里所描述根据这个第二个实例的钢,它的制备过程为首先形成所需成分的坯料;然后将坯料加热到955℃~1065℃(1750°F~1950°F);在第一个温度范围下,例如高于Tnr温度,将钢坯经一个或多个道次的热轧形成钢板,其轧制压缩比为30~70%,此时奥氏体发生再结晶;然后在高于Ar3转变温度而低于Tnr温度的范围下,经一个或多个道次将钢板进一步轧制变形,其轧制压缩比为40~80%。随后以10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火热轧钢板,使其达到合适的QST,该淬火停止温度低于Ms转变温度加上100℃(180°F)的值,此时停止淬火。在这个第二个钢实例的一个实施例中,淬火停止后,可将钢板从QST空冷至室温。这个第二个钢实例的另外一个实施例中,淬火停止后,在将钢板空冷到室温前要将钢板保持在QST充分等温一定时间,优选等温时间高达5分钟,此后将钢板空冷至室温。而在这个第二个钢实例的另外一个实施例中,以低于空冷的冷却速率缓慢冷却钢板,例如低于1.0℃/秒(1.8°F/秒)的速率,优选的冷却时间最高达5分钟。而在这个第二个钢实例的另外一个实施例中,从QST开始以低于空冷的冷却速率缓慢冷却钢板,例如低于1.0℃/秒(1.8°F/秒)的速率,优选的冷却时间最高达5分钟。至少在这个第二个钢实例的一个实施例中,Ms转变温度约为350℃(662°F),而且因此Ms转变温度加上100℃(180°F)约等于450℃(842°F)。
可通过任何适合的方法将钢板在QST充分等温,例如在钢板上放置一条热毛毡,而这些方法是熟练的技术人员所熟知的。淬火停止后,可采用任何方法将钢板进行缓慢冷却,例如在钢板上放置一块绝热毛毡,而这些方法是熟练的技术人员所熟知的。
第三个钢实例正如上面所讨论的,题为“具有优良低温韧性的超高强度双相钢”的共同未决的临时专利申请,其优先权日为1997年12月19日,该申请被美国专利商标局(USPTO)确定的申请号为60/068816,该申请提供了适于供本发明使用的钢的描述。它提供了制备超高强度双相钢板的一种方法,这种超高强度钢板的显微组织包括10%(体积)~40%(体积)的基本为100%(体积)(充分纯和“基本上”)铁素体的第一相和60%(体积)~90%(体积)的主要为细晶板条马氏体和细晶下贝氏体及其混合物的第二相,所述的方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(i)钢坯充分均匀(ii)所有铌和钒的碳化物、碳氮化物充分溶解(iii)钢坯产生细化的初始奥氏体晶粒;(b)在第一个温度范围下,将钢坯经一个或多个道次的热轧形成钢板,此时奥氏体发生再结晶;(c)在高于Ar3转变温度而低于Tnr温度的第二个范围下,经一个或多个道次将钢板进一步轧制变形;(d)在高于Ar1转变温度而低于Ar3转变温度的第三个范围下(即,临界温度范围),经一个或多个道次将所述的钢板进一步轧制变形;(e)以10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火钢板,使其达到淬火停止温度(QST),该淬火停止温度低于Ms转变温度加上200℃(360F)的值;(f)停止淬火。在这个第三个钢实例的一个实施例中,QST优选低于Ms转变温度加上100℃(180°F)的值,而且更优选低于350℃(662°F)的值。在这个第三个钢实例的另外一个实施例中,在步骤(f)之后,可将钢空冷至室温。这种处理促使钢板的微观组织的转变为10%(体积)~40%(体积)的铁素体的第一相和60%(体积)~90%(体积)的主要为细晶板条马氏体和细晶下贝氏体及其混合物的第二相。(参见术语表中有关Tnr温度、Ar3转变温度、Ms转变温度的定义)为了确保室温和低温下的韧性,这个第三个钢实例的钢的微观显微组织中第二相主要为细晶下贝氏体和细晶板条马氏体。优选充分使形成的脆性成分如上贝氏体、孪生马氏体和MA减至最小程度。正如这个第三个钢实例所采用的,在权利要求书中,“主要”指的是至少为50%(体积)。第二相微观组织的剩余物可以包括额外的细晶板条马氏体、额外的细晶下贝氏体或铁素体。更优选的是,第二相的显微组织至少包括60%~80%(体积)细晶下贝氏体、细晶板条马氏体或其混合物。甚至更优选的是第二相的显微组织至少包括90%(体积)细晶下贝氏体、细晶板条马氏体或其混合物。
在一个实施例中,根据这个第三个钢实例加工的钢坯在通常方式下进行制造,该钢坯包含铁和下列合金元素,优选下列表III中给出的重量范围表III
有时在钢中添加铬(Cr),优选的铬含量不超过1.0%(重量),更优选的铬含量为0.2%(重量)~0.6%(重量)。
有时在钢中添加钼(Mo),优选的钼含量不超过约0.8%(重量),更优选的钼含量为0.1%(重量)~0.3%(重量)。
有时在钢中添加硅(Si),优选的硅含量不超过0.5%(重量),更优选的硅含量为0.01%(重量)~0.5%(重量),甚至更优选的硅含量为0.05%(重量)~0.1%(重量)。
有时在钢中添加铜(Cu),优选的铜含量不超过0.1%(重量)~1.0%(重量),更优选的铜含量为0.2%(重量)~0.4%(重量)。
有时在钢中添加硼(B),优选的硼含量不超过0.0020%(重量),更优选的硼含量为0.0006%(重量)~0.0010%(重量)。
优选至少包含1%(重量)镍的钢。如果想提高焊接后的性能,钢中的镍含量可增加到约为3%以上。镍的重量每增加1%,钢的DBTT预计降低10℃(18°F)。镍含量优选低于9%(重量),更优选的镍含量低于6%(重量)。为了降低钢的成本,优选的镍含量为最低程度的含量。如果镍含量增加到超过3%(重量),锰含量可能降低到0.5%(重量)~0.0%(重量)。因此,从更广的意义上而言,优选的锰含量最高约为2.5%(重量)。
另外,在钢中的剩余物的含量优选尽可能低。磷(P)的含量优选为小于0.01%(重量)。硫(S)的含量优选为小于0.004%(重量)。氧(O)的含量优选为小于0.002%(重量)。
稍微更详细一点,这里所描述根据这个第三个实例的钢,它的制备过程为首先形成所需成分的坯料;然后将坯料加热到955℃~1065℃(1750°F~1950°F);在第一个温度范围下,例如高于Tnr温度,将钢坯经一个或多个道次的轧制形成钢板,其轧制压缩比为30~70%,此时奥氏体发生再结晶;然后在高于Ar3转变温度而低于Tnr温度的第二个温度范围下,经一个或多个道次完成钢板的轧制变形,其轧制压缩比为40-80%。在高于Ar1转变温度而低于Ar3转变温度的临界温度范围,经一个或多个道次的终轧,其轧制压缩比为15-50%。在随后以10℃/秒~40℃/秒(18°F/秒~72°F/秒)冷却速率淬火热轧钢板,使其达到合适的QST,该淬火停止温度低于Ms转变温度加上200℃(360°F)的值。在本发明的另一方案中,QST优选低于Ms转变温度加上100℃(180°F)的值,而且更优选低于350℃(662°F)的值。在这个第三个钢实例的一个实施例中,在淬火停止后,可将钢空冷至室温。
在上面的三个实例钢中,因为镍(Ni)是一种昂贵的合金元素,所以为了充分将钢的成本减至最低程度,钢中的镍含量优选小于3.0%(重量),更优选的镍含量为小于2.5%(重量),更优选的镍含量为小于2.0%(重量),甚至更优选的镍含量为小于1.8%。
其它根据本发明中使用的合适的钢在其它出版物中给予了描述,这些出版物描述了镍含量小于1%(重量)的超高强度度低合金钢,该合金钢的拉伸强度高于830MPa(120ksi),同时具有卓越的低温韧性。例如,在1997年2月5日公开的欧洲专利申请中所描述的钢,该专利申请的国际申请号为PCT/JP96/00157,它的国际公开号为WO96/23909(08.08.1996 Gazette 1996/36)(这些钢优选的铜含量为0.1%(重量)~1.2%(重量)),以及在未决的美国临时专利申请(优先权日为1997年6月28日)中所描述的钢,其标题为“具有优良超低温韧性的超高强度可焊接钢”,该申请被USPTO确定的申请号为No.60/053915。
对于任何上面所参考的钢,熟练的技术人员都明白,这里所采用的“厚度压缩百分比”指的是在钢坯厚度方向压缩的百分比。在此仅是为了解释,并没有因此限制本发明,在第一个温度范围下,将一约为25.4厘米(10英寸)厚的钢坯压缩50%(50%压缩),则达到约12.7厘米(5英寸)厚度;随后在第二个温度范围下,再压缩约80%(80%的压缩),此时的厚度约为2.5厘米(1英寸)。此外,在此仅是为了解释,并没有因此限制本发明,在第一个温度范围下,将一约为25.4厘米(10英寸)厚的钢坯压缩30%(30%的压缩),则此时的厚度约为17.8厘米(7英寸)厚度;随后在第二个温度范围下,再压缩约80%(80%的压缩),此时的厚度约为3.6厘米(1.4英寸);然后在第三个温度范围下,再压缩约30%(30%的压缩),此时的厚度约为2.5厘米(1英寸)。正如这里所采用的,“板坯”指的是任意尺寸的钢坯。
对于任何上面所参考的钢,熟练的技术人员都明白,优选采用合适的方法将基本上整个钢坯、优选整个钢坯的温度提高到所希望的再加热温度,例如在加热炉中将钢坯放置一定时间。用于任何上面所参考的钢成分的特殊再加热温度可由熟练的技术人员快速确定,或者通过实验来确定,或者通过合适的模型来计算该温度。此外,用于将基本上整个钢坯、优选整个钢坯提高到所希望的再加热温度所需的加热炉温度和再加热时间,可由熟练的技术人员通过参考标准工业出版物来快速确定。
对于任何上面所参考的钢,熟练的技术人员都明白,定义再结晶范围与未再结晶范围的边界-Tnr温度依赖于钢的化学成分,而且更具体的讲,它依赖于轧制前的再加热温度、碳的浓度、铌的浓度和在轧制道次中给定的压缩量。熟练的技术人员可通过实验和模型计算来确定各个钢成分的这个温度。同样,这里所参考各个钢成分的Ac1转变温度、Ar1转变温度、Ar3转变温度和Ms转变温度均可由熟练的技术人员来确定,或者通过实验或模型计算来确定。
对于任何上面所参考的钢,熟练的技术人员都明白,除了再加热温度以外,在描述本发明的处理方法中后来所参考的基本应用于整个钢坯的温度为测定的钢的表面温度。例如,通过光学高温计可测量钢的表面温度,或者采用适于测量钢的表面温度的任何其它合适的方法。冷却速率这里指的是处于板厚度的中心或充分中心部位的冷却速率;而且淬火停止温度(QST)为淬火停止后,板的表面温度达到最高值或基本为最高值,这是因为来自板厚度中间的热传导的缘故。例如根据这里所提供的实例,在处理一种钢成分的实验热过程中,通过在板厚度的中心或大致中心放置热电偶来测定中心温度,而采用光学高温计来测量钢的表面温度。于是可得到中心温度和表面温度之间的关系,从而用于处理后来的相同或基本相同的钢成分,这样通过直接测定表面温度便可确定中心温度。同时,达到所希望的加速冷却速率所需的温度和淬火液体的流动速率均可由熟练的技术人员通过参考标准工业出版物来快速确定。
熟练的技术人员应具有所需知识和技能,利用这里所提供的信息来生产超高强度低合金钢板,该钢板具有高的强度和韧性,可用于构造本发明的容器和其它组件。今后可能存在或开发其它合适的钢,但所有这些钢均处于本发明发范围之内。
熟练的技术人员应具有所需的知识和技能,利用这里所提供的信息来生产超高强度低合金钢板,与根据这里所提供的实例而生产的钢板厚度相比,该钢板的厚度可以修改,同时生产的钢板依然具有合适的高强度和合适的低温韧性以供本发明的系统使用。例如,熟练的技术人员可利用这里所提供的信息来生产有合适的高强度和合适的低温韧性的钢板,该钢板厚度约为2.54厘米(1英寸),可用于构造本发明的容器和其它组件。今后可能存在或开发其它合适的钢。所有这些钢均处于本发明发范围之内。
由任何合适的超高强度低合金,如本文所描述的,例如在这个实例中所描述的任何钢,构成的容器,其尺寸根据采用这个系统的PLNG项目的需要来确定。熟练的技术人员可以利用标准工程惯例和在工业中可利用的参考来确定有关容器和其它组件的必要尺寸、壁厚等等。
当双相钢用于构造本发明的容器时,双相钢优选采用这样的方式进行处理为了在加速冷却和淬火步骤前引起双相的产生,将钢在临界温度范围内保持一定时间。优选的处理为钢在Ar1转变温度~Ar3转变温度之间冷却时形成双相钢结构。用于构造本发明容器的钢的另外的优选特征为在完成加速冷却和淬火步骤时,无需任何额外的钢再加热所要求的处理,例如回火,钢的拉伸强度高于830MPa(120ksi)而且DBTT小于约-73℃(-100°F),优选地,在完成加速冷却和淬火步骤时,钢的拉伸强度高于860MPa(125ksi),更优选高于900MPa(130ksi)。在一些申请中,在完成加速冷却和淬火步骤时,钢的拉伸强度优选高于930MPa(135ksi)或高于965MPa(140ksi)或高于1000MPa(145ksi)。
对于容器和其它组件要求将钢弯曲成用于容器的圆柱形状或用于管道的管状,钢优选在室温下弯曲成所需形状,以避免对钢的卓越的低温韧性造成不利影响。如果钢弯曲后必须加热才能获得所需形状,那么钢优选加热到不高于600℃(1112°F)从而保证上述钢的微观组织的有益效果。
对于PLNG容器所需的变量,例如大小、几何形状、材料厚度等等,均依赖于操作条件,例如内部压力、操作温度等等,这对于熟练的技术人员是熟知的。对于最苛刻的低温设计,钢和焊缝的DBTT相当重要。在稍微高的操作温度下的设计,韧性依然是一个重要的问题,当对DBTT的要求可能不太苛刻。例如,当操作温度提高时,所需的DBTT也提高了。
为了构造本发明的容器和其它组件,需要一种合适的连接钢板的方法。正如上面所讨论的,任何连接方法只要它能使用于本发明的接缝具有足够的强度和韧性,该方法便可认为是合适的。用于构造本发明的容器和其它组件的焊接方法优选适于提供足够的强度和韧性来盛载所包含或运输的液体。这样的焊接方法优选包括合适的自耗电线、合适的自耗气体、合适的焊接方法及合适的焊接工艺过程。例如,气保护熔化极电弧焊(GMAW)和钨极惰性气体保护焊(TIG),二者在钢制造工业中为人们所熟知,只要采用合适的自耗电线-气体组合,二者均可用于连接钢板。
在第一种例举焊接方法中,采用了气保护熔化极电弧焊接(GMAW)来生成焊缝,该焊缝的化学成分包括铁、约0.07%(重量)的碳、约为2.05%(重量)的锰、约为0.32%(重量)的硅、约为2.20%(重量)的镍、约为0.45%(重量)的铬、约为0.56%(重量)的钼、约小于110ppm的磷和约小于50ppm的硫。采用含小于1%(重量)的氧的氩基保护气体来焊接钢,例如上面所描述的任何钢。焊接的热输入量处于0.3kJ/mm~1.5kJ/mm(7.6 kJ/inch~38kJ/inch)范围之内。采用这种方法进行焊接使得焊接件(见术语表)的拉伸强度高于900MPa(1130kpsi),优选的拉伸强度高于930MPa(135kpsi),更优选的拉伸强度高于965MPa(140kpsi),甚至更优选的拉伸强度至少约为1000MPa(145kpsi)。此外,采用这种方法进行焊接使得焊接金属的DBTT低于-73℃(-100°F),优选的DBTT低于-96℃(-140°F),更优选的DBTT低于-106℃(-160°F),甚至更优选的DBTT低于-115℃(-17°F)。
在第二个实例焊接方法中,采用了气保护熔化极电弧焊接(GMAW)来制造焊接金属,该焊接金属的化学成分包括铁、约0.10%(重量)的碳(优选小于0.10%(重量)碳,更优选的碳含量为0.07%(重量)~0.08%(重量))、约为1.60%(重量)的锰、约为0.25%(重量)的硅、约为1.87%(重量)的镍、约为0.87%(重量)的铬、约为0.51%(重量)的钼、约小于75ppm的磷和约小于100ppm的硫。焊接的热输入量处于0.3kJ/mm~1.5kJ/mm(7.6kJ/inch~38kJ/inch)范围之内,而且采用100℃(212°F)的预热。采用含小于1%(重量)氧的氩基保护气来焊接钢,例如上面所描述的任何钢。采用这种方法进行焊接使得焊接件(见术语表)的拉伸强度高于900MPa(1130kpsi),优选高于930MPa(135kpsi),更优选的拉伸强度高于965MPa(140kpsi),甚至更优选的拉伸强度至少约为1000MPa(145kpsi)。此外,采用这种方法进行焊接使得焊缝的DBTT低于-73℃(-100°F),优选的DBTT低于-96℃(-140°F),更优选的DBTT低于-106℃(-160°F),甚至更优选的DBTT低于-115℃(-175°F)。
在另外一个实例焊接方法中,采用了钨极惰性气体保护焊(TIG)来生成焊缝,该焊缝的化学成分包括铁、约0.07%(重量)的碳(优选小于0.07%(重量)的碳)、约为1.80%(重量)的锰、约为0.20%(重量)的硅、约为4.00%(重量)的镍、约为0.5%(重量)的铬、约为0.40%(重量)的钼、约为0.02%(重量)的铜、约为0.02%(重量)的铝、约为0.010%(重量)的钛、约为0.015%(重量)的锆、约小于50ppm的磷和约小于30ppm的硫。焊接的热输入量处于0.3kJ/mm~1.5kJ/mm(7.6kJ/inch~38kJ/inch)范围之内,而且采用100℃(212°F)的预热。采用含小于1%(重量)氧的氩基保护气体来焊接钢,例如上面所描述的任何钢。采用这种方法进行焊接使得焊接件的拉伸强度高于900MPa(1130kpsi),优选的拉伸强度高于930MPa(135kpsi),更优选的拉伸强度高于965MPa(140kpsi),甚至更优选的拉伸强度至少约为1000MPa(145kpsi)。此外,采用这种方法进行焊接使得焊缝的DBTT低于-73℃(-100°F),优选的DBTT低于-96℃(-140°F),更优选的DBTT低于-106℃(-160°F),甚至更优选的DBTT约低于-115℃(-175°F)。
采用GMAW或者采用TIG方法能够获得那些实例中所提到的相似的金属化学成分。然而可以预料,TIG焊缝比GMAW焊缝的杂质含量低而且显微组织更高度细化,而且因此低温韧性得到了改善。
在本发明的一个实施例中,埋弧焊(SAW)可作为一种连接技术。有关埋弧焊的详细讨论可参考焊接手册第6章,第二卷,焊接工艺(第8版),美国焊接协会,第191~232(1995)页。
埋弧焊(SAW)是一种因为它的高金属熔敷速度的优点而经常被采用的焊接技术。因为在每单位时间内它比其它焊接技术能涂覆更多的焊接材料,所以对于某些申请它可能更经济。当用于连接低温使用的铁素体钢时,SAW的一个可能的缺点是韧性不足或变化不定。低韧性可由诸如大的晶粒尺寸和/或夹杂物比所需的含量高等因素所引起。大的晶粒尺寸由SAW高热输入情况引起,它也是使高金属熔敷速度实现的特征。当用于热敏感高强钢时,SAW的另一个可能的缺点是HAZ软化,与气保护熔化极电弧焊(GMAW)或钨极惰性气体保护焊(TIG)相比,SAW高热输入特征引起HAZ更大范围的软化。
对于一些PLNG容器设计,SAW技术可能是合适的。将主要依据经济(焊接熔敷速度)与所获得的足够的机械性能之间的平衡关系来决定采用SAW。可能使特殊的SAW焊接工艺过程满足一个特殊的PLNG容器的设计要求。例如,如果想限制HAZ软化和减少焊缝的晶粒尺寸,可开发利用一个中等热输入的SAW过程。热输入时使非常高的熔敷速度实现,可采用的热输入范围为2kJ/mm~4kJ/mm(50kJ/inch~100kJ/inch),而不是在约高于4kJ/mm(100kJ/inch)。当值低于这个中等范围时,SAW可能比GMAW或TIG焊更不令人满意。
SAW也可用于奥氏体焊缝。由于面心立方奥氏体的高延展性,焊接韧性稍微容易实现。奥氏体焊接材料的一个缺点是费用比大多数的铁素体焊接材料高。奥氏体材料含有相当数量的贵重合金,例如Cr和Ni。然而,对于特殊的PLNG容器设计,可通过由SAW所提供的较高的熔敷速度来弥补奥氏体焊接材料的费用。
在本发明的另外一个实施例中,电子束焊(EBW)可作为一种连接技术。有关电子束焊的详细讨论可参考《焊接手册》的第22章,第二卷,焊接工艺(第8版),美国焊接协会,第672~713页(1995)。EBW的几个内在特点尤其适于高强度和低温韧性的使用条件。
大多数高强钢,例如屈服强度高于550MPa(80ksi)的钢,涉及它们的焊接的一个问题是由许多通常的焊接方法引起在热影响区(HAZ)内的金属软化,这些方法例如焊条手工焊(SMAW),埋弧焊(SAW),任何气体保护焊,例如气保护熔化极电弧焊接(GMAW)。在焊接引起的热循环中,HAZ可能经历了局部相变或退火,与先前暴露在焊接热中的基体金属相比,产生了显著的例如高达15%或更高的HAZ软化。而且已经生产出了屈服强度为830MPa(120ksi)或更高的超高强钢,许多这些钢不能满足用于极端低温使用所必须的可焊性条件,例如那些要求用于供这里所公开的方法中所使用的管路和压力容器。这些材料典型具有相对高的Pcm(熟知的用于描述可焊接性的工业术语)一般大于0.30,而且有时超过0.35。
EBW减少了由一些普通焊接技术例如SMAW和SAW所引起的问题。总的热输入明显低于电弧焊接方法。在连接过程中,在热输入上的减少降低了钢板的许多性能的变化。在许多情况下,EBW生成的焊接接头比由电弧焊生成的接头更强和或更能抵抗寒冷温度使用中的脆性断裂。
与电弧焊接相比,当焊接相同的接头时,EBW使HAZ韧性得到改善的同时,会导致残余应力、HAZ宽度和接头的机械变形的减少。EBW的高能量密度同时使得单面焊接容易进行,因此同时使得连接过程中钢的基体金属暴露于高温下的时间减至最小。对于将焊接热敏感合金的有害影响将到最小程度而言,EBW的这些特征是重要的。
而且,采用降低的压力或高的真空焊接条件的EBW系统导致高纯环境从而减少焊接熔池的污染。在电子束焊接接头中的杂质的减少导致由填隙元素和夹杂物的含量的减少而产生的焊缝金属韧性的提高。
EBW同时非常适于那种大量的过程控制变量(例如真空度、工作距离、加速电压、电子束电流、焊接速度、电子束光点大小,、电子束的偏斜等等)可以单独控制的情况。假定准备了适当的接头,EBW无需填充金属,这样导致焊缝的均匀的冶金性能。然而,填充金属的填隙片能用于有目的的改变EBW接头的冶金性能并提高力学性能。光束参数和采用/忽略填隙片的战略结合将使焊缝的显微结构适合生产所需要的强度和韧性的组合成为可能。
卓越的机械性能和低的残余应力的全面组合同时使得减少许多场合下的后焊接热处理成为可能,甚至当焊接的板厚为1~2英寸和更厚时也是如此。
EBW可在高真空(HV)、中等真空(MV)或无真空(NV)下进行。HV-EBW系统生成具有最低杂质的焊缝。然而,当金属处于熔融状态时,高真空条件能引起关键性的挥发性元素(例如铬和锰)的损失。依据所焊接的钢的成分,某些元素的部分损失可以影响焊缝的机械性能。此外,这些系统往往大而笨重,而且不易使用。NV-EBW系统机械上不太复杂、更紧凑,而且一般容易使用。NV-EBW方法更限制使用于当暴露于空气中时,光束趋于漫射发散,分散,而且光束聚焦不足和效果较差。这往往会限制在单面可焊接的钢板厚度。NV-EBWT同时对焊缝杂质更敏感,焊缝杂质会导致焊缝具有比较高真空EBW低的强度和韧性。因此,MV-EBW优选用于构造本公开的发明的容器。MV-EBW提供了性能和焊缝质量之间的最佳平衡。
在本发明的另外一个实施例中,激光焊(LBW)可作为一种连接技术。有关激光焊的详细讨论可参考《焊接手册》的第22章,第2卷,焊接工艺(第8版),美国焊接协会,第714~738页(1995)。LBW提供了与EBW相同的许多优点,但是在目前可利用EBW能够进行单面焊接更大的板厚范围的应用中,LBW更受到限制。
熟练的技术人员应具有所需的知识和技能,利用这里所提供的信息来焊接超高强度、低合金钢板,使其产生的接缝具有合适的高强度和合适的低温韧性以便供构造本发明的容器和其它组件使用。今后可能存在或开发其它合适的连接或焊接方法,但所有这些连接或焊接方法均处于本发明发范围之内。
权利要求
1.用于储存加压液化天然气的容器,该液化天然气处于约1035kPa(150psia)~7590kPa(1100psia)的压力和约-123℃(-190°F)~-62℃(-80°F)的温度下,其中所述的容器由含小于9%(重量)镍的超高强度低合金钢构造,该合金钢的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
2.用于储存加压液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~7590kPa(1100psia)的压力范围和-112℃(-170°F)~-62℃(-80°F)的温度范围下,其中所述的容器由含镍低于9%的超高强度低合金钢制成,该合金钢的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
3.用于储存加压液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~4830kPa(700psia)的压力范围和-112℃(-170°F)~-79℃(-110°F)的温度范围下,其中所述的容器(i)由含镍低于9%的超高强度低合金钢制成(ii)有足够强度和断裂韧性来盛载所述的加压液化天然气。
4.用于储存加压的液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~7590kPa(1100psia)的压力范围和-112℃(-170°F)~-62℃(-80°F)的温度范围下,其中所述的容器由含镍低于9%的超高强度低合金钢制成,该合金钢的拉伸强度至少为1000MPa(145ksi)而且DBTT低于约-73℃(-100°F)。
5.权利要求1,2,3或4中的任何一项的容器,其中所述的超高强度低合金钢的镍含量低于约5%(重量)。
6.用于储存加压液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~7590kPa(1100psia)的压力范围和-112℃(-170°F)~-62℃(-80°F)的温度范围下,其中所述的容器由含镍低于6%(重量)的超高强度低合金钢制成,该合金钢的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
7.用于储存加压液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~7590kPa(1100psia)的压力范围和-112℃(-170°F)~-62℃(-80°F)的温度范围下,其中所述的容器由含镍低于3%(重量)的超高强度低合金钢制成,该合金钢的拉伸强度至少约为1000MPa(145ksi)且DBTT低于约-73℃(-100°F)。
8.权利要求1、2、3、4、5、6或7中的任何一项的容器,是通过将所述的超高强度低合金钢的许多不连续板连接构成的,其中所述容器的接头的拉伸强度高于900MPa(130ksi)且DBTT低于约-73℃(-100°F)。
9.权利要求8的容器,其中采用GMAW来形成所述不连续板之间的接头。
10.权利要求8的容器,其中采用TIG焊接来形成所述不连续板之间的接头。
11.用于运输加压液化天然气的海上运输船,该液化天然气处于1035kPa(150psia)~7590kPa(1100psia)的压力和-123℃(-190°F)~-62℃(-80°F)的温度下,其中所述的海上运输船至少有一个储存容器由含小于9%(重量)镍的超高强度低合金钢材料构造,该合金钢材料的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
12.权利要求11的海上运输船,其中所述的超高强度低合金钢的镍含量小于5%(重量)。
13.权利要求11的海上运输船,在船上装有用于将所述的加压液化天然气转换为气体的汽化设备。
14.将加压液化天然气运输到输入终端的方法,其中所述的加压液化天然气的压力约为1035kPa(150psia)~7590kPa(1100psia)而且其温度为-123℃(-190°F)~-62℃(-80°F),其中所述的方法包括步骤(a)将所述的加压液化天然气传输到海上运输船中,其中所述的海上运输船至少有一个储存容器由含小于9%(重量)镍的超高强度低合金钢材料构造,该合金钢材料的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F);和(b)推动所述海上运输船穿过一片水域到达所述的输入终端。
15.权利要求14的方法,另外包括步骤(c)将所述的加压液化天然气传输到一个输入终端,该输入终端至少有一个输入储存容器由含小于9%(重量)镍的超高强度低合金钢构造,该合金钢的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
16.权利要求14的方法,其中所述的海上运输船在船上装有用于将所述的加压液化天然气转换为气体的汽化设备。
17.权利要求14的方法,另外包括步骤(d)将所述的加压液化天然气传输到一个输入终端,该输入终端装有用于将所述的加压液化天然气转换为气体的汽化设备。
18.用于处理天然气以获得在1035kPa(150psia)~7590kPa(1100psia)的压力而且-123℃(-190°F)~-62℃(-80°F)温度下的加压液化天然气的系统,其中所述系统包括(a)用于将所述的天然气转换为加压液化天然气的加工厂;(b)用于从所述加工厂接收所述的加压液化天然气的多个储存容器,其中所述的多个储存容器由含小于9%(重量)镍的超高强度低合金钢材料构造,该合金钢材料的拉伸强度高于830MPa(120ksi)而且DBTT低于约-73℃(-100°F)。
19.权利要求18的系统,其中所述的加工厂的基本组成为(a)用于接收所述的天然气流并除去所述天然气中的液体烃的接收设备;(b)用于从天然气中将足够的水蒸气除去以避免在所述加工厂的操作温度和压力下所述天然气冻结的脱水设备;(c)用于将所述天然气转变为所述加压液化天然气的液化设备。
20.权利要求19的系统,其中所述的加工厂另外包括(d)用于除去选自二氧化碳、含硫的化合物、正戊烷以上的烃和苯的至少一种的处理设备。
21.权利要求18的系统,还包括(c)至少有一个海上运输船用于运输所述加压液化天然气,其中所述的至少一个海上运输船在船上装有所述多个储存容器的至少一个,和(d)一个基本由传输设备组成的输出终端,它用于将所述加压液化天然气从所述的加工厂运输到在所述海上运输船上装备的所述的多个储存容器中的至少一个容器中。
22.权利要求21的系统,其中所述至少一个海上运输船各个装有用于将所述的加压液化天然气转换为气体的汽化设备。
23.权利要求22的系统,其中所述的系统还包括一个基本上由用于将所述气体传输到管路的传输设备组成的输入终端。
24.权利要求18的系统,其中在所述的加工厂中的管路和相关的组件和压力容器由含镍低于约2%的超高强度低合金钢制成,该合金钢有足够强度和断裂韧性来盛载所述的加压液化天然气。
25.用于储存加压液化天然气的容器,该加压液化天然气处于约为1725kPa(250psia)~7590kPa(1100psia)的压力范围和-112℃(-170°F)~-62℃(-80°F)的温度范围下,其中所述的容器由含镍低于约2%的超高强度低合金钢制成,该合金钢有足够强度和断裂韧性来盛载所述的加压液化天然气。
全文摘要
用于储存处于约1035kPa(150psia)~7590kPa(1100psia)的压力范围和-123℃(-190°F)~-62℃(-80°F)的温度范围下的加压液化天然气的容器,该容器由含小于9%(重量)镍而且拉伸强度高于830MPa(120ksi)且DBTT低于约-73℃(-100°F)的超高强度低合金钢构造。
文档编号F25J1/02GK1261925SQ9880678
公开日2000年8月2日 申请日期1998年6月18日 优先权日1997年6月20日
发明者R·M·伍达尔, R·R·伯温, D·P·法尔其尔德 申请人:埃克森生产研究公司