专利名称::液化天然气的改进方法
技术领域:
:本发明涉及一种天然气液化方法,具体地说,涉及一种生产加压液体天然气(PLNG)的方法。
背景技术:
:由于天然气的干净的燃烧性质和便利性,近年来已被广泛使用。许多天然气源位于遥远的地区,距气体的工业市场有很长的距离。有时,可以利用管线将生产的天然气输送到工业市场。当管线输送不可行时,所生产的天然气通常被加工成液化天然气(以下称“LNG”)以输送到市场。LNG工厂的一个区别特征是需要大的设备投资。用于液化天然气的设备通常十分昂贵。液化工厂是由几个基本系统组成的,包括处理气体以除去杂质、液化、致冷、动力设备、储存和装载设备。LNG工厂的成本可能随工厂的位置不同变化很大,通常,常规LNG工程可能花费50至100亿美元,包括土地开发成本。工厂的致冷系统可能占到总成本的30%。在设计LNG工厂时,要考虑的三个主要方面是(1)选择液化循环,(2)用于容器、管线和其它设备的材料,(3)将天然气进料物流转化成LNG的处理步骤。由于液化天然气需要很大的制冷量(refrigeration),所以LNG致冷系统是昂贵的。天然气通常是在约4,830kPa(700psia)至约7,600kPa(1,100psia)的压力和约20℃(68°F)至约40℃(104°F)的温度下进入LNG工厂。天然气主要是甲烷,与用作燃料的重质烃不同,简单加压是不能液化的。甲烷的临界温度是-82.5℃(-116°F)。这意味着不管施加的压力有多高,甲烷只有在这一温度以下才能液化。因为天然气是一种混合物,将在一个温度范围内液化。天然气的临界温度在约-85℃(-121°F)至-62℃(-80°F)之间。通常,在常压下,天然气组合物在约-165℃(-265°F)至-155℃(-247°F)液化。因为致冷设备占据了LNG设备成本中很重要的一部分,所以,人们致力于降低致冷成本。尽管已有许多致冷循环用于液化天然气,但目前用于LNG工厂的三种典型循环是(1)“串级(cascade)循环”,在依次设置的换热器中使用多个单组分致冷剂以将气体温度降低到液化温度,(2)“多组分致冷循环”,在特殊设计的换热器中使用多组分致冷剂,(3)“膨胀机循环”,将气体从高压膨胀到低压,相应地降低温度。大多数天然气液化循环使用这三种基本循环的改进或结合。压缩机膨胀系统的操作原理是气体被压缩到选择的压力,冷却,然后通过膨胀透平膨胀,因此做功并降低气体的温度。以这种膨胀方式,可以液化一部分气体。然后,低温气体换热以现实进料的液化。膨胀所获得的功通常供应了致冷循环中使用的压缩机所需功率的大部分。生产LNG膨胀方法公开在US3724226、4456459、4698081和WO97/13109中。用于常规LNG工厂的材料也计算在工厂的成本内。用于LNG工厂的容器、管线、其它设备通常至少一部分是由铝、不锈钢、或高镍含量的钢构成,以在低温下提供必要的强度和断裂韧性。在常规LNG工厂中,水、二氧化碳、如硫化氢和其它酸性气体的含硫化合物、正戊烷和包括苯的重质烃必须从天然气加工过程中除去,以达到百万分之几(ppm)的水平。这些化合物中的某些物质会冻结,从而在处理设备中引起堵塞问题。其它化合物,如含硫化合物,通常被除去以满足出售的规定。在常规的LNG工厂中,需要气体处理设备以除去二氧化碳和酸性气体。气体处理设备通常是使用化学和/或物理溶剂再生方法,需要投资大量资金。此外,操作费用也高。需要如分子筛的干燥床脱水器以除去水蒸汽。通常使用洗涤塔和分馏设备以除去可能产生堵塞问题的烃。由于汞会引起由铝构造的设备的故障,因此,在常规LNG工厂中也要除去。此外,在处理后,可能存在于天然气中的大部分氮气也要除去,因为在传统LNG输送过程中,氮气不会保留在液相中,从输送的观点看,在LNG容器中存在氮蒸汽是所不希望的。在工业上需要一种改进的天然气液化方法,以使致冷设备和所需的能耗最小。发明概述从整体上看,本发明涉及一种富含甲烷的气流的液化方法。进料气流的压力高于约3,100kPa(450psia)。如果压力太低,可以先压缩气体。通过利用合适的膨胀装置经膨胀液化气体,以产生温度高于约-112℃(-117°F)和压力足以使液体产品处于或低其泡点的液体产品。在膨胀之前,优选用通过膨胀装置的循环蒸汽冷却气体,但不液化。用相分离器将液体产品和膨胀装置未能液化的气体分离。然后,在高于约-112℃(-117°F)的温度下将来自相分离装置的液体产品引入产品储罐或输送装置。在本发明的另一方案中,如果进料气体含有重于甲烷的组分,可以压力膨胀液化之前,通过分馏方法除去重质烃。在本发明的再一方案中,由液化天然气蒸发所产生的煮沸气体可以加入到进料气体中,通过压力膨胀来液化,以产生加压液体天然气(PLNG)。本发明方法可以用于在供应储存或输送天然气的源地最初液化天然气,也可以用于储存和装载时产生的天然气蒸汽的再液化。因此,本发明的一个目的是液化或再液化天然气的改进液化系统。本发明的另一目的是提供一种改进的液化系统,所需的压缩能量比现有系统少得多。本发明的再一目的是提供一种操作经济而有效的改进液化系统。与本发明的生产PLNG的相对中等温度致冷相比,在非常低的温度下致冷的常规LNG方法是十分昂贵的。附图简述参照下面的详细说明和附图,可以更好地理解本发明的优点,其中附图是说明本发明实施方案的流程示意图。图1是本发明生产PLNG的第一方案的流程示意图。图2是本发明第二方案的示意流程图,其中,在压力膨胀液化天然气之前,用封闭循环致冷系统预冷却天然气。图3是本发明第三方案的流程示意图,其中,在液化成PLNG之前,进料天然气被分馏。图4是本发明第四方案的示意流程图,类似于图3所示方法,其中使用封闭循环致冷系统和压力膨胀来生产PLNG。附图中的流程图代表了实施本发明方法的不同方案。附图不排除本发明范围内的其它实施方案,它们可以是这些特定方案的正常或预期改进的结果。为了简化和清楚的目的,从附图中省略了所需的各种次级系统,如泵、阀、物流混合器、控制系统、传感器等。优选方案的描述本发明涉及一种通过压力膨胀液化天然气以产生富含甲烷的液体产品,其温度高于约-112℃(-170°F),压力足以使液体产品处于或低于泡点。在本发明的描述中,富含甲烷的产品有时被称之为加压液体天然气(PLNG)。术语“泡点”是指液体开始转变成气体的温度和压力。例如,如果一定体积的PLNG保持在恒定的压力下,当其温度升高时,开始在PLNG中形成气泡的温度就是其泡点。类似地,如果一定体积的PLNG保持在恒定的温度下,当压力下降时,开始形成气泡的压力定义为泡点。在泡点下,混合物是饱和液体。本发明的气体液化方法液化天然气所需要的能量比现用方法少,用于本发明的设备可以用较便宜的材料制成。与此相反,现有方法在常压下生产温度低至-160℃(-256°F)的LNG,要求处理设备由昂贵的材料制成以保证安全。相对于常规LNG工厂所需的总能量,在本发明的实施中,液化天然气所需能量大大减少。本发明方法所需致冷能量的下降导致了资金成本的大幅度下降,成比例地降低了操作费用,提高了效率和可靠性,因此,大大增强了生产液化天然气的经济性能。在本发明的操作压力和温度下,在液化过程的最冷操作区域的管线和设备中,可以使用3.5%重量镍的钢,而在常规LNG过程中,需要使用更贵的9%重量的镍或铝的钢。这样,与现有LNG方法相比,提供了另一明显的成本下降。在低温天然气处理中首先要考虑的是污染问题。适合于本发明方法的粗天然气原料可以是从粗油井(结合气)或气井(非结合气)获得的天然气。天然气的组成可能在大范围内变动。在这里,天然气物流含有甲烷(C1)作为主要组分。天然气通常可以含有乙烷(C2)、重质烃(C3+),以及少量的污染物,如水、二氧化碳、硫化氢、氮气、丁烷、六个或更多碳原子的烃、泥土、硫化铁、石蜡、原油。这些污染物的溶解度随温度、压力和组成而变化。在低温下,CO2、水和其它污染物可能形成固体,堵塞低温换热器中的流动通道。如果条件在它们的纯组分范围内,固相温度-压力相边界提前出现,通过除去这些污染可以避免这些潜在的困难。在本发明的以下描述中,假定天然气已经过适当的处理以除去硫化物和二氧化碳,并已使用常规的已知方法干燥以除去水分,产生了“完美、干燥”的天然气物流。如果天然气物流含有会在液化过程中冻结的重质烃,或如果重质烃在PLNG中不所不希望的,则重质烃可以在生产PLNG之前通过分馏方法除去,这将在下面详细描述。本发明的一个优点是较高的操作温度,保证了天然气具有高于常规LNG方法的可冻结组分浓度。例如,在常规LNG工厂中,在-160℃(-256°F)的温度下生产LNG,CO2必须低于约50ppm以避免堵塞问题。与此相反,通过将过程的温度保持在约-112℃(-170°F)以上,在-112C(-170°F)时,天然气可以含有高至约1.4摩尔%的CO2,在-95℃(-139°F)时,可以含有约4.2摩尔%的CO2,在本发明的液化过程中不会发生冻结问题。此外,在本发明方法中,天然气中含有中等量的氮气不必除去,因为在本发明的操作压力和温度下,氮气与液化的烃保持在液相状态。当天然气的组成允许时,减少或省略气体处理和排出氮气所需的设备,提供了很大的技术和经济上的优点。参看附图,可以更好地理解本发明的这些和其它优点。参看图1,加压天然气进料物流10优选在高于约3,100kPa(450psia),进一步优选高于约4,827kPa(700psia)的压力和优选低于约40℃(104°F)的温度下进入液化过程;然而,如果必要的话,可以使用不同的压力和温度,考虑到本发明的教导,本领域内的技术人员可以适当改进系统。如果气体物流10低于约3,102kPa(450psia),可以使用适当的压缩装置(未示出)进行压缩,压缩装置可以包括一个或多个压缩机。加压进料物流10被一个或多个换热器20冷却。然后,冷却的进料物流11通过至少一个合适的膨胀机30膨胀。膨胀机可以是从市场上购买的涡轮式膨胀机,可以与合适的压缩机、泵、或发动机通过轴联合,将从膨胀机输出的功转化为可用的机械和/或电能,因此,从整个系统看,大节约了能量。膨胀机30至少液化了一部分天然气物流11,产生物流12。物流12被输送到常规相分离器40,产生液体物流13,它是温度高于约-112℃(-170°F)和压力足以使液体产品处于或低于其泡点的PLNG。PLNG被输送到合适的运输或储存装置90(如合适的管线或如PLNG船、罐车或有轨车),以在高于约-112℃(-170°F)的温度下储存。为了将液体产品保持在液态,温度必须低于产品的临界温度,通常低于-62℃(-80°F)。分离器40还产生蒸汽物流14,它流经换热器20,在其中冷却进料物流10。然后,用一个或多个压缩机冷却蒸汽物流15。如图1所示,优选使用一个压缩机50将循环蒸汽再加压到接近进料物流10的入口压力。然而,在实施本发明时,可以使用附加的压缩机。压缩气流16通过换热器60冷却,同时回收热值以供别处使用,或用空气或水冷却。在离开换热器60后,冷却的蒸汽物流17与进料物流10合并以继续循环。在这一方案中,进料物流可以液化,而不需封闭回路的致冷系统。在储存、运输和处理液化天然气时,可能存在大量的“煮沸(boil-off)”,即液化天然气蒸发产生的蒸汽。本发明特别适合于液化由PLNG产生的煮沸蒸汽。参看图1,煮沸蒸汽可以经管线18引入,与蒸汽物流14合并,并按上述方法循环。煮沸蒸汽的压力优选处于或接近气流14的压力。如果煮沸蒸汽的压力低于物流14的压力,煮沸蒸汽可以常规压缩装置(图1中未示出)加压。可以任选地从过程中除去少量的蒸汽物流15用作燃料,以供应液化过程中驱动压缩机和泵所需的一部分能量。尽管这一小部分可以从离开分离器40之后的任何点排出,但是,燃料优选在通过换热器20升温后从过程中排出。图2示出了本发明的另一方案,在这一方案中,用与图1中相同数字表示的部件在过程具有相同的作用。然而,本领域的普通技术人员应当认识到,处理设备从一方案到另一方案可以在尺寸和容量上发生变化以处理不同的流体流量、温度和组成。图2所示方案与图1所示方案类似,不同的是通过换热器70提供了对进料10的附加冷却。图2所示方案减少了循环物流14的量,与图1所示方案相比,需要较少的能量。换热器70的致冷是由常规封闭回路致冷系统80提供的。这一致冷系统的致冷剂可以是丙烷、丙烯、乙烷、二氧化碳或任何其它合适的致冷剂。图3示出了本发明的另一方案。这一方案包括除去重质烃的系统并且正好在最终液化步骤的上游设置了加压气体的分流(splitflow)。与图2所示方案相比,通过更靠近主液化换热器142,这一分流设置能降低总能量需求。在处理由于装御LNG或PLNG的操作中产生的不同量煮沸气体时,这一分流设置还使得操作更具弹性。参看图3,进料物流100进入分离器30,物流在其中被分成两股,即蒸汽物流101和液体物流102。尽管在图3中未示出,在输入到分离器130之前,进料物流100可以用任何合适的冷却系统冷却。液体物流102输送到常规脱甲烷塔131中。蒸汽物流101经两个或多个压缩机和冷却器,使蒸汽压力从进料气体压力提高到约10,343kPa(1,500psia)。图3示出了一组压缩机132和133以使气体加压,在每一压缩步骤后有常规换热器134和135以冷却压缩气体。当蒸汽物流101从换热器135排出后,再沸器136使用来自脱甲烷塔131的液体进一步将其冷却。冷却的物流101从再沸器136出来后,被输送到相分离器137中。来自分离器137的蒸汽物流103被常规涡轮膨胀机138膨胀,因此,在气流在进入脱甲烷塔131上部之前被减压。涡轮膨胀机138优选提供驱动压缩机132所需能量的至少一部分。来自分离器137的液体经管线104输送到脱甲烷塔的中部。当液体被输送到脱甲烷塔131时,由于重力向下流动。在这一流动过程中,液体与上升蒸汽相遇,蒸汽上升时从液体中提取出甲烷。这一提出操作产生了基本上脱除了甲烷的液体产品,作为物流105从脱甲烷塔底部除去。从脱甲烷塔排出的塔顶蒸汽物流106被输送到换热器139中,在换热器139中被加热后,第一部分升温的蒸汽物流(物流107)可以任选地排放(物流108)作为气体液化工厂的燃料。然后,物流107的第二部分经一组压缩机140和141以及换热器142和143,以升高蒸汽物流的压力,并在每一压缩级后进行冷却,压缩机的个数优选为二至四个。来自换热器142物流的一部分被排出,作为物流110流经换热器139以进一步冷却物流110。分流出来的物流110占物流109的优选分数取决于物流109的压力和温度。本领域的技术人员可以以这里所提出的教导这种优化。从换热器139出来后,物流110被输送到膨胀装置,如涡轮膨胀机144,膨胀至少部分液化物流110以产生物流111。然后,物流111被输送到常规相分离器145。相分离器在高于约-112℃(-170°F)的温度和足以使液体产品处于或低于其泡点的压力下产生PLNG(物流121)。PLNG被输送到合适的储存装置153中,以在高于约-112℃(-170°F)的温度储存。分离器145还产生了加压蒸汽115,它可以与物流106合并以继续循环。物流112是从换热器143中排出的冷物流,被输送到合适的膨胀装置,如涡轮膨胀机146,以降低压力并进一步冷却物流112。涡轮膨胀机146至少部分地液化天然气物流112。从涡轮膨胀机排出后,部分液化的物流输送到相分离器147,以产生液体物流113和蒸汽物流114。蒸汽物流114被输送回去,并与脱甲烷塔塔顶物流106合并以继续循环。从分离器147排出的液体物流113与物流111合并。从脱甲烷塔131出来的液体物流105被输送到冷凝物稳定塔150中,产生了一股富含乙烷和轻质烃的塔顶物流116,轻质烃主要是甲烷。塔顶蒸汽物流116流经换热器151,它冷却塔顶蒸汽116。然后,一部分物流116作为回流117返回冷凝物稳定塔150。物流116中剩余的一部分流经压缩机152以提高物流116的压力,使之接近物流107的压力。被压缩后,塔顶物流116被冷却,冷却的气体(物流118)与物流107混合。从冷凝物稳定塔150塔底排出的液体可以冷凝产物(物流119)。如图3所示的本发明方法可以任选地再液化煮沸蒸汽。煮沸蒸汽可经管线120引入图3所示过程中,煮沸蒸汽与塔顶蒸汽物流106合并。参看图4,进料物流201进入分离器230,物流在其中被分成两股单独的物流,即蒸汽物流202和液体物流203。这一方案示出了外部致冷回路和向致冷回路提供补充致冷剂的分馏系统,该外部回路用于使能量需求和处理设备尺寸最小化。液体物流203被输送到脱甲烷塔231。蒸汽物流202经一个或多个压缩级压缩,优选两级。为简便起见,图3仅示出了一个压缩机232。在每一级压缩后,压缩蒸汽优选用常规空气或水冷却器冷却,如冷却器234。从冷却器234排出后,气流202被再沸器冷却,来自脱甲烷塔231的液体流过该再沸器。从再沸器235流出来后,冷却物流202被换热器236和237进一步冷却,换热器236和237路致冷系统238冷却,该致冷系统中的致冷剂优选为丙烷。从换热器236和237排出的冷却天然气在常规相分离器238中再次分离,来自分离器238的蒸汽物流204通过涡轮膨胀机239膨胀,因此,在进入脱甲烷塔上部之前降低了气流的压力。涡轮膨胀机239优选为压缩机232提供能量。来自分离器238的液体被管线205脱甲烷塔231的中部。从脱甲烷塔231排出的塔顶蒸汽物流207被输送到换热器240。从换热器240排出的物流208的一部分可以任选地排放(物流209),用作气体液化工厂的燃料。物流208中剩余的一部分由一个或多个压缩机241压缩到优选约5,516kPa(800psia)至13,790kPa(2,000psia)之间的压力。然后,压缩气体流经一组换热器242、243和244,将气体冷却以产生物流210。换热器242优选由空气或水冷却。换热器243和244优选由致冷系统238冷却,该系统与用于冷冻换热器236和237的系统为同一系统。物流210的一部分,作为物流211输送到换热器240以进一步冷却物流211。从换热器240排出的物流211输送膨胀装置,如涡轮膨胀机245,至少部分地液化物流211以产生物流212。然后,物流212被输送到常规相分离器246。物流210中,排出了物流211后所剩余的一部分被输送到合适的膨胀装置,如涡轮膨胀机248,以降低压力和进一步冷却气流。涡轮膨胀机248产生物流213,其中至少一部分是液化的天然气。物流213被输送到常规相分离器249以产生液体物流214和蒸汽物流215。物流215与脱甲烷塔的塔顶物流207合并,继续循环。流体物流214与物流212合并,被输送到分离器246,分离器将气体分离成蒸汽物流216和液体物流217。与蒸汽物流215一样,蒸汽物流也与与脱甲烷塔的塔顶物流207合并,继续循环。液体物流217是PLNG,其温度高于约-112℃(-117°F)和压力足以使液体产品处于或低其泡点的液体产品,并被输送到合适的储罐258中以在高于约-112℃(-117°F)的温度下储存。从脱甲烷塔231排出的液体物流206被输送到包括一系列分馏塔250、251和252的分馏系统。分馏塔250是常规脱乙烷塔,产生了富含乙烷和其它轻质烃的塔顶物流,轻质烃主要是甲烷。塔顶蒸汽物流218流经换热器253以使燃料物流209升温。通过换热器253后,蒸汽物流218被输送到常规相分离器254,产生了蒸汽物流220和液体物流221。液体物流221作为回流返回脱乙烷塔250。蒸汽物流220与物流208合并。从脱乙烷塔250排出的液体被换热器257冷却,并被输送到脱丙烷塔251。脱丙烷塔251的塔顶蒸汽物流富含丙烷,可以任选地作为丙烷补充到致冷系统238中。从脱丙烷塔251排出的液体被输送到脱丁烷塔252。从脱丁烷塔底部排出的液体作为液体冷凝物(物流222)排离本过程。来自脱丁烷塔的塔顶蒸汽的至少一部分经管线223流过换热器255以冷却蒸汽物流。然后,蒸汽物流223流经压缩机256,将物流223的压力升高到接近物流208的压力。从压缩机256排出后,压缩物流与物流220合并。煮沸蒸汽可以任选地经管线224引入本发明的过程,与塔顶蒸汽物流207合并。实施例模拟质量和能量平衡以说明附图所示的实施方案,其结果列于表1、3、4和5中。表中的数据用于更好地理解附图中所示方案,但本发明不受其不必要的限制。表中的温度和流量不是对本发明的限定,从这里所公开的技术来看,温度和流量可以许多的变化。数据是使用市售过程模拟程序HYSYSTM获得的,然而,也可以使用其它市售过程模拟程序来获得数据,包括HYSIMTM、PROIITM和ASPENPLUSTM,对本领域的普通技术人员来说都是很熟悉的。按照本发明生产PLNG所需的能量大低于使用膨胀过程在常压条件和-164.5℃(-264°F)温度下生产LNG所需的能量。表2和表1进行比较说明这种能量差。表2列出了使用图1所示流程在接近常压下生产LNG的质量和能量平衡模拟结果。表2的结果是以产生接近常压的液体产品为基础的,大大减少了引入过程的煮沸蒸汽量,需要多循环压缩(用四个压缩机代替图1所示的一个压缩机50)。在这两个模拟中,生产常规LNG(表2中的数据)所需的设备总能耗比生产PLNG(表中的数据)所需能耗多两倍多。对PLNG-膨胀方法的改进,如图2所示,也可以改进常规LNG方法。但是,常规LNG设备的能耗与本发明方法的PLNG设备能耗的比率没有明显的变化。本发明的PLNG方法所需的能耗约为使用常规膨胀方法在常压下生产LNG所需能耗的一半。表3的数据用于更好理解图2所示方案。与图1所示方案进行比较,由于增加了丙烷致冷系统,图2所示方案所需总能耗从198,359kW(266,000hp)下降到111,857kW(150,000hp)。本领域的技术人员可以通过优化该方法进一步降低所需能耗。表4中的数据用于更好地理解图3所示方案。与图1和2所示进料气体相比,图3和4中的进料气体具有不同的组成,处于不同条件下。表5中的数据用于更好地理解图4所示方案。这一方法再一次说明了丙烷制冷系统的优点,与图3所示方案相比,明显降低了设备所需能耗。本领域的技术人员,特别是获得了本专利教导的技术人员,将体会到上述方法的许多改进和变动。例如,根据系统的总体设计和气体进料的组成,按照本发明可以改变温度和压力。气体进料的冷却排列方式(train)可以根据总体设计进行增补和重新构造,以满足最优而有效的换热要求。正如上面所讨论的,所公开的特定方案和实施例不应用于限制本发明的范围,这一范围由下面的权利要求及其等同物所确定。表1</tables>能耗<p>表2能耗<p>表3能耗<p>表4<p>表4(续)能耗<p>表5<p>表5(续)能耗权利要求1.一种液化富含甲烷气流的方法,包括如下步骤(a)在高于约3103kPa(450psia)的压力下提供气流;(b)将气流膨胀到较低的压力,以产生气相和液体产品,其温度高于约-112℃(-170°F),压力足以使液体产品处于或低于其泡点;(c)将气相和液体产品进行相分离;(d)将液体产品引入储存装置,在高于约-112℃(-170°F)的温度下储存。2.权利要求1的方法,进一步包括在步骤(b)之前冷却气流。3.权利要求2的方法,进一步包括通过封闭回路致冷系统在换热器中冷却气流。4.权利要求3的方法,其中封闭回路致冷系统以丙烷作为主致冷剂。5.权利要求3的方法,其中封闭回路致冷系统以二氧化碳作为主致冷剂。6.权利要求2的方法,进一步包括用权利要求1中步骤(c)的气相通过换热器冷却气流,因此气相升温。7.权利要求6的方法,进一步包括压缩升温气相,冷却压缩气相,向权利要求1的步骤(a)的气流中返回冷却的压缩气体以继续循环。8.权利要求6的方法,进一步包括,在权利要求6的冷却步骤之前,在封闭回路致冷系统冷却的换热器中冷却气流。9.权利要求1的方法,其中在气流液化之前,进一步包括使气流与由于液化天然气蒸发所生产的煮沸气体合并。10.权利要求1的方法,其中气流含有甲烷和重于甲烷的烃组分,进一步包括通过分馏除去大部分重质烃,以产生富含甲烷的蒸汽物流和富含重质烃的液体物流,然后,蒸汽物流通过权利要求1的步骤(b)膨胀来液化。11.权利要求10的方法,进一步包括在分馏气流之前冷却气流。12.权利要求1的方法,其中气流的液化是在未使用封闭回路致冷系统的条件下进行的。13.一种液化富含甲烷的压力高于约3103kPa(450psia)的气流的方法,包括以下步骤(a)将气流相分离成第一气流和第一液体物流;(b)使第一液体物流输送到脱甲烷塔;(c)压缩和冷却第一气流,因此得到气相和液相;(d)将步骤(c)的气相和液相进行相分离,以产生第二气流和第二液体物流;(e)将至少一部分第二气流膨胀到较低的压力,因此第二气流被进一步冷却;(f)将第二液体物流和膨胀的第二气流供应到脱甲烷塔中;(g)从脱甲烷塔上部排出第三气流,第三气流主要含有甲烷,使第三气流通过换热器以使第三气流升温;(h)从脱甲烷塔向具有至少一个分馏塔和至少一股塔顶蒸汽物流的分馏系统输送第三液体物流;(i)将步骤(g)的升温的第三气流和步骤(h)的塔顶蒸汽物流合并,并压缩合并的物流;(j)冷却压缩的合并物流;(k)将步骤(j)的冷却的压缩物流分成第一冷却物流和第二冷却物流,使第一冷却物流通过步骤(g)的换热器以进一步冷却第一冷却物流;(l)使第一冷却物流膨胀,以产生气相和液相;(m)使步骤(l)的气相和液相在相分离器中进行相分离,因此,在高于约-112℃(-170°F)的温度和足以使富含甲烷的天然气液化产品处于或低于其泡点的压力下,产生富含甲烷的液化天然气;(n)使步骤(k)中的第二冷却物流膨胀到较低的压力,因此,物流被进一步冷却,产生气相和液相;(o)使步骤(n)中产生的气相和液相进行相分离;和(p)将步骤(o)中的液相输送到步骤(m)中的相分离器。14.权利要求13的方法,进一步包括合并步骤(o)中的气相与步骤(g)中的第三气流,并使合并的气流通过步骤(g)中的换热器。15.权利要求13的方法,进一步包括合并步骤(m)中的气相与步骤(g)中的第三气流,并使合并的气流通过步骤(g)中的换热器。16.权利要求14的方法,其中步骤(j)中的冷却是与来自封闭回路致冷系统中的致冷剂间接换热。17.权利要求16的方法,其中封闭回路致冷系统以丙烷作为主要致冷剂,步骤(h)的分馏系统包括产生一股富含丙烷的塔顶气流的脱丙烷塔,进一步包括将来自分馏系统的富含丙烷的气流作为补充致冷剂输送到封闭回路致冷系统。18.权利要求14的方法,进一步包括将由于液化天然气蒸发所产生的煮沸气体引入到步骤(g)第三气流中,使合并的第三气流与煮沸气体通过步骤(g)的换热器。19.一种液化富含甲烷的气流的方法,包括以下步骤(a)将气流压缩到高于约3103kPa(450psia)的压力;(b)将气流相分离成第一气流和第一液体物流;(c)将第一液体物流输送到脱甲烷塔;(d)在不使用封闭回路致冷系统的条件下,压缩和冷却第一气流,因此得到气相和液相;(e)将步骤(d)的气相和液相进行相分离,以产生第二气流和第二液体物流;(f)将至少一部分第二气流膨胀到较低的压力,因此第二气流被进一步冷却;(g)将第二液体物流和膨胀的第二气流供应到脱甲烷塔中;(h)从脱甲烷塔上部排出第三气流,第三气流主要含有甲烷,使第三气流通过换热器以使第三气流升温;(i)从脱甲烷塔向具有至少一个分馏塔和至少一股塔顶蒸汽物流的分馏系统输送液体物流;(j)将步骤(h)的升温的第三气流和步骤(i)的塔顶蒸汽物流合并,并压缩合并的物流;(k)在不使用封闭回路致冷系统的条件下,冷却步骤(j)的压缩的合并物流;(l)将步骤(k)的冷却的压缩物流分成第一冷却物流和第二冷却物流,使第一冷却物流通过步骤(h)的换热器以进一步冷却第一冷却物流;(m)使第一冷却物流膨胀,以产生气相和液相;(n)使步骤(m)的气相和液相在相分离器中进行相分离,因此,在高于约-112℃(-170°F)的温度和足以使富含甲烷的天然气液化产品处于或低于其泡点的压力下,产生富含甲烷的液化天然气;(o)使步骤(l)中的第二冷却物流膨胀到较低的压力,因此,物流被进一步冷却,产生气相和液相;(p)使步骤(o)中产生的气相和液相进行相分离;和(q)将步骤(o)中的液相输送到步骤(n)中的相分离器。20.权利要求19的方法,进一步包括向步骤(h)的蒸汽物流中引入由于液化天然气蒸发产生的煮沸气体,使合并的步骤(h)的蒸汽物流与煮沸气体通过步骤(h)的换热器。21.权利要求19的方法,其中步骤(n)的气相与步骤(h)的蒸汽残余物合并,使合并的气体物流通过步骤(h)的换热器。22.权利要求19的方法,步骤(d)中通过冷却降低气流的温度是用水或空气进行的。全文摘要本发明涉及一种液化富含甲烷、压力高于约3103kPa(450psia)的气流的方法。气流被膨胀到较低的压力,产生气相和液体产品,其温度高于约-112℃(-170°F),压力足以使液体产品处于或低于其泡点。气相和液体产品在合适的相分离器中相分离,液体产品引入储存装置以在高于约-112℃(-170°F)的温度下储存。文档编号F25J3/02GK1261429SQ98806436公开日2000年7月26日申请日期1998年6月18日优先权日1997年6月20日发明者E·R·索马斯,R·R·伯温,E·T·科尔,E·L·基姆伯申请人:埃克森生产研究公司