专利名称:液化包含至少一种可凝固组分的天然气物流的方法
技术领域:
本发明涉及一种天然气液化方法,更具体地说,本发明涉及一种由至少含有一种可凝固组分的天然气物流生产加压的液化天然气(PLNG)的方法。
由于天然气的清洁燃烧性和便利性,它在近年来已经被广泛地使用。许多天然气资源位于偏远地区,距任何天然气的商业市场都有很长的距离。有时可使用一条管线将所生产的天然气输送到商业市场。当管线输送不可行时,为输送到市场,所生产的天然气通常被加工成液化天然气(它被称为“LNG”)。
LNG厂的一个显著特征是工厂需要的大量资金投入。用来液化天然气的设备通常十分昂贵。液化厂由几个基本系统组成,包括气体处理以去除杂质,液化,制冷,电力设备,以及储存和装船设备等。而依据工厂的位置,LNG厂的费用可以有很大的差别,包括场地开发费用,一个典型的常规LNG项目可花费50亿到100亿美元。工厂的制冷系统可达总费用的百分之三十。
LNG制冷系统的昂贵是因为需要很多的制冷量来液化天然气。一种典型的天然气物流以从约4,830kPa(700psia)到约7,600kPa(1,100psia)的压力和从约20℃到约40℃的温度进入一个LNG工厂。主要是甲烷的天然气,如同用于能源目的的较重烃的情况一样,不能通过简单地增加压力而被液化。甲烷的临界温度是-82.5℃。这意味着无论所施加的压力是多少,甲烷都只能够在低于那个温度的情况下被液化。因为天然气是一种气体混合物,它在一个温度范围内液化。天然气的临界温度大约在-85℃到-62℃之间。典型地,在大气压力下的天然气混合物将在大约-165℃到-155℃的温度范围内液化。因为制冷设备是LNG设备费用中如此显著的一大部分,所以人们做了很多巨大努力来减少制冷费用。
在现有技术中有许多系统用来液化天然气,方法是使天然气以一个高压连续通过数个冷却阶段,于是气体被连续冷却到更低的温度,直到气体液化。常规液化在等于或接近大气压的压力下将气体冷却到大约-160℃的温度。冷却通常通过和一种或多种制冷剂,例如丙烷、丙烯、乙烷、乙烯以及甲烷的热交换来完成。尽管许多制冷循环已经被用来液化天然气,目前LNG厂中最常使用的三种类型是(1)“串联循环”,它在以渐进方式排列的热交换器中使用数倍的单一组分制冷剂,以将气体的温度降低到液化温度,(2)“膨胀循环”,它使气体从高压膨胀至低压,伴随着相应的温度降低,以及(3)“多组分制冷循环”,它在特别设计的交换器中使用一种多组分制冷剂。大多数天然气液化循环使用这三种基本类型的变体或组合。
在常规LNG厂中,必须将水、二氧化碳、诸如硫化氢的含硫化合物和其它酸性气体、正戊烷和包括苯的较重烃从天然气加工过程中充分去除,使它们低至百万分之一(ppm)的水平。这些化合物中某些会凝固,在加工设备中造成堵塞问题。其他化合物,例如那些含硫的化合物,通常被去除以满足销售指标的要求。在一个常规LNG厂中,要求气体处理设备除去二氧化碳和酸性气体。气体处理设备通常使用一个化学和/或物理的溶剂回收过程并需要巨大的资金投入。而且,操作费用也较高。需要诸如分子筛的干燥床脱水剂来除去水蒸气。使用一个洗涤塔和分馏设备来除去容易导致堵塞问题的烃。在常规LNG工厂中还要除去汞,因为它会导致铝制设备的故障。另外,可能存在于天然气中的大部分的氮经过加工后被除去,因为在常规LNG的运输过程中氮不会保留在液相中,而且在运输时LNG容器中含有氮蒸气是不符合要求的。
在工业上越来越需要一种改进的方法用于液化含有CO2的天然气,所述天然气中CO2的浓度使其在液化过程中会发生凝固,同时要求该方法具有经济的能量需求。
本发明总体上涉及一种生产加压液化天然气(PLNG)的方法,其中天然气原料流中含有一种可凝固组分。尽管该可凝固组分通常是CO2、H2S或其它酸性气体,它也可以是有可能在分离系统中形成固体的任何组分。
在本发明的方法中,含有甲烷和一种具有比甲烷低的相对挥发度的可凝固组分的多组分原料流被加入一个分离系统,该系统有一个在高于大约1,380kPa(200psia)的压力下、在使可凝固组分形成固体的条件下操作的凝固段以及一个位于凝固段下方的蒸馏段。包括一个受控凝固区(“CFZ”)的分离系统产生一种富含甲烷的蒸气流和一种富含可凝固组分的液体流。至少蒸气流的一部分被冷却以产生一种具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力的富含甲烷的液化流。液化流的第一部分被作为加压液化产品流(PLNG)从过程中取出。液化流的第二部分被返回分离系统以为分离系统提供制冷功能。
在一个实施方案中,一股蒸气流被从分离系统的上部区域取出,并被压缩至更高的压力并被冷却。随后,被冷却、压缩后的物料流通过一个膨胀装置而膨胀,产生一股主要为液体的物流。液体流的第一部分被作为回流注入分离系统,从而为分离系统提供开环制冷,而液体流的第二部分被作为产品流取出,它具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力。
在另一实施方案中,一股蒸气流被从分离系统的上部区域取出并由一个闭环制冷系统冷却以使富含甲烷的蒸气流液化,产生一种液体,它具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力。
本发明的方法既可用于对位于供给源的天然气进行初始液化以储存和运输,也可用于将在储存和船运过程中蒸发的天然气蒸气再次液化。因此,本发明的一个目的是提供一种用于含有高浓度CO2(约大于5%)的天然气的液化或再液化的改进的、集成的液化和CO2去除系统。本发明的另一个目的是提供一种改进了的液化系统,它比现有技术中的系统需要少得多的压缩功率。本发明的一个更进一步的目的是提供一种更为有效的液化方法,作法是保持整个工艺的工艺温度高于大约-112℃,从而使工艺设备可以用与常规LNG工艺所需的材料相比不那么昂贵的材料制成,常规LNG工艺中至少部分工艺在低至大约-160℃的温度下操作。与按照本发明的实施生产PLNG所需的相对温和的制冷相比,常规LNG工艺的超低温制冷是非常昂贵的。
通过参考下面的详细描述以及附图(即本发明具有代表性的实施方案的流程示意图)可以更好地理解本发明及其优点。
图1是一个制冷、CFZ工艺略图,它总体上图示了一个根据本发明的方法生产加压液化天然气的闭环制冷循环。
图2是一个制冷、CFZ工艺略图,它总体上图示了一个根据本发明的方法生产加压液化天然气的开环制冷循环。
图3是本发明另一种实施方案的略图,其中二氧化碳和甲烷在一个具有CFZ的蒸馏塔中被蒸馏分离,在CFZ中一种塔顶产品流是加压液化天然气,另一种塔顶产品流是供出售的产品气。
图中所示的流程图代表实施本发明方法的各种实施方案。各图无意将其它实施方案排除在发明范围以外,所谓其它实施方案是对所述具体实施方案进行正常和可预见的修改的结果。出于使演示简洁清晰的目的,各种所需辅助系统,如泵、阀、流动物流混合器、控制系统以及传感器都被从图中删去。
本发明的方法在一个分离系统中蒸馏分离一种包含甲烷和至少一种具有比甲烷低的相对挥发度的可凝固组分的多组分原料流,其中分离系统包括一个受控凝固区(“CFZ”)。分离系统产生一种富含甲烷的塔顶蒸气流和一种富含可凝固组分的塔底产物。至少部分塔顶蒸气流随后被液化以生产液化天然气产品,该产品具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力。这种产品有时在本文中被称为加压液化天然气(“PLNG”)。另一部分的该液化塔顶物料流被作为回流返回到分离系统。
术语“泡点”是指一种液体开始转变为气体时的温度和压力。例如,如果使一定体积的PLNG保持恒定压力,但升高其温度,在PLNG中气泡开始形成时的温度就是泡点。类似地,如果使一定体积的PLNG保持恒温但降低其压力,气体开始形成时的压力就被定义成泡点。在泡点,PLNG是饱和液体。最好不止将PLNG冷凝到其泡点,而是使其进一步冷却为过冷液体。使PLNG过冷可减少它在存储、运输和处理时的汽化蒸汽量。
在本发明以前,本领域的技术人员已知CFZ可除去不需要的CO2。但他们没有意识到CFZ工艺可以与液化工艺结合在一起生产PLNG。
本发明的方法使用起来更经济,因为与过去使用的方法相比,本方法需要较少的功率来液化天然气,而且本发明的方法中所用的设备可以用不那么昂贵的材料制造。相反地,现有技术中在大气压下生产具有低至-160℃的温度的LNG的方法,为了安全地操作,要求工艺设备由昂贵材料制成。
在本发明的实施中,使含有相当浓度的可凝固组分如CO2的天然气液化所需的功率,与用常规方法从此种天然气生产LNG所需的功率相比大大减少了。本发明方法所需的必要制冷功率的降低导致投资的大量减少,相应地减少了操作费用,提高了效率和可靠性,从而极大地提高了生产液化天然气的经济效益。
在本发明的操作压力和温度下,约3.5wt%的镍可被用在液化工艺的最冷操作区域中的管道和设备中,而在常规LNG工艺中,相同的设备通常需要使用更昂贵的9wt%的镍或铝。与现有技术的LNG工艺相比,这使得本发明的方法有再一次明显的成本降低。
在天然气的低温处理中首先要考虑的是污染。适合本发明工艺的粗天然气原料可以包括得自原油井的天然气(伴生气)或者得自天然气井的天然气(非伴生气)。粗天然气通常含有水、二氧化碳、硫化氢、氮、丁烷、含有六个或更多碳原子的烃、污物、硫化铁、蜡和原油。这些杂质的溶解度随温度、压力和组成而变化。在低温下,CO2、水和其他杂质能够形成固体,它们会堵塞低温热交换器中的流动通道。这些潜在的困难可以通过去除这些杂质来避免,如果在杂质的纯组分之内的状态、固体相温度-压力相界被预测的话。在下面对本发明的描述中,假设天然气物流中含有CO2。如果天然气物流中含有在液化过程中可能冻结起来的重烃,这些重烃将随CO2一同被除去。
本发明的一个优点是较温和的操作温度使天然气能具有比在常规LNG工艺中可能有的更高的可凝固组分浓度水平。例如,在一个于-160℃生产LNG的常规LNG工厂中,CO2必须低于大约50ppm以避免凝固问题。相反地,通过保持操作温度在大约-112℃以上,天然气所含的CO2水平在-112℃的温度下可高达约1.4mole%,在-95℃下大约为4.2%,而不会导致本发明的液化工艺出现凝固问题。
另外,在本发明的方法中不需除去天然气中适量的氮,因为在本发明的操作压力和温度下,氮会和液化的烃一起保留于液相中。减少-或在某些情况下省略-气体处理和排除氮气所需设备的能力提供了显著的技术和经济优势。通过参考图中所示的液化工艺,本发明的这些和其它的优点将被更好地理解。
参见图1,天然气原料流10在高于大约3,100kPa(450psia)的压力下,且更优选在高于大约4,800kPa(700psia)的压力下,以及优选在大约0℃和40℃之间的温度下进入系统;然而,如果愿意也可使用不同的压力和温度,而系统可以相应地进行修改。如果气流10低于大约1,380kPa(200psia),可以用一个合适的压缩装置(没有显示)将其加压,该压缩装置可以包括一个或多个压缩机。在对本发明方法的描述中,假设已经使用常规的且众所周知的方法(图1中没有显示)适当地处理了天然气物流10以去除水而生产出一种“干”天然气物流。
使原料流10从冷却器30中通过。冷却器30可以包括一个或多个将天然气物流冷却至低温的常规热交换器,低温优选低至大约-50℃到-70℃,更优选低至正好高于CO2固化温度的温度。冷却器30可包括一个或多个由常规制冷系统冷却的热交换系统、诸如焦耳-汤姆生阀门或者涡轮膨胀器的一个或多个膨胀装置、使用来自分馏塔31较低段的液体作为冷却剂的一个或多个热交换器、使用塔31的塔底产物流作为冷却剂的一个或多个热交换器,或任何其它合适冷源。优选的冷却系统将取决于制冷冷却的可用性、空间限制(如果存在的话)以及环境和安全的考虑。根据液化工艺的操作环境,本领域的技术人员可选择一种合适的冷却系统。
流出原料冷却器30的被冷却的物料流11被送进具有一个受控凝固区(“CFZ”)的分馏塔31中,该区是一个用来处理CO2的固化和熔化的特殊区段。处理CO2的固化和熔化的CFZ段,不象常规蒸馏塔那样含有填料或塔板,而是含有一个或多个喷嘴和一个熔化塔板。固体CO2在蒸馏塔的蒸气空间中形成并降落到熔化塔板上的液体中。所形成的大体上所有固体都被限制在CFZ区。蒸馏塔31在CFZ段下面有一个常规的蒸馏段以及优选地在CFZ段上面的另外一个蒸馏段。分馏塔31的设计和操作为本领域的技术人员所熟知。在美国专利号4,533,372;4,923,493;5,062,270;5,120,338以及5,265,428中对CFZ设计的实施例进行了说明。
一股富含CO2的物料流12流出塔31的底部。液态塔底产物在一个再沸器35中被加热,而其中一部分被作为再沸蒸气被返回到塔31的较低部位。剩余的部分(物料流13)作为富含CO2的产品离开工序。一种富含甲烷的物料流14从塔31的顶部排出并经过一个热交换器32,该交换器被与一个常规闭环制冷系统33相连的物料流17所冷却。可以使用一种单一的、多组分的或者串联的制冷系统。一个串联的制冷系统可包括至少两个闭环制冷循环。闭环制冷系统可以使用的制冷剂有甲烷、乙烷、丙烷、丁烷、戊烷、二氧化碳、硫化氢和氮。优选地,闭环制冷系统使用丙烷作为主要的制冷剂。尽管图1只显示了一个热交换器32,在本发明的实施中可以使用多个热交换器以在多个阶段冷却蒸气流14。热交换器32优选地将全部蒸气流14充分地冷凝成液体。流出热交换器的物料流19具有高于大约-112℃的温度和足以使液体产品处在等于或低于其泡点的压力。液体流19的第一部分被作为物料流20流入一个用于在高于大约-112℃的温度和足以使液体产品处在等于或低于其泡点的压力下存储PLNG的合适的储存装置34中,例如一个固定储存罐或者一个诸如PLNG船、卡车或火车的运输工具。液体流19的第二部分被作为物料流21返回到分离塔31中以为分离塔31提供制冷。物料流20和21的相对比例将取决于原料气10的组成、分离塔31的操作条件、以及期望的产品指标。
在储存、运输和处理液化天然气时,会有相当数量的“汽化”,即由于液化天然气的蒸发而产生气体。本发明的方法能够可选地再液化富含甲烷的汽化蒸气。参见图1,在被热交换器32冷却前,汽化蒸气流16可以被可选地加入蒸气流14中。汽化蒸气流16应该与将汽化蒸气加入其中的蒸气流14具有相同或相近的压力。为了与汽化蒸气进入液化工序处的压力相配,根据汽化蒸气的压力,可使用一个或者多个压缩机或者膨胀器(图中没有显示)来调整汽化蒸气的压力。
蒸气流14的一小部分可选地可作为燃料(物料流15)从工序中去除以供应驱动液化工序中的压缩机和泵所需的一部分功率。此燃料可选地可用作制冷源以帮助冷却原料流10。
图2以示意图的形式显示了本发明的另外一种实施方案,其中使用开环制冷来为分馏塔51和生产PLNG提供制冷。参见图2,一种已经被脱水和被任何适宜的冷源(图2中没有显示)冷却的含有甲烷和二氧化碳的多组分气流50被加入一个CFZ塔51中,此塔与图1中的分离塔31具有基本相同的设计。这种实施方案通过将物料流64直接加入CFZ塔51,有效地控制在液化工序中形成固体的可能性。
加入CFZ塔51中的气体原料的温度优选高于CO2的固化温度。一种富含甲烷的蒸气流52从CFZ塔51的塔顶排出,而一种富含二氧化碳的物料流53从CFZ塔51的塔底排出。将液态塔底产物在一个再沸器65中加热,其中一部分作为再沸蒸气被返回到CFZ塔51的较低部位。剩余部分(物料流54)作为富含CO2的液体产品离开工序。
塔顶物料流52的第一部分被作为物料流64回流返回CFZ塔51以向CFZ塔51提供开环制冷。塔顶物料流52的第二部分,在等于或接近CFZ塔51的操作压力和高于大约-112℃(-170°F)的温度下,被作为一种PLNG产品流(物料流63)取出。塔顶物料流52的第三部分可以可选地作为出售气体或供进一步处理的气体而取出(物料流59)。
在本实施方案中,开环制冷的主要部分包括用一个或多个压缩机57压缩从CFZ塔51塔顶排出的塔顶物料流52、用一个或多个冷却器58冷却压缩气体、使至少部分冷却气体(物料流61)通过一个或多个膨胀装置62以降低气体流的压力并使其冷却、以及将一部分经冷却、膨胀的物料流(物料流64)输入CFZ塔51中。通过本工序,塔顶物料流52的回流部分为CFZ塔51提供了开环制冷。物料流60优选地使用也用于加温塔顶物料流52的热交换器55冷却。优选地通过调节压缩机57所产生的压缩量来控制物料流64的压力,以保证物料流60、61和64的液体压力高至足以防止固体形成。使至少部分塔顶蒸气流52以通过开环冷却冷凝的液体的形式返回塔51的上部区域,该步骤也向塔51提供了回流。
CFZ塔51在CFZ段的下面有一个常规的蒸馏段,而且可能在CFZ段上面还有另外一个蒸馏段。CFZ段处理任何CO2固体的形成和熔化。在启动阶段,所有的物料流64可被直接转向CFZ段。当物料流64在固体成形器中变得更少时,可将更多的物料流64加入位于CFZ段上面的塔的蒸馏段中。
图3以示意图的形式显示了本发明的另外一种实施方案,其中本发明的方法既生产PLNG也生产出售气体作为产品流。在这个实施方案中,塔顶产品流是50%的PLNG(物料流126)和50%的出售气体(物料流110)。然而,通过提供附加的冷却可以产生达到100%的附加的PLNG,所述附加的冷却即可以来自与更冷流体的热交换,也可以通过安装附加压缩设备和后冷却器来自膨胀器处的附加压力降。同样地,生产较少的PLNG可通过提供较少的冷却实现。
参见图3,假设天然气原料流101含有超过5mole%的CO2,而且该原料流基本上无水,以防止在处理过程中发生冻结和水合物形成。脱水后,将原料流冷却、减压并送入在从大约1,379kPa(200psia)到大约4,482kPa(650psia)范围内的压力下操作的蒸馏塔190中。具有一个类似于图1中分离塔31的CFZ段的蒸馏塔190,将原料分离为一种富含甲烷的塔顶蒸气产品和一种富含二氧化碳的液态塔底产品。在本发明的实施中,蒸馏塔190具有至少两个、优选具有三个不同的部分一个蒸馏段193,一个在蒸馏段193上面的受控凝固区(CFZ)192,以及可选地一个上部蒸馏段191。
在这个实施例中,塔的原料通过物料流105被加入蒸馏段193的上部,在这里原料经受典型的蒸馏。蒸馏段191和193包含塔板和/或填料,使下降的液体和上升的蒸气之间有必要的接触。较轻的蒸气离开蒸馏段193并进入受控凝固区192。一旦进入受控凝固区192,该蒸气与从管口或者喷嘴组件194喷出的液体(被喷射的凝固区液体回流)相接触。然后该蒸气继续向上通过上面的蒸馏段191。为从塔190内的天然气物流中有效地分离出CO2,需要进行制冷来为塔190的上段提供液体流通。在本实施方案的实施中,塔190上部区域的制冷量由开环制冷提供。
在图3的实施方案中,进入的原料气被分为两个物料流物料流102和物料流103。物料流102在一个或多个热交换器中被冷却。在此实施例中,三个热交换器130、131、132被用来冷却物料流102并用做再沸器来为塔190的蒸馏段193提供热量。物料流103被一个或多个热交换器冷却,该热交换器同塔190的底部产品流之一进行热交换。图3显示两个热交换器133和141,它们加热离开塔190的塔底产品。然而,为原料流提供冷却服务的热交换器的数量取决于许多因素,包括(但不仅限于)进气流速、进气组成、原料温度以及热交换要求。可选地,尽管在图3中没有显示,原料流101可以被一个离开塔190顶部的工艺物料流所冷却。作为另外一种选择,原料流101可被诸如闭环单组分或多组分制冷系统的常规制冷系统至少部分冷却。
将物料流102和103合并,使合并的物料流通过一个适当的膨胀装置,例如焦耳-汤姆生阀门150,达到大约分离塔190的操作压力。或者,一种涡轮膨胀器可以用来代替焦耳-汤姆生阀门150。通过阀门150的急骤膨胀产生一种冷膨胀的物料流105,它被加入蒸馏段193的上部某处,此处的温度最好高至足以避免CO2的凝固。
来自分离塔190的塔顶蒸气流106被送至热交换器145,该热交换器加热蒸气流106。加热的蒸气流(物料流107)被单级压缩或多级压缩机组再次压缩。在此实施例中,物料流107连续通过两个常规压缩机160和161。经过每一个压缩步骤后,物料流107被后冷却器138和139冷却,优选使用环境空气或水作为冷却介质。对物料流107的压缩和冷却生产出一种可用来出售给天然气管线或者进一步加工的气体。对蒸气流107的压缩将通常达到至少满足管线需求的压力。
物料流107的一部分在经过压缩机160后,可以任选地被取出(物料流128)用做气体加工厂使用的燃料。物料流107另外一部分在经过后冷却器139后被取出(物料流110)用做出售气体。物料流107的剩余部分被作为物料流108流入热交换器140,136和137中。在热交换器136和137中,物料流108冷流体所冷却,该冷流体来自塔190底部排出的物料流124。然后物料流108在热交换器145中通过与塔顶蒸气流106的热交换被进一步冷却,结果使物料流106变热。然后物料流108通过一种适宜的膨胀装置,例如膨胀器158进行压力膨胀,大约达到塔190的操作压力。物料流108随后被分开,一部分以高于大约-112℃的温度和高于大约1,380kPa(200psia)的压力流出作为PLNG产品(物料流126)供储存或运输。另一部分(物料流109)进入分离塔190。压缩机161的排出压力被调整到产生的压力高到足以使通过膨胀器158的压力差可以提供足够的冷却,从而保证物料流109和126主要是富含甲烷的液体。为了生产附加的PLNG(物料流126),在压缩机160之后和热交换器136之前可安装附加的压缩机。为启动工序,物料流109优选通过物料流109A输入,并通过喷嘴194直接喷射进CFZ段192。在工序启动后,物料流109可被输入(物料流109B)到分离塔190的上段191。
一种富含CO2的液体产品流115流出塔190的底部。物料流115被分为两部分,物料流116和物料流117。物料流116通过一个适宜的膨胀设备,例如焦耳-汤姆生阀门153,达到一个较低的压力。排出阀153的物料流124随后在热交换器136中被加热,物料流124被送至另外一个焦耳-汤姆生阀门154以及另外一个热交换器137。然后将得到的物料流125与来自分离器181的蒸气流120合并。
物料流117被一种适宜的膨胀设备例如膨胀阀门151所膨胀并被送至热交换器133,从而冷却原料流103。物料流117随后被直接加入分离器180**D一种常规气液分离设备。来自分离器180的蒸气(物料流118)被送至一个或多个压缩机以及高压泵来提高压力。图3显示了一系列的两个压缩机164和165以及泵166,还有常规冷却器143和144。离开上面系列中的泵166的产品流122具有一种适合注入地层的压力和温度。
通过物料流119从分离器180排出的液体产品经过一种膨胀设备例如膨胀阀门152,然后经过与原料流103有热交换关系的热交换器141,从而进一步冷却原料流103。物料流119随后被加入分离器181-一种常规的气液分离设备。来自分离器181的蒸气(物料流120)被送至一个压缩机163,该压缩机后面是一种常规的后冷却器142。物料流120随后与物料流118合并。任何在物料流121中可获得的冷凝物可以用常规的闪蒸或稳定化工艺来回收,然后可以被出售,焚化或者用做燃料。
尽管在图1-3中显示的分离系统仅有一个蒸馏塔(图1的塔31,图2的塔51,以及图3的塔190),但本发明的分离系统可包括两个或多个蒸馏塔。例如,为降低图3中塔190的高度,将塔190分成两个或多个塔(图中没有显示)也是符合要求的。第一个塔包含两段,一个蒸馏段和一个在蒸馏段上面的可控凝固区,第二个塔包括一个蒸馏段,它具有的功能和图3中191段的一样。一种多组分原料流被加入第一个蒸馏塔中。第二个塔的塔底液体被加入第一个塔的凝固区。第一个塔的塔顶蒸气被加入第二个塔的较低部位。第二个塔具有与图3所示的塔190相同的开环制冷循环。来自第二个蒸馏塔的蒸气流被取出、冷却后,其一部分被回流到第二个分离塔的上部区域。实施例为了说明图1和图3中所示的实施方案,进行质量和能量平衡的模拟,结果分别示于下面的表1和2。对表1中所示的数据,假设塔顶产品流是100%的PLNG(图1的物料流20),且制冷系统是一个串联的丙烷-乙烯系统。对表2中所示的数据,假设塔顶产品流是50%的PLNG(图3的物料流126)和50%的出售气体(图3的物料流110)。
使用一种商品化的称为HYSYSTM的过程模拟程序(购自Hyprotech有限公司,卡尔加里,加拿大)来得到数据;然而,其他商品化的过程模拟程序也可以用于开发数据,例如包括HYSIMTM,PROIITM以及ASPENPLUSTM,这些都为本领域的技术人员所熟知。表格中显示的数据是为了更好地理解示于图1和3中的实施方案,但不要不必要地理解为本发明仅限于此。不要将温度和流速视作对本发明的限制,以本发明的启示来看,温度和流速可以有许多的变化。
使用图1中所示的基本流程图进行一个附加的过程模拟(使用为获得表1中的数据而使用的相同的原料流组成和温度)以在接近大气压的压力和在-161℃(-258°F)的温度下生产常规LNG。CFZ/常规LNG工艺需要的制冷量明显比图1中描述的CFZ/PLNG工序要多。为获得在-161℃的温度下生产LNG所需的制冷,必须将制冷系统从一个丙烷/乙烯串联系统扩大到一个丙烷/乙烯/甲烷串联系统。另外,物料流20需要使用甲烷来进一步冷却,而且需要用一个液体膨胀器或焦耳-汤姆生阀门来降低产品压力,从而生产一种压力等于或接近大气压的LNG产品。由于较低的温度,LNG中的CO2必须被去除到大约50ppm以避免工序中由于CO2凝固而产生的操作问题,而不象是图1中描述的CFZ/PLNG工艺中的2%的CO2浓度。
表3所示的是常规LNG工艺制冷压缩的要求与在上述段落中模拟实施例所描述的PLNG工艺的要求的比较。如表3所示,生产常规LNG所需要的总制冷剂压缩功率比根据本发明的实施生产PLNG所需的功率要高67%。
一个本领域的技术人员,特别是受益于本发明的启示的人员,将认识到上面公开的特定工艺可有许多改进和变化。例如,根据系统的总体设计和原料气的组成,根据本发明,可以使用多种温度和压力条件。而且,可以根据总体设计的需要对原料气体的冷却组合进行补充或重新装配,从而满足最优和有效的热交换要求。另外,通过增加可与图中所示设备互换的设备也可以完成某些工艺步骤。例如,分离和冷却可以在一个单一的设备中完成。如上面所讨论的,特别公开的实施方案和实施例不应该用于局限或限制本发明的范围,本发明的范围将由下面的权利要求书和它们的等同内容来确定。<p>表5(部分2)<
>
权利要求
1.一种由多组分原料流生产富含甲烷的加压液体的方法,该多组分原料流包含甲烷和一种具有比甲烷低的相对挥发度的可凝固组分,该方法包括(a)将多组分原料流加入一个分离系统,该系统有一个在高于大约1,380kPa(200psia)的压力下、在使可凝固组分形成固体的条件下操作的凝固段以及一个位于凝固段下方的蒸馏段,所述分离系统产生一种富含甲烷的蒸气流和一种富含可凝固组分的液体流;(b)将至少一部分的所述蒸气流冷却以产生一种具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力的富含甲烷的液化流;(c)将步骤(b)的液化流的第一部分作为一种富含甲烷的液化产品流取出;以及(d)将步骤(b)的液化流的第二部分加入所述分离系统以为所述分离系统提供制冷。
2.权利要求1的方法,还包括将液化产品流在高于-112℃(-170°F)的温度下加入一个用于存储的存储装置中。
3.权利要求1的方法,其中冷却步骤(b)还包括下列步骤将所述蒸气流压缩成一种高压物料流,将所述被压缩物料流的至少一部分在一个热交换器中冷却,以及将被冷却、压缩后的物料流膨胀至一个更低的压力,从而被压缩的物料流被进一步冷却以产生一种富含甲烷的具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力的液化流。
4.权利要求3的方法,其中在热交换器中被压缩物料流的冷却是通过与步骤(a)的蒸气流的间接热交换进行的。
5.权利要求3的方法,还包括通过压力膨胀来冷却所述分离系统所生产的液体流,以及使用膨胀的、冷却的液体流通过间接热交换来冷却被压缩物料流。
6.权利要求3的方法,还包括调节被压缩物料流的压力和膨胀物料流的压力,以防止在加入到分离系统的液化流的第二部分中形成固体。
7.权利要求1的方法,其中所述步骤(a)的分离系统包括一个第一蒸馏塔和一个第二蒸馏塔,所述第一蒸馏塔包括一个蒸馏段和一个在蒸馏段上方的凝固区,所述第二蒸馏塔包括一个蒸馏段,该方法还包括下列步骤将步骤(a)的所述多组分原料流加入所述第一蒸馏塔中,将来自所述凝固区的一种塔顶蒸气流加入第二蒸馏塔的一个较低区域,将一种蒸气流从第二蒸馏塔中取出并按步骤(b)冷却所述蒸气流,将步骤(d)的液化流的第二部分加入所述第二分离塔的上部区域,将一种塔底液体流从所述第二蒸馏塔中取出,以及将塔底液体流加入所述第一蒸馏塔的所述凝固区域。
8.权利要求1的方法,其中分离系统包括一个第一蒸馏段,一个在第一蒸馏段下方的第二蒸馏段,以及一个在第一和第二蒸馏段之间的凝固区,其中步骤(d)的液化流的第二部分被加入第一蒸馏段。
9.权利要求1的方法,其中对所述步骤(b)的蒸气流的冷却在一个由闭环制冷系统所冷却的热交换器中实施。
10.权利要求9的方法,其中闭环制冷系统以丙烷作为主要制冷剂。
11.权利要求9的方法,其中闭环制冷系统有一种制冷剂,包括甲烷、乙烷、丙烷、丁烷、戊烷、二氧化碳、硫化氢和氮。
12.权利要求1的方法,在步骤(b)之前还包括将由于富含甲烷的液化气蒸发而得到的汽化气加入所述工艺中。
13.权利要求1的方法,其中气流的液化通过使用两个串联排列的闭环制冷循环来进行。
14.权利要求1的方法,其中步骤(b)的多组分气流具有高于3,100kPa(450psia)的压力。
15.权利要求1的方法,其中可凝固组分是二氧化碳。
16.权利要求1的方法,其中冷却步骤(b)还包括下列步骤将所述气流压缩成一种被压缩物料流,将至少一部分的所述被压缩物料流在一个热交换器中冷却,将冷却后的被压缩的物料流的第一部分作为一种产品气流取出,以及将冷却后的被压缩物料流的第二部分膨胀至一个更低的压力,从而被压缩的物料流被进一步冷却以产生一种富含甲烷的具有高于大约-112℃(-170°F)的温度和足以使液体产品处在等于或低于其泡点的压力的液化流。
17.一种用于分离一种多组分原料流以生产一种富含甲烷的液体产品的方法,该原料流至少含有甲烷和至少一种具有比甲烷低的相对挥发度的可凝固组分,该方法包括(a)将多组分原料流加入一个分离系统,所述分离系统在所述可凝固组分形成固体的条件下操作;(b)将一种蒸气流从所述分离系统的一个上部区域中取出;(c)将所述蒸气流压缩成一种较高压力的物料流;(d)利用可在步骤(b)的蒸气流中得到的冷却将所述被压缩的物料流的至少一部分冷却;(e)将所述冷却后的被压缩的物料流膨胀以将所述被压缩的物料流进一步冷却,所述膨胀的物料流主要是液体;(f)将所述膨胀的物料流的至少一部分加入分离系统的一个上部区域以为所述分离系统提供制冷;以及(g)从膨胀的物料流中回收一种富含甲烷的液体产品流。
18.权利要求17的方法,还包括回收步骤(c)的所述被压缩蒸气流的一部分以及根据步骤(d)将所述蒸气流的剩余部分冷却。
19.权利要求17的方法,其中步骤(b)的所述蒸气流先于步骤(c)中的压缩被加温。
20.权利要求17的方法,其中分离系统包括一个第一蒸馏段,一个在第一蒸馏段下方的第二蒸馏段,以及一个在第一和第二蒸馏段之间的凝固区,其中膨胀的液体流被加入第一蒸馏段。
21.权利要求20的方法,其中所述多组分原料流被在第一蒸馏段的下面加入。
22.权利要求17的方法,还包括将液体从分离系统中除去,将所述液体通过一个压力膨胀装置冷却,以及将所述液体通过与步骤(c)的被压缩物料流的热交换至少部分地汽化。
23.权利要求17的方法,还包括将富含所述可凝固组分的液体从分离系统中除去,将所述富含可凝固组分的液体通过一个压力膨胀装置冷却,以及在多组分原料流进入分离系统之前通过与所述膨胀的、富含可凝固组分的液体热交换将其冷却。
24.权利要求17的方法,还包括在多组分原料流进入分离系统之前将其通过一个膨胀装置冷却。
25.权利要求17的方法,其中对步骤(c)的较高压力物料流的压力和膨胀的物料流(e)的压力进行控制,以防止在步骤(f)中加入到分离系统的物料流形成固体。
26.权利要求17的方法,其中步骤(g)的回收的液体产品流有高于大约1,380kPa(200psia)的压力。
27.由一种多组分原料流来生产压力高于大约1,380kPa(200psia)的液化天然气的方法,该原料流包含甲烷和一种具有比甲烷低的相对挥发度的可凝固组分,该方法包括(a)将多组分原料流加入一个分离系统,所述分离系统在所述可凝固组分形成固体的条件下操作;(b)将一种蒸气流从所述分离系统的一个上部区域中取出;(c)将所述蒸气流压缩成一种较高压力的物料流;(d)利用可在步骤(b)的蒸气流中得到的冷却将所述被压缩的物料流的至少一部分冷却;(e)将所述冷却后的被压缩的物料流膨胀以将所述被压缩的物料流进一步冷却,所述膨胀的物料流主要是处于高于大约1,380kPa(200psia)的压力下的液体;(f)将所述膨胀的物料流的至少一部分加入分离系统的一个上部区域以为所述分离系统提供制冷;以及(g)从膨胀的物料流中回收一种处于高于大约1,380kPa(200psia)的压力下的富含甲烷的液体产品流。
28.用于液化一种包含甲烷和至少一种可凝固组分的多组分物料流以生产一种具有高于大约-112℃的温度和足以使液体处在等于或低于其泡点的压力的富含甲烷的液体的方法,该方法包括下列步骤(a)将具有高于大约1,380kPa(200psia)的压力的多组分原料流加入一个分离系统,该分离系统在所述可凝固组分的固体形成条件下操作,以提供一种富含甲烷的蒸气流和一种富含在分离系统中固化的所述组分的液体流;(b)将蒸气流通过一个闭环制冷系统液化以生产一种具有高于大约-112℃的温度和足以使液体处在等于或低于其泡点的压力的富含甲烷的液体;以及(c)将所述富含甲烷的液体加入一个用于在高于-112℃的温度下存储的存储容器中。
29.权利要求28的方法,其中原料流的液化由一个闭环制冷系统实施。
30.权利要求28的方法,其中在原料流液化之前还包括将由于液化天然气的蒸发而产生的汽化气与来自分离系统的蒸气流合并。
全文摘要
本发明是一种由多组分原料流(10)生产富含甲烷的加压液体(19)的方法,该多组分原料流(10)包含甲烷和一种具有比甲烷低的相对挥发度的可凝固组分。多组分原料流(10)被加入一个分离系统(31),该系统有一个在高于大约1,380kPa(200psia)的压力下、在使可凝固组分形成固体的条件下操作的凝固段以及一个位于凝固段下方的蒸馏段。分离系统(31)产生一种富含甲烷的蒸气流(14)和一种富含可凝固组分的液体流(12)。至少蒸气流的一部分被冷却以产生一种富含甲烷的液化流来生产一种产品(20)和一种为分离系统提供制冷的物料流(21),该液化流富含甲烷并具有高于大约-112℃(-170°F)的温度和足以使液体处在等于或低于其泡点的压力。
文档编号F25J3/02GK1261428SQ98806435
公开日2000年7月26日 申请日期1998年6月26日 优先权日1997年7月1日
发明者E·T·科尔, E·R·索马斯, R·R·伯温 申请人:埃克森生产研究公司