一种等压分离制取氧氮的空分装置的利记博彩app

文档序号:4794192阅读:227来源:国知局
专利名称:一种等压分离制取氧氮的空分装置的利记博彩app
技术领域
本发明涉及一种等压分离制取氧氮的空分装置,具体属深度冷冻技术领域。
背景技术
国民经济的高速发展,离不开空气分离装置。所谓空气分离装置(简称空分装置,通称制氧机)是指利用深度冷冻原理将空气液化,然后根据各组分沸点的不同,在精馏塔内进行精馏,最后获得氧、氮,或同时提取一种或几种稀有气体的装置。1939年,苏联科学家卡皮查院士发明高效率(> 80%)径流向心反动式透平膨胀机,为全低压制氧机的诞生创造了条件。卡皮查透平膨胀机是近代世界各国透平膨胀机发展的基础,卡皮查低压液化循环是现代大型制氧机的基础。在低温技术领域是继1852年英国科学家焦耳和汤姆逊发现焦耳-汤姆逊效益为第一里程碑,“克劳特循环”的发明与实现为第二里程碑,“卡皮查循环”及全低压制氧机的问世被称为第三里程碑。随着钢铁冶金、化工,尤其是煤化工等行业对氧气、氮气等空分产品需求的增长,制氧机已向大型化、超大型化方向发展,国内超大型制氧机已达到90000m3/h等级,制氧的新技术新工艺也层出不穷,国内低温法制氧流程已达到第六代新流程全面普及的程度。制氧单耗已经从原来的大于3kw *h/m302降至0.37kw *h/m302左右,制氧机的产品也不再是单一的气氧,既有气体产品又有液体产品,而且产纯氧、纯氮、纯氩,以及稀有气体提取。制氧技术和制氧机的发展始终围绕着安全、智能、节能,简化流程、减少投资的方向进行着。下面是4种典型传统流程的简要说明:附

图1是管式3200m3/h制氧机流程示意图,图1中:1-蓄冷器,2-自动阀箱,3_透平膨胀机,4-膨胀过滤器,5-液化器,6-下塔,7-冷凝蒸发器,8-上塔,9-液氧吸附器,10-液空吸附器,11-液氮过冷器,13-液氧泵,14- 二氧化碳吸附器。该类型制氧机采用高效透平膨胀机制冷全低压流程,即以卡皮查循环为基础,用嵌有蛇管的石头填料蓄冷器冻结清除水分和二氧化碳,用中部抽气保证其不冻结性,用中抽二氧化碳吸附器4清除中抽气中的二氧化碳。富氧液空经液空吸附过滤器过滤二氧化碳干冰,吸附液空中的乙炔,设有液氧泵13,将液氧循环经液氧吸附器清除液氧中的乙炔,以保证制氧机安全运行。装置中采用长管式冷凝蒸发器,以提高传热效率。管内是液氧沸腾,管间气氮冷凝。膨胀机的工质是空气。中抽气由中抽二氧化碳吸附器清除二氧化碳后与下塔来的旁路气汇合一起进入膨胀机,膨胀后气体进入上塔即拉赫曼气。附图2是可逆式换热器自清除10000m3/h制氧机流程示意图。图2中:1_可逆式换热器,2-自动阀箱,3-液化器(污氮),4-液化器(纯氮),5-液化器(氧气),6-透平膨胀机,7-下塔,8-冷凝蒸发器,9-上塔,10-液空过冷器,11-液氧过冷器,12-液氮过冷器,13-液氧吸附器,14-液空吸附器,15-液氧泵。该制冷系统是以卡皮查循环为基础的全低压循环。采用高效透平膨胀机,膨胀工质为空气,利用电机制动回收部分膨胀功。净化系统采用板翅式可逆式换热器对水分、二氧化碳自清除。设置液空吸附器清除富氧中的乙炔。用液氧泵使冷凝蒸发器中的部分液氧循环利用液氧吸附器清除液氧中的乙炔及其他碳氢化合物。装置中的全部换热器都采用高效的板翅式换热器,因此也可称全板式万立制氧机。精馏塔为带辅塔的双级精馏塔。膨胀后气体进入上塔,这股拉赫曼气使制氧机的制冷系统与精馏系统有机地联系起来。附图3是30000mVh外压缩制氧机流程示意图。图3中:AC_空气冷却塔,AF-空气过滤器,AP-液氩泵,TC-空气离心压缩机,BTl-增压机(膨胀机),Cl-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,El-主换热器,E2-液空液氮过冷器,EH-电加热器,ETl-透平膨胀机,Kl-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液化器,K704-精氩蒸发器,MS1、MS2-分子筛纯化器;PV701_液氮平衡器,WC-水冷却塔,WP1、WP2-水泵。该制氧机即第六代空分流程。空气经离心式压缩机压缩后经分子筛纯化器清除加工空气中的水分、二氧化碳、乙炔及其他碳氢化合物。而后空气进入板翅式主热交换器冷却至饱和温度进入下塔。液化循环采用卡皮查循环,采用增压透平膨胀机制冷,膨胀后空气进入上塔。上塔为规整填料塔,下塔采用筛板塔。保冷箱内设置粗氩塔和精氩塔,粗氩塔与精氩塔均为规整填料塔,实现了无氩制氩。气氧出塔压力21kPa,气氮出塔压力8kPa,采用离心式氧压机和氮压机进行产品压缩。是典型的外压缩流程,也可称为“冶金型”制氧机。除了采用上述核心技术以外,还采用双层床分子筛纯化技术,双层主冷和氮-水预冷系统的高效蒸发降温(取消冷冻机)等技术,使此类流程的空分装置进一步节能降耗。附图4是化工型52000m3/h制氧机流程示意图,图4中:AC_空气冷却塔,AF-空气过滤器,ATCl-空气离心压缩机,ATC2-空气循环增压机,AP-液氩泵,Cl-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,El-主换热器,E3-过冷器,ET-膨胀机,BC-增压机(膨胀机),EC-水冷塔,SH-蒸汽加热器,Kl-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液化器,K703-精氩冷凝器,K704-精氩蒸发器,MSUMS2-分子筛纯化器;NP_液氮泵,OP-液氧泵。该制氧机为典型的内压缩流程,此流程及配套部机的特点是:(1)原料空压机和空气增压机均采用离心式压缩机,由一台汽轮机拖动,即一拖二 ;(2)双层床分子筛纯化器,并在切换系统中采用了无冲击切换技术;(3)采用中压增压透平膨胀机制冷,制冷工质为空气,膨胀后的空气进入下塔;(4)主换热器为高效板翅式换热器,分为高、低压两组换热器;(5)该空分装置设置6台产品泵,两台液氧泵、两台液氮泵和两台液氩泵。均为一用一备,即一台运转、另一台在线冷备用。必须强调的该技术采用的内压缩的液氧泵、液氮泵和液氩泵十分值得关注:利用液氧、液氮、液氩接近不可压缩流体的性质,较传统的采用压气机增压的技术(因气体为可压缩流体),显然电机的功耗大幅度下降。上述4种典型流程均利用了拉赫曼原理,将膨胀后的空气吹入上塔,或者利用从下塔或冷凝蒸发器的顶盖抽出的氮气,一部分经切换式换热器环流通过复热后再汇合进入透平膨胀机,膨胀后的氮气作为产品氮气引出,或者与污氮汇合经切换式换热器复热回收冷量后放空。由于从下塔引氮气,冷凝蒸发器的冷凝量减少,因而送入上塔的液体分量减少,精馏潜力得到利用,这种采用氮膨胀的流程国外的大型全低压空分装置上已被采用。采用空气膨胀、氮气膨胀的方法都是为了减少上塔液体馏分,使精馏时的气液间的温差减少,利用了上塔精馏潜力,使全低压空分装置具有更大的合理性。上述传统空分装置分离气体的主要基础是热力学,即采用同温差的卡诺逆循环分析空分制冷循环过程,制冷循环的经济性指标是制冷系数,就是得到的收益和耗费的代价之比值,并且以大气环境温度Ttl与温度为Tc低温热源(如冷库)之间的一切制冷循环,以逆向卡诺循环的制冷系数为最高:Sc =( (X)P )R_ c = —= Tc (I)
wO rO-Tc上式中的ε。为制冷系数,Q2为循环的制冷量,W0为循环所消耗的净功。实际循环效率通常采用实际循环的制冷系数与理论循环系数的比值进行描述,但其理论基础是以卡诺逆循环对空分过程进行循环分析。实际上,卡诺在“关于热动力的见解”的论文中,得出的结论为:“在两个不同温度的恒温热源之间工作的所有热机,以可逆热机的效率为最高。”即被后人称之为卡诺定理,按理想气体状态方程进行整理得出的卡诺循环的热效率为:

J]c = I公式(2)中的高温热源的温度T1与低温热源的温度为T2均高于大气环境温度Ttl,并可以得出以下几点重要结论:I)卡诺循环的热效率只决定于高温热源和低温热源的温度,也就是工质吸热和放热时的温度,提高T1和T2,可以提高热效率。2)卡诺循环的热效率只能小于1,绝不能等于1,因为T1 或T2=O都不可能实现。这就是说,在循环发动机中即使在理想情况下,也不可能将热能全部转化为机械能,热效率当然更不可能大于I。3)当T1 = T2时,循环热效率等于0,它表明,在温度平衡的体系中,热能不可能转化为机械能,热能产生动力一定要有温度差作为热力学条件,从而验证了借助单一热源连续做功的机器是制造不出的,或第二类永动机是不存在的。4)卡诺循环及其热效率公式在热力学的发展上具有重大意义。首先,它奠定了热力学第二定律的理论基础;其次,卡诺循环的研究为提高各种热动力机热效率指出了方向,近可能提高工质的吸热温度和尽可能降低工质的放热温度,使放热在接近可自然得到的最低温度即大气温度时进行。卡诺循环中所提出的利用绝热压缩以提高气体吸热温度的方法,至今在以气体为工质的热动力机中仍普遍采用。5)卡诺循环的极限点是大气环境温度,对低于环境温度的制冷过程循环,卡诺循环并没有给出明确的答案。由于制冷系数的不完善性,国内外众多的学者对其进行研究,并提出了完善建议。马一太等在《制冷与热泵产品的能效标准研究和循环热力学完善度的分析》中结合Curzon和Ahlborn把有温差传热这个不可逆过程引入热力循环的分析,以及由此创建的有限时间热力学的启发,结合CA循环效率,提出了 CA正循环的热力学完善度,使制冷和热泵产品的能效研究有了一定程度的进展。但是运用热力学的基本理论并不能对空分装置循环过程做出简洁、明了、直观的解释。爱因斯坦曾对经典热力学做过评价:“一种理论,其前提越简单,所涉及的事物越多,其适应范围愈广泛,它给人们的印象就越深刻。”对空分制冷领域的基本理论探索,也应继承和发扬这个优点。因此对空分制冷循环进行研究,真正找到空分装置循环的理论基础,找到改进空分流程的正确方向,并在此理论基础上组织新的空分装置流程,较大幅度降低空分装置的能耗,成为空分技术领域研究的难点。

发明内容
本发明的目的就是为解决卡诺定理应用于空分装置循环理论分析的不完善性,提出对应于热力学理论的新的制冷理论即冷力学理论,并提出应用该原理设计的新的等压分离制取氧氮的空分装置。对于低于大气环境温度的环境称之为冷源,相对于高于环境温度的热源;相应于热能、热量,提出对应的冷能、冷量概念;所述的制冷装置,是指消耗机械功来实现冷能从大气环境向低温冷源或者从低温冷源向更低温冷源的转移。在实现冷能转换时,均需要某些物质作为制冷装置的工作物质,称为制冷工质。制冷过程中冷能的传递遵循能量转化和守恒定律。为描述制冷过程中冷量传递的方向、条件和限度,提出冷力学第二定律:冷力学第二定律的实质跟热力学第二定律的实质是一样的,同样遵循“能质衰贬原理”,即不同形式的冷能,在转换成功量的能力上是有“质”的差别的;即使是同一种形式的冷能,其存在状态不同时,它的转换能力也不同的。一切冷能传递的实际过程,总是朝着能质下降的方向进行,一切冷能总会自发向大气环境方向转换。冷能能质的提高过程不可能自动、单独地进行,一个能质的提高的过程必然伴随着另一个能质的下降的过程同时发生,这个能质下降的过程就是实现能质升高过程的必要的补偿条件,即以能质下降为代价、作为补偿来推动能质升高过程的实现。在实际过程中,作为代价的能质下降过程,必须足以补偿能质升高的过程,以满足总的能质必定下降的普遍规律。因此,在一定的能质下降的补偿条件下,能质升高的过程必然有一个最高的理论限度。只有在完全可逆的理想条件下,才能达到这个理论限度,这时,能质升高值正好等于能质下降的补偿值,使总的能质保持不变。可见,可逆过程是纯理想化的能质守恒过程;在不可逆过程中总的能质必然下降;在任何情况下都不可能实现使孤立系统总的能质升高的过程。这就是能质衰贬原理的物理内涵,是冷力学第二定律的实质,也是热力学第二定律的实质,它揭示了一切宏观过程必须遵循的、有关过程进行方向、条件及限度的客观规律。

描述冷力学第二定律的基本公式为:
权利要求
1.一种等压分离制取氧氮的空分装置,该装置包括空气纯化系统、预冷系统、精馏系统和补冷系统,其特征在于: 所述装置的补冷系统,是指从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)增压后,经回冷器(21)、过冷器(42)形成制冷工质过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)返回制冷工质贮罐(18),通过过冷器(42)对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路。
2.根据权利要求1所述的装置,其特征在于: 设有辅助冷交换器(41):从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)增压后,经回冷器(21)、过冷器(42)、辅助冷交换器(41)形成制冷工质过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)返回制冷工质贮罐(18),通过过冷器(42)、辅助冷交换器(41)对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路。
3.根据权利要求2所述的装置,其特征在于: 所述装置的下塔(8)粗馏得到的富氧液空(11),经液空吸附器(12)脱乙炔、过冷器(42)过冷后,可节流降压后送入上塔(10),或不经节流等压送入上塔(10); 所述装置的下塔(8)引出的氮气(23)经过冷器(42)冷凝成液氮(22)后,可节流降压后送入上塔(10),或不经节流等压送入上塔(10),或直接进入主冷交换器¢)回收冷量后作为产品氮气(39)输出; 所述装置精馏系统分离出的氧气(35)从上塔(10)引出,经主冷交换器(6)或经辅助冷交换器(41)、主冷交换器¢)回收冷量后作为产品氧气(36)输出; 所述的装置分离出的氮气(23)从上塔(10)顶部引出,经主冷交换器¢)、或经辅助冷交换器(41)、主冷交换器¢)回收冷量后作为产品氮气(39)输出。
4.根据权利要求3所述的装置,其特征在于: 设有氮气液化器(29):从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)增压后,经回冷器(21)、氮气液化器(29)、过冷器(42)、回冷器(21),回到制冷工质贮罐(18);氮气(23)经氮气液化器(29)冷凝形成产品液氮(22),或经液氮增压泵(31)、主冷交换器¢)回收冷量后,作为高压氮气(32)输出。
5.根据权利要求1至4之一所述的装置,其特征在于: 所述的膨胀机(25)的制动设备(28)采用风机、电机、液压泵或压气机。
6.根据权利要求5所述的装置,其特征在于: 设有节流阀(27): 从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)、回冷器(21)、或和氮气液化器(29)、过冷器(42)、或和辅助冷交换器(41)形成制冷工质过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)、节流阀(27),返回制冷工质贮罐(18),通过过冷器(42)、或和辅助冷交换器(41)对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路; 通过设置的节流阀(27)可以方便调节补冷系统的压力。
7.根据权利要求6所述的装置,其特征在于: 设有液氧增压泵(33):上塔(10)精馏得到的液氧(14),经液氧泵(15)、液氧吸附器(16)脱除乙炔及碳氢化合物后,再经液氧增压泵(33)增压后,经主冷交换器(6)回收冷量后,作为产品高压氧气(34)送出。
8.根据权利要求7所述的装置,其特征在于: 所述的精馏系统包括下塔(8)、冷凝蒸发器(9)、上塔(10),采用一体式或分体式的结构。
9.根据权利要求8所述的装置,其特征在于: 所述的空气纯化系统包括纯化器(4),采用分子筛纯化器、可逆式冷交换器或石头蓄冷器,保证空分装置连续稳定运行。
10.根据权利要求9所述的装置,其特征在于: 所述的主冷交换器(6)、氮气液化器(29)、过冷器(42)、辅助冷交换器(41)可设置一个或多个,对空气(5)、氮气(2 3)、富氧液空(11)进行过冷处理。
全文摘要
本发明涉及一种等压分离制取氧氮的空分装置,采用低温端的类似的热能动力循环装置的朗肯循环系统,采用液压泵输入功,通过制冷工质对空分装置进行补冷,从而实现空气的等压分离制取氮氧。本发明的空分装置,相同制冷量的前提下,较传统先进机组节能30%以上,同时通过空分装置能够实现集中供气,是对传统空分技术及制冷理论的突破,经济、社会、环保效益显著。
文档编号F25J3/04GK103162512SQ20131003092
公开日2013年6月19日 申请日期2013年1月27日 优先权日2013年1月27日
发明者王海波 申请人:南京瑞柯徕姆环保科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1