小型lng生产的配置和方法

文档序号:4781781阅读:230来源:国知局
专利名称:小型lng生产的配置和方法
技术领域
本发明的领域为天然气液化和LNG (液化天然气)卡车加载,且特别地是针对小型LNG设备的气体膨胀过程的使用、和天然气液化与LNG卡车加载设施的集成。
背景技术
在北美的天然气供应持续不断地增加,主要由于新页岩气的开采,近来发现海上气田,和在较小程度上,在建造了阿拉斯加天然气管道之后将闲置的天然气带到了市场,且认为页岩气和煤层沼气将构成能量市场中的大部分的未来增长。虽然天然气供应不断增加,原油供应却不断地减少,因为并未有储油量的显著/重大的新发现。如果继续这种趋势,那么运输从原油得到的燃料将会很快变得成本太高,因而需要替代的可再生燃料(和特别地运输燃料)。此外,由于燃烧天然气也产生比其它化石材料(例如,煤或汽油)显著更少的CO2,使用天然气甚至更加合乎需要。用于运输燃料的天然气必须呈密度更高的形式,作为CNG (压缩天然气)或LNG。通过将天然气压缩到大约3000至4000psig的非常高的压力来生产了 CNG。但是,即使在这样的压力,CNG的密度相对较低,且在高压进行储存需要很重重量的容器、且有潜在危险。另一方面,LNG具有显著更高的密度,且可储存从大约20至150pisg的相对较低的压力。另外,LNG为比CNG更安全的燃料,因为其处于更低压力、且在其被汽化并且以适当比例与空气混合之前不会燃烧。然而,CNG比LNG更通常地作为运输燃料,主要是由于液化LNG的较高成本、且缺少支持LNG加注燃料设施的基础架构 。LNG可用来替换柴油、且目前在许多重型载重车辆中使用,包括垃圾转运车(hauler),杂货店送货卡车、公共巴士和煤矿工人升降机。为了增加LNG燃料市场,小型LNG设备必须被构造为靠近于管道和LNG消费者二者,因为LNG的长距离转移是成本较高的、且因此常常是不经济的。这样的小型LNG设备应被设计成:通过液化2至10 MMscfd管道气体,来每日生产30吨至130吨LNG。此外,这样的小型LNG设备必须设计简单,易于操作,且充分地稳固以支持无人操作。另外,将会需要集成液化与LNG卡车加注燃料的操作来允许实现更大的递送灵活性。在本领域中已知各种制冷过程用于LNG液化。这些制冷过程中最常见的是级联过程,混合制冷剂过程,和丙烷预冷混合制冷剂过程。虽然这些已知的方法具有很高的能量效率,这些方法常常较为复杂、且需要循环若干种烃制冷剂或混合烃制冷剂。不利的是,这样的制冷剂(例如,丙烷、乙烯和丙烯)在泄露的情况下是爆炸性的且是危险的。在LNG设备设计方面存在若干近来的创新。例如,授予Foglietta的美国专利N0.5,755,114教导了一种混合式液化循环,其包括闭环丙烷制冷循环和涡轮膨胀器循环。与常规液化过程相比,这个过程已经被简化,但对于小型LNG设备而言,仍是不适合的、和/或在经济上没有吸引力。授予Whitesell的美国专利N0.7,673,476披露了一种不需要外部制冷的紧凑型和模块式液化系统。该系统通过再循环进料气体而使用气体膨胀来生成冷却。虽然这种设计相对紧凑,再循环系统的操作较为复杂且使用烃气体来用于冷却仍有安全问题。授予Kikkawa的美国专利N0.5,363,655教导了使用气体膨胀器和板与翅式热交换器来用于进行LNG液化。虽然提供了多种优点,对于小型LNG设备而言,这样的过程仍然太复杂且成本太高。以下现实进一步加剧了上文所提到的缺陷:大部分已知的系统缺乏了用于将小型LNG设备与LNG加载操作进行集成的能力。因而,用于加载LNG卡车的当前做法/实践通常需要LNG泵来将LNG从储罐泵送到LNG卡车。明显地,在LNG卡车加载操作期间所生成的汽化蒸气被排到大气,这有安全危害且造成排放污染。因而,虽然所有或几乎所有已知的配置和方法提供了优于先前已知的配置的某些优点,但仍然有各种缺点。除了其它方面,大部分已知的LNG液化方法和配置较为复杂且成本较高,且因此不适合于小型LNG设备。此外,大部分已知的设备缺乏一种用于LNG加载操作的集成系统,这对于小型LNG设备而言是非常不合需要的。

发明内容
本发明的主题针对于用于与LNG加载设施相集成的小型LNG设备的各种配置和方法。最优选地,天然气(例如,从管道递送)使用气体膨胀循环来在冷箱/低温箱中被液化,冷箱采用二级压缩机来产生至少两个压力水平的气体。这样产生的气体然后被冷却和膨胀到更低压力以由此造成制冷,之后在热交换器中混合为单个气体流,该单个气体流然后被进给/馈送到由膨胀器所驱动的压缩机。还特别优选地,LNG加载设施具有一种压力控制系统,压力控制系统使用高压进料气体作为原动力来将LNG产品从LNG储罐移动到LNG卡车,而来自LNG卡车的汽化蒸气在液化设备中被回收。

在一个特别优选的方 面,小型LNG设备具有集成的加载终端,其中该设备包括具有闭合制冷循环的冷箱(优选地为二级膨胀器制冷系统,利用非烃制冷剂操作)从而在足以从天然气进料产生LNG的温度将制冷含量提供给天然气进料。通常,优选地,LNG储罐被热联接到制冷循环以接收并且储存LNG,且第一汽化蒸气管线提供了从LNG运输器到冷箱的、以及从冷箱到LNG储罐的第一汽化蒸气,而第二汽化蒸气管线提供了从LNG储罐到冷箱的、以及从冷箱到天然气进料的第二汽化蒸气。最通常地,压缩机压缩了第一汽化蒸气和第二汽化蒸气中的至少一个,和/或差压控制器维持了在LNG储罐与LNG运输器之间的预定压差(例如,5-200 psi,更通常地10-50 psi)。在另一特别优选的方面,使用储罐中的内部管将来自储罐的LNG从储罐顶部卸载,这排除了在常用罐配置中通常使用的LNG罐存货的LNG溢漏的潜在危险。因此,且从不同的角度看出,一种使天然气液化且将LNG加载到LNG运输器的方法将包括以下步骤:在使用闭合制冷循环的冷箱中液化天然气进料,且将LNG进给到LNG储罐。在另一步骤,来自LNG运输器的第一汽化蒸气被冷却和压缩,且用作原动力来将LNG从LNG储罐递送到LNG运输器。以这样的方法,特别优选地,来自LNG储罐的第二汽化蒸气被冷却和压缩,且从冷箱移到天然气进料。如之前那样,通常优选地,使用二级闭合制冷循环,通常使用非烃制冷剂来执行了液化一种天然气进料的步骤。结合附图,从本发明的优选实施例的下文的详细描述,本发明的各种目的、特征、方面和优点将会变得更加显然。


图1为根据本发明主题的一种示例性配置。图2为示出在进料气体与制冷回路之间的热复合曲线的紧密/密切温度逼近的示例性曲线图。
具体实施例方式本发明者发现了能以概念上简单且具有成本效益的方式来将小型LNG设备与LNG卡车进行集成。在优选方面,小型LNG设备通过液化适量进料气体,具有通常在10吨至200吨之间,更通常地20-80吨之间,且最通常地30至130吨之间的每日LNG生产量。例如,具有30至130吨之间的每日LNG生产量的小型LNG设备将需要约2至l(MMscfd之间的进料气体。在另一特别优选的方面,制冷过程在压缩膨胀循环中使用非烃制冷剂(例如,氮气、空气等)来避免通常与烃制冷系统相关联的安全性问题。下文的描述和图1示意性地示出了本文所提出的发明主题的各种方面。进料气流I在100 ° 和453 psia以1.7 MMscfd的流率被供应到小型LNG液压设备,具有以下组成:
1.0摩尔%N2、0.1摩尔%C02、96.5摩尔%甲烷、2摩尔%乙烷、以及0.5摩尔%丙烷和更重的组分。在气体处理单元41中对气体进行处理,气体处理单元41通常包括胺单元和用于移除CO2和水的分子筛脱水单元,形 成一种干燥的且不含CO2的气流2。经干燥的气流2与再循环气流11相组合,且进入冷箱51,冷箱51通常包括至少五个热交换器通道52、53、54、55和56。进料气体由热交换器通道52中的氮气制冷而致冷,形成了在-223 0F的过冷流3,该过冷流3然后在JT阀71中减低压力,形成了流4。在-227 T的闪蒸液体被储存在以60psia操作的储罐65中。闪蒸气流8通过经由阀70再循环回到交换器通道56而被回收。这种再循环流的制冷含量在冷箱541中被回收。因而,应当指出的是,来自储罐的闪蒸流在交换器51中被加热。从冷箱出来的流10由压缩机68压缩到进料气体压力,形成了流11,之后与进料气流2相混合。使用两个氮气膨胀器(57和60)和两个氮气压缩机(61和62)来使进料气流2液化。氮气或空气可在此循环中使用,只要气体是干燥的。如本领域中已知的那样监视烃含量,以检测任何泄露,且该单元可在紧急情况期间立即关掉。来自压缩机59 (联接到膨胀器60)的流21 (3IMMscfd)在207psia和105 °F被进给/馈送到氮气压缩机61且被压缩到260psia,形成了流22。压缩机排放在环境冷却器63中被冷却,形成了流23,流23被分成两部分:流24和25。流24与23的分流比通常为50%比50%,但其可从25%到70%变化,取决于进料气体组成和压力。流25在热交换器通道55中被冷却到大约-42 T,形成了流26,流26在膨胀器60中膨胀到169 psia。第一膨胀气流27被致冷到-85 °F,其被按路线发送到热交换器通道54的中部段以与第二膨胀气体79相混合。流24被氮气压缩机62进一步压缩到410 psia,以形成流28,由环境冷却器64冷却,形成了流29且被进给/馈送到热交换器通道53。高压氮气流29被致冷到-158 T,形成了流30,流30由膨胀器57膨胀到169 psia,形成在-225 T的第二膨胀的气流79。此冷气体用于液化在热交换器通道52中的进料气体。第二膨胀气体79在热交换器通道54中与第一膨胀氮气流27相混合,其提供额外致冷。在热交换器通道54的下游,这种温热的混合流32在压缩机58中压缩,形成了流33,流33在压缩机59中被进一步压缩。这种两步气体膨胀器循环很高效地实现天然气液化,如从图2所示的在进料气体与制冷回路之间的热复合曲线的密切温度逼近可得出。在常规LNG卡车加载操作期间,通常使用LNG泵将LNG从储罐泵送到LNG卡车。这个操作需要至少2小时的时间,因为LNG卡车必须从通常周围温度致冷到冷冻/低温(cryogenic)温度。这个操作也生成大量汽化蒸气,汽化蒸气在大部分情况下被排到大气且因此带来严重的环境问题。与此相对比,且如图1中所示,通过压差将LNG从LNG储罐65经由流5、6和加载软管66而转移到LNG卡车67,由此允许在不使用LNG泵的情况下进行填充操作。使用在储罐内的内部管99将LNG从顶部出口喷嘴98转移。这种配置避免了从储罐的任何底部喷嘴,因而避免了在常规储罐设计中通常遇到的储罐存货的溢漏。因此,并不需要LNG泵。可根据需要来调整流动控制器82以将一定流量递送到LNG卡车。当储罐中的液位降低到较低液位时,液位控件97将在预定低液位处停止流5中的流动。通常,LNG储罐65被配置成具有30, 000加仑的容量,这个容量足以加载至少两个LNG卡车,每个LNG卡车具有10,000加仑的容量。在LNG卡车加载操作期间,关闭了阀70,且打开了阀69,允许汽化蒸气流7作为流9从卡车排到冷箱51。阀69使用压力控制器81控制着LNG卡车蒸气集管在大约50psig,LNG卡车的下压力设置点。利用顺序操作的这些阀,在加载期间汽化的蒸气被回收、且避免了被排到大气。为了提供驱动力以将LNG存货从储罐加压到LNG卡车,阀84打开,向储罐提供高压气体85。使用了压差控制器88和压力控制器83来控制所需流率。通常,差可设置为IOpsi或更高压力,这取决于介于储罐与卡车之间的距离,且可使用流量控制器82使LNG加载速率从250GPM到500GPM变化。若必需,则可增加差压来增加加载速率。因此,应意识到,LNG泵送并非必需的,且可显著减小所述加载系统的大小和成本。虽然本文中所提出的方法和设备可具有任何生产量,应意识到,这样的设备和方法特别地适合于通过对适量进料气体进行液化,具有通常在10至200吨,更通常地在20-80吨之间,且最通常地在30-60吨的每日LNG生产量的小型LNG设施。因此,所设想到的设备和方法可实施于可提供大量天然气的任何位置处,且特别优选的位置包括产气井/气体生产井,气化设备(例如,煤和其它含碳材料)和使用来自天然气管道的气体的分散化位置。因而,应认识到,进料气体组成可显著不同,且取决于气体组成的类型,可需要一个或多个预处理单元。例如,合适的预处理单元包括脱水单元、酸性气移除单元等。进一步应指出,使用具有惰性气体的冷箱是特别优选的,特别地是在液化/填充站在城市环境的情况下。但是,各种其它低温/冷冻装置也认为是合适的,且替代装置包括使用混合烃制冷剂的那些。此外,且特别是在储罐具有略微更大的容量的情况下,设想到,来自LNG的制冷含量也可用于补充制冷要求。关于差压控制器(dPC),应当指出的是,dPC优选地被实施为带CPU的控制装置,且因此可被配置为一种合适地 经编程的个人计算机或可编程的逻辑控制器。而且,通常优选地,dPC被配置成使得dPC对控制阀的操作进行控制以由此使用压力传感器和阀而维持了在储罐与LNG运输容器中的罐之间的预定压差,如本领域中熟知的那样。例如,可通过调节从压缩机出口到储罐途中的受压缩的汽化蒸气的压力和/或流量,通过调节来自LNG运输容器中的罐的汽化蒸气的压力和/或流量,和/或通过调节从储罐到LNG运输容器中的罐的LNG的压力和/或流量,来实现控制。因而,在至少某些实施例中,差压控制器将被配置成允许与LNG运输器的填充操作同时进行液化操作。因此,将天然气进给到液化单元以连续方式进行。但是,还设想到不连续的进给和液化。应当指出的是,与大部分已知的配置相反,来自储罐和/或LNG运输容器中的罐的汽化蒸气的至少一部分并未被液化,而是用作原动流体来将LNG从储罐移动到LNG运输容器中的罐。因此,排除了对于LNG泵的需要。此外,应当指出的是,可采用从LNG运输容器中罐的汽化蒸气的制冷含量来补充冷箱中的制冷要求。因而,汽化蒸气被加热而不是如大部分操作中已知的那样被冷 却并且被再液化。另外还设想到,储罐可被修改成使得用于从储罐输出的LNG从储罐下部(例如,储集槽或其它位置,通常在罐的重心下方),通过罐的蒸气空间被抽吸到填充管线/加载软管,由此避免了与储罐下部处的填充端口相关联的问题。最通常地,该罐将包括终止于罐上部的内部填充管,以允许将内部填充管连接到填充管线/加载软管。因此,已公开了小型LNG生产和填充的具体实施例和应用。但对于本领域技术人员显而易见的是,在不偏离本文的发明概念的情况下,除了那些已经描述的之外的许多另外修改是可能的。因此除了在所附权利要求的范围中,本发明的主题不应受到限制。此外,在对说明书和权利要求二者进行解释的过程中,所有术语应以与上下文一致的最可能的广义方式来解释。特别地,术语“包括”和“包含”应被解释为以非排他性的方式来提及元件、构件或步骤,指示了所提及的元件、构件或步骤可与未明确提及的其它元件、构件或步骤一起存在、利用或组合。在说明书权利要求提及选自包括A、B、C……和N的组中的至少一个的情况下,本文应被解释为需要来自该组的仅一个元件,而不是A加N,或B加N等。
权利要求
1.一种具有集成加载终端的小型LNG设备,包括: 制冷单元,其包括闭合制冷循环,所述闭合制冷循环配置成用以向天然气进料提供一定量的制冷含量,所述制冷含量足以从天然气进料产生LNG ; LNG储罐,流体联接到冷箱且配置成用以允许接收和储存所述LNG ; 第一汽化蒸气导管,配置成用以提供从LNG运输器到冷箱的、和从所述冷箱到所述LNG储罐的第一汽化蒸气,以由此允许使用所述第一汽化蒸气作为原动力来将所述LNG从所述LNG储罐移出; 第二汽化蒸气导管,配置成用以提供从所述LNG储罐到所述冷箱的、和从所述冷箱到所述天然气进料的第二汽化蒸气;以及 压缩机,其配置成用以允许压缩所述第一汽化蒸气和第二汽化蒸气中的至少一个。
2.根据权利要求1所述的设备,其特征在于,其还包括:差压控制器,配置成用以维持着在所述LNG储罐与所述LNG运输器之间预定的压差。
3.根据权利要求2所述的设备,其中,所述差压控制器配置成用以允许与所述LNG运输器的填充操作同时进行液化操作。
4.根据权利要求2所述的设备,其中,所述预定压差在10-50psi之间。
5.根据权利要求1所述的设备,其中,所述制冷单元还包括:至少3个交换器通道,其利用二级氮气压缩膨胀器循环而提供所述天然气液化制冷负荷;以及,交换器通道,配置成用以从所述第一汽化蒸气和所述第二汽化蒸气中的至少一个回收制冷含量。
6.根据权利要求1所述的设备,其中,所述闭合制冷循环包括生成低水平冷却的二级涡轮膨胀器,二级涡轮膨胀器与二级压缩系统流体地联接,二级压缩系统生成了进给所述涡轮膨胀器的高压的经致冷的气体,而同时从涡轮膨胀器所产生的动力用于降低气体压缩要求,且其中所述制冷循环配置成用以利用非烃制冷剂来操作。
7.根据权利要求1所述的设备,其中,所述制冷单元和储罐配置成用以提供每日10至200吨的LNG生产量。
8.一种对天然气进行液化和将所述LNG加载到LNG运输器的方法,包括: 在包括闭合制冷循环的冷箱中对天然气进料进行液化,且将所述LNG进给到LNG储te ; 加热并压缩来自LNG运输器的第一汽化蒸气;以及 使用经加热并且受压缩的第一汽化蒸气作为原动力以将来自所述LNG储罐的LNG递送到所述LNG运输器。
9.根据权利要求8所述的方法,其还包括以下步骤:加热并压缩来自所述LNG储罐的第二汽化蒸气,且将经加热并且受压缩的第二汽化蒸气进给到所述天然气进料。
10.根据权利要求8所述的方法,还包括:使用差压控制器来维持着在所述LNG储罐与所述LNG运输器之间预定的压差。
11.根据权利要求10所述的方法,其中,所述差压控制器配置成用以允许与所述LNG运输器的填充操作同时进行液化操作。
12.根据权利要求10所述的方法,其中,所述预定压差在10-50psi之间。
13.根据权利要求8所述的方法,其中通过使用一种运用非烃制冷剂的二级闭合制冷循环来在冷箱中执行所述天然气进料的液化。
14.根据权利要求8所述的方法,其中所述LNG储罐包括内部填充管,所述内部填充管将自所述储罐下部的LNG通过所述储罐的蒸气空间输送到位于所述储罐外侧位置的填充管线或加载软管。
15.一种用于具有集成加载终端的LNG设备中的差压控制器,其中,所述控制器编程为允许维持着在所述LNG设备中的LNG储罐与停靠在所述LNG设备的加载终端处的LNG运输器上的接纳罐之间的预定压差,且其中所述控制器还配置成用以控制来自所述LNG运输器上的罐的经压缩的汽化蒸气的流量和压力中的至少一个。
16.根据权利要求15所述的差压控制器,其中,所述控制器还配置成用以控制从所述储罐到所述LNG运输器上的罐的 LNG流量。
全文摘要
小型天然气液化设备与LNG加载设施相集成,其中使用多级气体膨胀循环来液化了天然气。然后使用差压控制系统将LNG加载到在加载设施处的LNG卡车上、或其它LNG运输车辆上,差压控制系统使用经压缩的汽化气体作为原动力以将来自LNG储罐的LNG移动到LNG卡车,从而避免使用LNG泵和相关联的准备、以及避免将汽化蒸气排入环境。
文档编号F25J1/00GK103229011SQ201180046944
公开日2013年7月31日 申请日期2011年7月29日 优先权日2010年7月29日
发明者J.马克 申请人:氟石科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1