一种带有液氧蒸发器的低温精馏系统的利记博彩app

文档序号:4792198阅读:554来源:国知局
专利名称:一种带有液氧蒸发器的低温精馏系统的利记博彩app
技术领域
本发明一般说来涉及低温精馏,更具体地涉及液氧气化使给料冷凝的低温精馏。
氧气的大规模商业化生产是通过对给料气进行低温精馏来实现的,通常是采用人们所熟悉的双塔系统,其中产品氧是由低压塔中获取的。有时,可能希望制氧是在超过其从低压塔出来时的压力的一个压力下完成。在这种状况下,气态氧可以被压缩至所需的压力。然而,从安全与运行费用方面的考虑,通常希望将作为液体的氧由低压塔中移出,泵至一较高压力,然后使加压后的液氧气化,从而获取所需的加压产品氧气。
低温精馏的运行要求致冷。在氧作为液体从塔中取出并在尚未汽化前而进行加压时要增加必要的致冷,这是因为泵功被加入到该系统中。通过对供给到精馏塔系统的气流进行涡轮膨胀可以对低温过程提供致冷。然而为了进行涡轮膨胀而对气流进行的压缩将消耗大量的能量。
因此,本发明的目的是提供一种低温精馏系统,在该系统中,液氧从塔式系统中取出用以蒸发并且通过对给料气流进行涡轮膨胀来提供过程致冷,该方法较之常规的氧产品蒸发器循环提高了运行效率。
本发明所提出的上述以及其他目的在读完本说明书之后将本领域的技术人员有清楚的认识与理解,本发明的一个方面是提供一种通过低温精馏制氧的方法,其包括(A)把给料气压缩至一第一压力;
(B)通过将至少55%的被压缩的给料气送入与涡轮膨胀机相连连的压缩机中,进一步压缩至一第二压力;
(C)通过将至少一部分经进一步压缩的给料气送入所述涡轮膨胀机中进行涡轮膨胀,但要维持至少有一部分给料气不受所述涡轮膨胀;
(D)将经涡轮膨胀后的给料气引入一双塔低温精馏装置的高压塔;
(E)使至少一部分未被涡轮膨胀的给料气冷凝;
(F)将被冷凝的给料气送入高压塔;以及(G)从低温精馏装置中引出液氧,通过与所述冷凝的结料气进行间接换热而使液氧气化,以及还原得到氧产品。
本发明的另一方面是提供一种低温精馏制氧的设备,其包括(A)一第一级压缩机、一第二级压缩机以及一个与第二级压缩机的涡轮膨胀机;
(B)将给料送入第一级压缩机以及由第一级压缩机送至第二级压缩机的装置;
(C)包括有一个高压塔的一双塔低温精馏装置;
(D)将给料由第二级压缩机送入涡轮膨胀机以及由涡轮膨胀机送入高压塔的装置;
(E)一个产品蒸发器,以及用于将给料送入产品蒸发器和由产品蒸发器送至高压塔的装置;
(F)用于将流体由低温精馏装置送入产品蒸发器的装置;以及(G)用于由产品蒸发器还原出流体产品的装置。
这里所用的“给料气”一词是指一种主要包括氮、氧以及氩的混合物,比如空气。
这里所用的术语“涡轮膨胀”以及“涡轮膨胀机”分别是指用于高压气体流经涡轮机使气体减压和降温而致冷的方法与装置。
这里所用的“塔”则蒸馏或分馏塔或带,即一个其中液气两相成逆流式接触以分离一流体混合物的接触塔或带,例如通过使气液两相在一系列安装在塔内的竖直地互相间隔开的分馏塔盘或者板上接触,和/或可在规则构成的堆砌元件和/或无规则构成的堆砌元件上接触。进一步地讨论蒸馏塔,可参见《化学工程手册》第五版,皮瑞(R.H.Perry)和切尔顿(C.H.Chilton)编,由纽约的米克隆一海尔书局出版(Mc Graw-Hill Book Company),其中的第13节“连续蒸馏过程”。术语“双塔”一词意味着高压塔上端与低压塔下端存在着热交换关系。双塔的进一步讨论见由牛津大学出版社1949年出版的鲁贺曼(Ruheman)的“气体分离”一书,其中的第7章“商业化气体分离”。
气液接触分离过程取决于各组分的蒸气压力的不同。高蒸气压(或易挥发,或低沸点)的组分倾向于在气组中集聚,而低蒸气压(或难挥,或高沸点)的组分却倾向于在液相中集聚。部分冷凝是分离过程,从而,冷却气态混合物可以用来将易挥发的组分集聚在气相中,而将难挥发的组分集聚在液相中。精馏,或连续蒸馏,是通过将气液两相逆流布置而使连续的部分蒸发与冷凝结合起来的分离过程。气液两相的逆流接触是绝热的,并且可能包括相间的整体或局部的接触。运用精馏原理分离混合物的分离装置常常被交替命名为精馏塔,蒸馏塔,或者分馏塔。低温精馏是一个至少要部分地处于或低于150度开耳芬(Kelvin)进行的精馏过程。
这里所用的术语“间接换热”一词是指两股流体相到间在没有任何实际接触或掺混的条件下进行的热交换。
这里所用的术语“氩塔”一词则指对含有氩气的给料进行处理并得到超过在原给料中的浓度的氩气的塔,而且在它的上部可以包括一个换热器或高位冷凝器。这里所用的术语“液氧”是指含氧量至少达到95%摩尔百分比浓度的液体。
这里所用的术语“耦合连接”一词则是指机械上的连接以使得设备之间可直接传递功而无需任何中间齿轮。耦连可通过单根的转动轴实现两设备之间的连接。
现配合有关附图及具体实施例详细描述本发明方法及装置的其他目的,特点与结构,其中

图1是本发明的一个优选实施例的示意图,其中只有一部分被压缩的给料由与涡轮膨胀机耦合相连的压缩机进一步压缩;和图2是本发明的另一个优选实施例的示意图,其中全部被压缩的给料由与涡轮膨胀机耦合相连的压缩机进一步压缩。
本发明采用一个与一涡轮膨胀机耦合相连的压缩机,并把经压缩机压缩的流体输送给涡轮膨胀机进行膨胀,从而产生致冷效应,以便把流体引入到低温精馏装置中。流经涡轮膨胀机的流体通过设备的涡轮膨胀机与压缩机之间耦合连接来驱动压缩机,从而无需使用发电机来收集由涡轮膨胀所产生的能量,并提高压缩机的运行效率。部分未经涡轮膨胀的给料被冷凝以使液氧蒸发。因此,冷凝的给料与剩余的给料脱离连接使得该流体单独压缩至产品蒸发器所要求的压力范围,从而使产品氧的压力指标可以不受装置冷却要求限制。
本发明将参照附图加以详细描述。现在参见图1所示,给料即如给料气100,其经过第一级或基础载荷压缩机1被压缩至一第一压力,该第一压力通常在70至150磅/英寸2(psia)绝对压力的范围之内。被压缩的给料气通过冷却器29冷却,以带走压缩热量,并在经过吸收器2时把诸如二氧化碳和水蒸汽一类的高沸点杂质清除掉。然后给料气被分成一第一部分101和第二部分102。第一部分101包括至少55%,且最好是65%至80%的被压缩的给料空气。经过与涡轮膨胀机7相连的第二极压缩机5,第一部分给料气101被进一步压缩至一超过第一压力且通常为80至170磅/英寸2(psia)绝对压力的第二压力。被进一步压缩的给料空气103经过冷却器30时将压缩热量带走,然后经过主换热器8与返回气流进行间接换热而被冷却。所得到的冷却气流104被送到涡轮膨胀机7。冷却气流104一小部分105通过流经换热器9与返回气流进行间接换热而被液化。所得到的液化流106被送到双塔低温精馏装置中的高压塔11,该精馏装置亦包括低压塔14。
被冷却的进一步被压缩的气流104通过流经涡轮膨胀机7被膨胀,由于涡轮膨胀而产生制冷效应,并驱动压缩机5。经涡轮澎胀的气流107被引入到运行压力通常为65至100磅/英寸2(psia)绝对压力的高压塔11中。
未经过涡轮膨胀机7第二部分给料气流102,最好通过流经压缩机3被压缩至一第三压力。通常,第三压力将有别于第二压力,处于100至1,400磅/英寸2(psia)绝对压力的范围内。所得到的气流108通过流经主换热器8被冷却,并送至产品蒸发器4中,在其中与蒸发的液氧进行间接换热而被冷凝,这一点稍后将叙述。被冷凝的给料气109通过流经换热器10与液氧进行间接换热而被过度冷却,且最好在气流107进入塔11的位置上方进入塔。通常,这一入口位置至少是在气流107的引入口上方两个平衡级。如果愿意,气流109可以与气流106汇合,而此汇合气流110,如图1所示,可以如上所述被引入塔11中。
在塔11内,给料经低温精馏被分离成富氮的上部蒸气与富氧的下部液体。图1所述的实施例还包括一第三塔,在这种情况下第三塔是作为生产粗制氩的氩塔。富氮的上部气体111被通入正对再蒸发塔14底部的主冷凝器15而被冷凝。所得到的冷凝液112以液流113作为回流进入塔11,且通过换热器20和阀21以液流13作为回流进入塔14。富氧的液体以流12由塔11流经换热器16,在其中与返回流进行间接换热而使其过度冷却,并经阀19进入氩塔18的上位冷凝器17。在上位冷凝器17中,富氧的液体部分蒸发,而所得到的蒸气与液体(图1中为方便示为一股流114)被通入塔14中。
塔14在低于塔11的压力的一个压力下运行,并通常为16至30磅/英寸2(psia)绝对压力。在塔14中,送入塔14的流体经低温精馏被分离成富氮的蒸气和富氧的液体,即,液氧。富氮的蒸气沿管22由塔14取出,通过流经换热器20、16,9和8被加热,如果愿意,被还原为含氮量摩尔百分比至少为98%的产品氮115。为了控制产品的纯度,一废气流24从气流管22被引出的位置的下方某处由塔14中取出,通过换热器20,16,9和8,而作为气流116排出系统。
含氩流体沿管25由塔14流入氩塔18,并经在氩塔18中的温精馏被分离成富氩的蒸气和富氧的液体。富氧的液体经管27返回到塔14。富氩的蒸气沿管117进入一上冷凝器17,在其中经与富氧的流体进行间接换热而部分冷凝。所得到的富氩的流体被送入相分离器118,由相分离器118流出的液体119作为回流进入塔18。由相分离器118流出的蒸气26被还原成含氩量至少90%摩尔百分比的产品粗制氩。
液氧经管23由塔14中取出,且最好流经液压泵28泵至一较高压力。然后,氧经过换热器10被加热,再送至产品蒸发器4中,在那里通过冷凝的给料气进行间接换热而被气化。所得到的气化氧120流经主换热器8而被加热,并被还原成产品氧气121,其含氧量至少的95%摩尔百分比。产品氧气的压力将在塔14的取出点压力与大约200磅/英寸2(psia)绝对压力之间变化,这种变化取决于是否以及如何使用液泵28。如果愿意,部分液氧可以经管122由产品蒸发器4中还原出来。
图2示出本发明的另一个优选实施例,其中所有被压缩至第一压力的给料气被进一步压缩至第二压力。图2中有关相同元件的标号与图1的标号相对应,而且这些相同的元件将不再详述。
现参见图2所示,经由第一级压缩机1压缩至第一压力的全部给料气150经第二级压缩机5被进一步压缩至第二压力。所得到的被进一步压缩的给料气流151通过吸收器2把高沸杂质去除掉,而所得到的气流152被分成两部分153及154。第一部分153包含大约65%至80%的给料气流,在作为气流155进入涡轮膨胀机7之前流过主换热器8而被冷却。气流155的一部分105如图1所述的实施例那样被液化。未流经涡轮膨胀机7的给料气流154,最好通过流经第三级压缩机3被压缩至第三压力,流过主换热器8被冷却,并被送入产品蒸发器4中,在其中蒸发的液氧进行间接换热而被冷凝。图2中的实施例的其它部分与图1实质上是相同的。
下面的例子是为了说明的目的而并不准备作为限制。此实例提出采用图1所述本发明的实施例所作的计算机模拟并以空气作为给料。其中标号与图1的标号相对应。在大气环境温度和压力下的空气经第一级压缩机1被压缩至一第一压力115磅/英寸2(psia)绝对压力。然后,空气在冷却器29中被冷却至至229开耳芬(Kelvin)经过吸收器2的提纯与除水,空气温度为289开耳芬(Kelvin)。一部分相当于24%的空气102经第三级压缩机3被压缩至一第三压力346磅/英寸2(psia)绝对压力。在管101中剩余的76%的空气在第二级压缩机5中被压缩至一第二压力127磅/英寸2(psia)绝对压力。然后,气流103在冷却器30中被冷却至290开耳芬(Kelvin)的温度,并在换热器8中与冷的返回气流换热而进一步冷却至111开耳芬(Kelvin)。3.5%的一小部分空气气流105在换热器9中被液化。其余部分经涡轮膨胀机7被涡轮膨胀至78磅/英寸2(psia)绝对压力并被引入到高压塔11的底部。压缩机5与涡轮膨胀机7在机械上互相连接,提供压缩功。
离开压缩机3后,气流108在主换热器8中被冷却至158开耳芬(Kelvin),然后在产品蒸发器4中与150磅/英寸2(psia)绝对压力的压力下蒸发的液氧换热而凝结。3.0%的液氧被取出作为液体产品122。然后,气流109在换热器10中与热的液氧换热而被过度冷却,然后与气流106汇合,并从中间位置引入高压塔。
高压塔11在78磅/英寸2(psia)绝对压力的压力下运行。塔14顶部压力为15.2磅/英寸2(psia)绝对压力液氧流23的纯度为99.6%氧克分子浓度。氮产品气流22含氮量为99.98%摩尔百分比且其流速则为空气气流速度的20%。产品氩气流26含氩量为98.5%摩尔百分比。
液氧流23在引入换热器10之前经液压泵25泵至150磅/英寸2(psia)绝对压力,然后引入产品蒸发器4中。
上述例子介绍了一种非常优越的涡轮膨胀机-压缩机组合,因为涡轮膨胀机和增压压缩机在同一速度且无齿轮传动的情况下运行,二者都可实现高效率。
对于这些工作条件,多采用径向式的涡轮膨胀机和压缩机。对于这些机械来说,设计程序只是为达到最佳效率而选择运行速度。最佳速度取决于运行中特定的压力比和流速。常采用无量纲参数ns,或比速度。该参数与以RPM为单位的转速成比例。当ns值约为0.5时一径向式涡轮机的效率最佳。类似地,ns约为0.95时,径向式压缩机达到最佳效率。在上述例子中,对于涡轮机与压缩机来说,5,800RPM的速度使得涡轮机与压缩机的ns值分别为0.48和0.92。这两个值将给出二者的最大效率。因此通过适当选择被压缩的气流而无需传动齿轮即可使涡轮机与压缩机均达到很高的效率。
被压缩的气流的选择很重要。简单地将涡轮膨胀机在一根传动轴上与任何的增压压缩机连接不是有效的。这种组合仅当给料气的大部分或全部被用作进一步压缩时才产生有效的匹配。其优点在于使少量给料气气流与产品蒸发器脱离连接使得这部分气流被压缩时与产品蒸发器的压力无关。这样就允许氧产品压力范围不受任何装置冷却要求的限制。
还有这种配置对由其产生的涡轮机制冷量有设计上的灵活性。如果所要求的装置制冷量增加,比如为生产液体产品,涡轮机的功将增加,这样便提高了增压压缩机的可用能量及所得到的供给涡轮机的空气的压力。随着装置制冷要求的变化,轴功的平衡与相应给气压力水平均自我补偿。
尽管本发明参照着一些优选实施例已经作了详细描述,但本领域技术人员应认识到任何改变都包含在权利要求的精神实质和范围中以及本发明的其它实施例中。
权利要求
1.一种用于低温精馏制氧的方法,其特征在于,其包括(A)把给料气压缩至一第一压力;(B)通过使其流经与涡轮膨胀机相连的压缩机而将至少55%的被压缩的给料气进一步压缩至一第二压力;(C)通过使其流经所述涡轮膨胀机而让至少一部分被进一步压缩的给料气进行涡轮膨胀,但要维持至少有一部分给料气不受所述涡轮膨胀;(D)将经涡轮膨胀后的给料气引入一双塔低温精馏装置的高压塔中;(E)使至少一部分未经涡轮膨胀的给料气凝结;(F)将冷凝的给料引入高压塔中;以及(G)由低温精馏装置中取出液氧,通过与所述冷凝的给料气进行间接换热使液氧气化,并还原得到氧气产品。
2.如权利要求1所述的方法,其中所有被压缩的给料气通过使其流经涡轮膨胀机相连的压缩机而被进一步压缩至一第二压力。
3.如权利要求1所述的方法,其中,其还包括将给料气在与气化的液氧进行间接换热而凝结之前而压缩至一第三压力。
4.如权利要求1所述的方法,其中液氧在由低温精馏装置取出之后而在被气化之前被泵至一高压。
5.如权利要求1所述的方法,其中,其还包括从双塔低温精馏装置中还原出富氮的流体。
6.如权利要求1所述的方法,其中,其还包括将含氩流体由双塔低温精馏装置送入氩塔,并由氩塔还原出富氩的流体。
7.一种用于低温精馏制氧的设备,其中,其包括(A)一第一级压缩机、一第二级压缩机以及与第二级压缩机相连的一涡轮膨胀机;(B)用于给料送入第一级压缩机以及从第一级压缩机送入第二级压缩机的装置;(C)包括一座高压塔的双塔低温精馏装置;(D)用于将给料由第二级压缩机送入涡轮膨胀机以及由涡轮膨胀机送入高压塔的装置;(E)一个产品蒸发器,用于将给料送入该产品蒸发器以及由该产品蒸发器送入高压塔的装置;(F)用于将流体由低温精馏装置送入产品蒸发器的装置;以及(G)用于从产品蒸发器还原出流体产品的装置。
8.如权利要求7所述的设备,其中,其还包括在将给料送入产品蒸发器之前用于压缩给料的一第三级压缩机。
9.如权利要求7所述的设备,其中将流体由低温精馏装置送入产品蒸发器的装置包括一个液压泵。
10.如权利要求7所述的设备,其中,其还包括一个第三塔,用于将流体由低温精馏装置送入第三塔的装置以及用于由第三塔还原出流体的装置。
全文摘要
一种低温精馏系统,其中,被压缩的给料通过流经与涡轮膨胀机相连的压缩机被进一步压缩,并经过涡轮膨胀机进行涡轮膨胀以驱动压缩机,一部分未经过涡轮膨胀的给料在产品蒸发器中与液氧发生作用而凝结。
文档编号F25J3/04GK1098194SQ94105750
公开日1995年2月1日 申请日期1994年5月12日 优先权日1993年5月13日
发明者M·J·罗伯特斯, R·A·贝东米, D·P·邦纳奎斯特 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1