专利名称:蒸发气体再液化装置的利记博彩app
技术领域:
本发明涉及蒸发气体再液化装置。
背景技术:
在LNG船中,在货舱中以大气压储藏、输送低温的液化天然气。该液化天然气(LNG)由于向货舱内的进入的热而蒸发,作为蒸发气体贮存于货舱内的上部。因该蒸发气体所膨胀的容积而货舱内的压力增加,因此,有必要进行连续地抽出该蒸发气体的处理。为了有效地使用该煮沸气体,在大多数的LNG船中,将蒸发气体作为锅炉、气体焚烧内燃机等的燃料,由此,用于推动力及船内电力的补给。但是,相对于产生的蒸发气体的量在作为燃料要求的量少的情况下,剩余的蒸发气体向船外排放,即,白白地被废弃。特别是在载货状态下在长期地进行停泊或低速航行的情况下,损失变大。作为抑制该损失的措施,航行有一种天然气输送船(LNG船),其具备使剩余的蒸发气体再液化返回货舱的蒸发气体再液化装置(例如,参照专利文献I)。在蒸发气体再液化装置中,蒸发气体通过沿着冷冻循环改变状态进行循环的制冷剂的冷热进行冷却、凝缩,由此进行再液化。在设于LNG船的蒸发气体再液化装置中,为容纳于船上的狭窄的空间而要求紧凑的构造。另外,蒸发气体再液化装置进行各种各样的使液化效率提高的研究,如专利文献I所示,将向冷冻循环部供给的蒸发气体通过两个压缩机进行两次压缩,在提高与在冷冻循环部循环的制冷剂的热交换效率的同时,专注于在装置整体中节省空间化。与蒸发气体再液化装置的蒸发气体的冷却相关的主要设备一般配置于船体中央部的货物设备室。另一方面,构成冷冻循环部的制冷剂压缩机为常温设备,不与蒸发气体直接接触,且需要大的动力,因此,优选配置于容易设置大动力驱动机类的机舱内。另外,冷却被压缩的制冷剂的中间冷却器为大型,且需要大量的冷却清水,因此,在这一点也优选配置于制造冷却清水的机舱。在专利文献I所示的装置中,冷冻循环部的制冷剂压缩机及在此附带的中间冷却器配置于机舱内,在货物设备室内仅配置剩余的冷却的部分。由此,例如,在将现有的蒸发气体等天然气作为锅炉燃料使用的LNG船中,在设置蒸发气体再液化装置的情况下,能够大幅减轻改造工程,即使在适用于新造船的情况下,也能够容易地进行设计变更。现有技术文献专利文献专利文献1:(日本)特开2010-25152号公报
发明内容
本发明要解决的问题
但是,在蒸发气体被压缩后,直到向蒸发气体再液化装置的液化部(凝缩部)供给,一直冷却到凝缩温度附近。在专利文献I所示的装置中,使用该冷却中冷冻循环部的制冷剂的冷热,因此,需要确保这部分的制冷剂的冷热。由此,与冷热的增加量相应地,降低冷冻循环部的液化效率,且构成冷冻循环部的各设备大型化。另外,具备进一步压缩由制冷剂压缩机压缩的制冷剂的增压压缩机,但是,在用增压压缩机压缩的制冷剂由使用了冷却清水的中间冷却器冷却后,向低温箱的膨胀器供给,因此,该中间冷却器必须配置于低温箱附近。由于将大型的中间冷却器设置于低温箱的附近,所以难以向比较狭窄的空间即货物设备室配置。特别是在航行的现有的LNG船中货物设备室仅具备有限的空间,因此,以在此设置蒸发气体再液化装置的方式进行改造是勉强的。另外,如专利文献I所示,预冷却器及凝缩器设为3个以上的多重热交换程序,因此,可能难以进行这些设计,设计的可靠性不足。本发明是鉴于以上的课题而开发的,其目的在于,提供一种蒸发气体再液化装置,减小压缩气体予冷的热负荷且设为小型且高效率的冷冻循环部,且对设备的配置进行研究,例如即使在现有的LNG船中也可设置。解决问题的技术方案为解决所述课题,本发明采用了以下技术方案。S卩,本发明第一方面提供一种蒸发气体再液化装置,其具备:气体供给部,其具有向气体压缩部供给在箱内产生的蒸发气体的气体供给管线及输送在该气体压缩部压缩的蒸发气体的压缩气体输送管线;冷冻循环部,其具有凝缩部,该凝缩部将在制冷剂压缩部压缩后的在第一中冷器中冷却的制冷剂通过膨胀器进行膨胀而成为进一步的低温状态,通过该制冷剂将在所述压缩气体输送管线中输送的所述蒸发气体冷却凝缩,其中,在所述气体供给部具备热交换部,该热交换部在所述凝缩部的上游侧,在通过所述压缩气体输送管线的所述蒸发气体和通过所述气体供给管线的所述蒸发气体间进行热交换。冷冻循环部的制冷剂用制冷剂压缩部压缩,且通过中间冷却器即第一中冷器冷却后,向膨胀器供给。该制冷剂通过膨胀器来膨胀减压,由此,成为蒸发气体液化中所需要的低温状态。膨胀器以该制冷剂膨胀时的力作为旋转力而取出,例如,经由直接连接的轴使增压压缩机旋转。该制冷剂经由凝缩部返回增压压缩机。另一方面,在气体供给部,经由气体供给管线供给的在箱内产生的蒸发气体由气体压缩部压缩,且以经由压缩气体输送管线通过凝缩部的方式输送。这时,在凝缩部的上游侧具备热交换部,该热交换部在通过压缩气体输送管线的蒸发气体和通过气体供给管线的蒸发气体间进行热交换,因此,在气体压缩部被压缩并成为高温状态的通过压缩气体输送管线的蒸发气体利用通过气体供给管线的温度低的蒸发气体冷却(预冷)并向凝缩部导入。通过压缩气体输送管线的蒸发气体通过在气体压缩部压缩的所述的蒸发气体冷却,换言之,以蒸发气体自身的冷热进行预冷。另外,作为通过压缩气体输送管线的蒸发气体的冷热,不仅限于通过气体供给管线的蒸发气体,也可以附加除此之外的设备中。向凝缩部导入的例如冷却到凝缩温度附近的蒸发气体由通过凝缩部的低温的制冷剂冷却、凝缩。这样,由气体压缩部压缩且成为高温状态的通过压缩气体输送管线的蒸发气体通过用气体压缩部压缩的所述的蒸发气体冷却,换言之,以蒸发气体自身的冷热进行预冷,因此,至少能够减少其热量部分的冷冻循环部的负担。由此,能够减小构成冷冻循环部的各设备,因此,能够使蒸发气体再液化装置小型化。在所述第一方面中,在所述冷冻循环部也可以具备:在所述凝缩部的下游侧通过所述膨胀器驱动且压缩所述制冷剂的增压压缩机、用该增压压缩机压缩且冷却向所述制冷剂压缩部供给的所述制冷剂的第二中冷器。据此,在冷冻循环部,由增压压缩机压缩的制冷剂进一步通过制冷剂压缩部压缩并向膨胀器供给,因此,冷却由增压压缩机压缩的制冷剂的第二中冷器被介装于制冷剂压缩部和增压压缩机之间。因此,第二中冷器能够配置于制冷剂压缩部附近,因此,在制冷剂压缩部例如设置于机舱的情况下,第二中冷器也能够在机舱中设置。这样,能够将大型的第二中冷器设置于较宽的机舱内,因此,例如即使在货物设备室狭窄的航行的现有的LNG船中也能够设置蒸发气体再液化装置。另外,清水的供给系统设置于机舱内,因此,在冷冻循环部的第一中冷器及第二中冷器均设置于机舱内时,这些配管能够简单化,能够提高冷却效率。本发明第二方面提供一种蒸发气体再液化装置,其具备:气体供给部,其具有向气体压缩部供给在箱内产生的蒸发气体的气体供给管线及输送在该气体压缩部压缩的蒸发气体的压缩气体输送管线;冷冻循环部,其具有凝缩部,该凝缩部将在制冷剂压缩部压缩后的在第一中冷器中冷却的制冷剂通过膨胀器进行膨胀减压而成为进一步的低温状态,通过该制冷剂将在所述压缩气体输送管线中输送的所述蒸发气体冷却凝缩,其中,在所述冷冻循环部具备:在所述凝缩部的下游侧通过所述膨胀器驱动且压缩所述制冷剂的增压压缩机和用该增压压缩机压缩且冷却向所述制冷剂压缩部供给的所述制冷剂的第二中冷器。在冷冻循环部,用增压压缩机压缩,且通过中间冷却器即第二中冷器冷却。该制冷剂在用制冷剂压缩部压缩、且通过中间冷却器即第一中冷器冷却后,向膨胀器供给。该制冷剂通过膨胀器减压、膨胀而成为进一步的低温状态。膨胀器以该制冷剂膨胀时的力为旋转力取出,例如,经由直接连结的轴使增压压缩机旋转。成为更低温状态的制冷剂经由凝缩部返回增压压缩机。另一方面,在气体供给部,经由气体供给管线供给的在箱内产生的蒸发气体以在气体压缩部压缩、经由压缩气体输送管线通过凝缩部的方式输送。这样,在冷冻循环部,用增压压缩机压缩的制冷剂进一步通过制冷剂压缩部压缩并向膨胀器供给,因此,冷却由增压压缩机压缩的制冷剂的第二中冷器被设于制冷剂压缩部和增压压缩机之间。因此,第二中冷器能够配置于制冷剂压缩部附近,因此,在制冷剂压缩部例如设置于机舱的情况下,第二中冷器也能够在机舱中设置。这样,能够将大型的第二中冷器设置于较宽的机舱内,因此,例如即使在货物设备室狭窄的航行的现有的LNG船中也能够设置蒸发气体再液化装置。
另外,清水的供给系统设置于机舱内,因此,在冷冻循环部的第一中冷器及第二中冷器均设置于机舱内时,这些配管能够简单化,能够提高冷却效率。在所述各方式中,希望在所述气体供给管线的所述热交换部的上游侧具备对液化天然气喷雾而冷却所述蒸发气体的缓热器。例如,在蒸发气体再液化装置运转开始时配管未被冷却的情况下,或在压载航行中,在箱内的蒸发气体为比较高温的状态的情况下等,通过气体供给管线的蒸发气体的温度比较高,可能在热交换部的冷热不足。这种情况下,在本方式中,在气体供给管线的热交换部的上游侧具备对液化天然气喷雾且冷却蒸发气体的缓热器,因此,通过缓热器能够冷却向热交换器供给的蒸发气体。在所述各方式中,所述气体压缩部也可以设为分为两阶段的构成。据此,蒸发气体遍及 两次压缩,因此,能够高效率地进行与冷冻循环部的热交换。由此,能够实现再液化设备的小型化。在所述构成中,所述气体压缩部的第一阶段的压缩也可以通过作为燃料向锅炉供给的燃料用压缩机进行。据此,例如,在将现有的蒸发气体等天然气作为锅炉的燃料使用的LNG船中设置蒸发气体再液化装置的情况下,能够大幅度地减轻改造工程。另外,即使在适用于新造船的情况下也容易进行设计变更。燃料用压缩机为比较大的容量,但是,向此供给的蒸发气体通过热交换部加热,容积增加,因此,可不会成为超过容量而使用。因此,在航行的现有的LNG船中,能够有效地活用现有的燃料用压缩机,所以,能够减小改造工程的范围,能够廉价地进行改造。发明效果根据本发明,用气体压缩部压缩、成为高温状态的通过压缩气体输送管线的蒸发气体通过用气体压缩部压缩前的蒸发气体冷却,因此,能够缩小构成冷冻循环部的各设备,能够将蒸发气体再液化装置小型化。另外,在冷冻循环部,由增压压缩机压缩的制冷剂再通过制冷剂压缩部通过压缩且向膨胀器供给,因此,能够将第二中冷器能够配置于制冷剂压缩部附近,例如即使在货物设备室狭窄的航行的现有的LNG船中也能够设置蒸发气体再液化装置。
图1是表示本发明一实施方式的蒸发气体再液化装置的概略构成的方块图。
具体实施例方式下面,使用图1对本发明一实施方式的LNG船的蒸发气体再液化装置I进行说明。图1是表示LNG船的蒸发气体再液化装置I的整体概略构成的方块图。LNG船具备贮藏液化天然气(以下,有时也称为LNG。)的多个货舱(图示省略)。在货舱中有例如制成大致球形的MOSS ( ^ ^ )式的箱等各种形式。在蒸发气体再液化装置I中具备冷冻循环部3、液化处理部(气体供给部)5。冷冻循环部3向液化处理部5供给通过制冷剂配管7循环的制冷剂(作为制冷剂,例如可以使用氮。另外,例如,氢和氦为对象。)的冷热。
在冷冻循环部3,作为主要要素设有制冷剂压缩机(制冷剂压缩部)9、制冷剂预冷却器11、膨胀器13、过冷却器15、凝缩器(凝缩部)17、增压压缩机19。制冷剂配管7按顺序连接制冷剂压缩机9、制冷剂预冷却器11、膨胀器13、过冷却器15、凝缩器17、制冷剂预冷却器11及增压压缩机19,构成封闭的系统。制冷剂压缩机9是通过蒸气涡轮21驱动的2段的离心式压缩机。另外,在没有驱动用蒸汽设备的船舶(燃油发动机推进船等)中也可以设为具有压缩机速度控制功能的电动机驱动。另外,制冷剂压缩机9不仅限于该形式,只要在制冷剂配管7内能够使差压产生,则也可以使用螺旋压缩机等适当的形式。制冷剂压缩机9吸引并压缩低温、低压的气体状制冷剂,制成高温 高压的气体状制冷剂。制冷剂压缩机9具有中冷器23。在制冷剂压缩机9的出口设有第一后冷却器(第一中冷器)25。为了调整制冷·剂量,具有制冷剂缓冲箱27的配管与制冷剂压缩机9的前后连接。制冷剂预冷却器11通过从凝缩器17导入的制冷剂来冷却从第一后冷却器25导入的制冷剂。制冷剂预冷却器11仅在制冷剂和制冷剂间进行热交换,因此,与3个以上的多重热交换工艺相比较,构造简单,容易设计。由此,能够提高设计的可靠性。膨胀器13通过制冷剂预冷却器11使温度降低的制冷剂通过减压而膨胀成为低温、低压的气体状制冷剂。将该制冷剂膨胀时的力作为旋转力,与膨胀器13同轴连接的增压压缩机19被旋转驱动。来自膨胀器13的低温、低压的气体状制冷剂按照过冷却器15、凝缩器17及制冷剂预冷却器11顺序被输送且进行热交换。增压压缩机19压缩从制冷剂预冷却器11导入的制冷剂,将制冷剂制成高温 高压,向制冷剂压缩机9供给。在增压压缩机19的下游侧且制冷剂压缩机的上游侧具备第二后冷却器(第二中冷器)29。在制冷剂配管7的膨胀器13的上游侧和凝缩器17的下游侧之间具备通过阀的开闭进行断接的旁通配管31。在冷冻循环3起动时,旁通配管31开放。由此,制冷剂不通过膨胀器13,因此,由此带来的阻力消失,能够进行制冷剂压缩机9的起动。在液化处理部5具备:向燃料用压缩机33供给在未图示的货舱产生的蒸发气体(以下,称为蒸发气体)的BOG供给配管(气体供给管线)35、将由燃料用压缩机33压缩的BOG向分离器37输送的BOG输送配管(压缩气体输送管线)39、从分离器37向货舱输送再液化的LNG的再液化气体配管41。在BOG供给配管35中具备冷却输送的BOG的雾分离器(缓热器)43。雾分离器43以选择地供给在分离器37的下部贮存的再液化的LNG的方式构成。在从分离器37向雾分离器43供给LNG时,通过该LNG冷却B0G。燃料用压缩机33作为向锅炉供给燃料的装置设置,在改造时设置。燃料用压缩机33并列地配设同一构造的2台,且一方为万一出现故障时备用的。燃料用压缩机33以用电动机驱动的方式构成。另外,在该2台燃料用压缩机33中并列具备未设置燃料用压缩机33的自由流管线45。在自由流管线45中具备开闭的开闭阀47。在燃料用压缩机33及自由流管线45的出口连接有向未图示的锅炉作为燃料供给天然气的燃料配管49。在燃料配管49中具备加热利用燃料用压缩机33压缩的天然气的气体加热器51。在燃料用压缩机33及自由流管线45,也可以气化供给另外贮藏于货舱的LNG。BOG输送配管39通过凝缩部17将来自燃料用压缩机33的BOG向分离器37输送。这时,凝缩器17利用通过制冷剂配管7的制冷剂将BOG冷却凝缩。凝缩器17仅在制冷剂和BOG之间进行热交换,因此,与3以上的多重热交换工艺相比较,构造简单,设计容易。由此,能够提高设计的可靠性。在BOG输送配管39中具备:压缩BOG的BOG增压器53和例如用清水冷却由BOG增压器53压缩且成为高温的BOG的BOG后冷却器55。BOG增压器53例如将160kPaa的BOG升压为450kPaa,如果可能的话,例如可以使用直冷式螺旋压缩机等适当形式的压缩机。在BOG输送配管39的BOG后冷却器55和凝缩器17之间,即凝缩部17的上游侧具备在通过BOG输送配管39的BO G和通过BOG供给配管35的BOG间进行热交换的BOG预冷却器(热交换部)57。BOG预冷却器57仅在制冷剂和BOG间进行热交换,因此,与3以上的多重热交换工艺相比较,构造简单,容易设计。由此,能够提高设计的可靠性。另外,在利用BOG预冷却器57充分冷却通过BOG输送配管39的BOG的情况下,也可以省略BOG后冷却器55的设置。在BOG供给配管35中具备通过旁通BOG预冷却器57的阀的开闭进行断接的旁通配管59。用BOG输送配管39输送的BOG在凝缩器17中由通过制冷剂配管7的制冷剂冷却凝缩。该凝缩的BOG被分离为导入分离器37的液体部分和气体部分。再液化气体配管41从分离器37的下部通过过冷却器15与货舱连接。在再液化气体配管41,在比过冷却器15更下游侧设有再液化气体流量调节阀61。设有从BOG供给配管35的比雾分离器43更上游侧及分离器37的顶部向燃料配管49连接的具备流量调节阀的气体供给分支配管63。气体供给分支配管63以冷却通过制冷剂预冷却器11且从制冷剂压缩机9向膨胀器13供给的制冷剂的方式构成。膨胀器13、制冷剂预冷却器11、凝缩器17、过冷却器15及BOG预冷却器57紧凑地收纳于设为防热构造的低温箱65内。增压压缩机19由膨胀器13旋转驱动,因此,以比低温箱65更突出的方式安装。制冷剂压缩机9、制冷剂缓冲箱27、蒸气涡轮21、中冷器23、第一后冷却器25、第二后冷却器29及燃料用压缩机33配置于设置有锅炉的机舱内,低温箱65及分离器37设置于货物设备室。对具有以上构成的本实施方式的蒸发气体再液化装置I的动作进行说明。在冷冻循环部3,制冷剂压缩机9由蒸气涡轮21驱动,将从制冷剂配管7导入的低温、低压的气体状制冷剂进行两阶段压缩,成为高温 高压的气体状制冷剂。这时,制冷剂在I阶段的压缩和两阶段的压缩期间,通过中冷器23进行冷却。该高温 高压的气体状制冷剂由第一后冷却器25冷却并向制冷剂预冷却器11导入。在制冷剂预冷却器11,导入的气体状制冷剂通过从凝缩器17返回的低温、低压的气体状制冷剂冷却。该制冷剂被导入膨胀器13,通过减压膨胀,成为更低温、低压是气体状制冷剂。该低温、低压的气体状制冷剂通过过冷却器15及凝缩器17,将其冷热赋予周围进行冷却。
`
之后,制冷剂通过制冷剂预冷却器11由被导入膨胀器13的制冷剂加热,导入增压压缩机19。制冷剂在增压压缩机19中压缩而成为高温 高压的气体状制冷剂。该高温 高压的气体状制冷剂由第二后冷却器29冷却,向制冷剂压缩机9输送。向制冷剂压缩机9导入的制冷剂通过制冷剂压缩机9进一步成为高温 高压且送出。在冷冻循环部3连续地进行该循环,由此,在制冷剂配管7通过的过冷却器15、凝缩器17及制冷剂预冷却器11中提供冷热。在货舱产生的BOG利用BOG供给配管35且通过雾分离器43及BOG预冷却器57利用燃料用压缩机33供给。雾分离器43在通常运转中不供给LNG,因此,不冷却B0G。例如,在蒸发气体再液化装置I的运转开始时,在配管未被冷却的情况下,或在压载航行中,货舱内的BOG在比较高温的状态的情况下等通过BOG供给配管35的BOG的温度变得比较高时,例如,从分离器37再液化的LNG向雾分离器43供给,且使向BOG预冷却器57供给的BOG的温度降低到必要的温度,例如_120°C。被导入燃料用压缩机33的BOG通过燃料用压缩机33例如被压缩到160kPaa。这时,BOG的温度例如成为大致55°C。之后,BOG通过BOG增压器53升压到例如450kPaa。这时,BOG的温度成为例如大致 100。。。该BOG通过BOG后冷却器55冷却到大约40°C,向BOG预冷却器57导入。在BOG预冷却器57中,由通过BOG供给配管35的BOG冷却到例如大致_110°C即大致饱和液状态。另一方面,通过BOG供给配管35的BOG例如从大致_120°C升温到大致30。。。该冷却的BOG在通过凝缩器17时,通过在冷冻循环部3的制冷剂配管7中流动的低温、低压的气体状制冷剂被冷却,凝缩。凝缩的BOG被向分离器37输送。在分离器37中,将凝缩的BOG进行气液分离,再液化的LNG即液体部分贮存于下部,气体部分贮存于上部。下部的LNG通过再液化气体配管41,在过冷却器15中过冷却且返回货舱。这样,BOG通过燃料用压缩机33及BOG增压器53进行2次压缩而成为高压,因此,能够高效率地进行与冷冻循环部3的热交换。由此,能够实现冷冻循环部3的小型化。另外,通过用燃料用压缩机33及BOG增压器53压缩且成为高温状态的BOG输送配管39的BOG在BOG预冷却器57中由通过BOG供给配管35的燃料用压缩机33压缩前的BOG冷却,换言之,由BOG自信的冷热予冷,因此,至少能够减少该热量部分的冷冻循环部3的负担。由此,能够减小构成冷冻循环部3的各设备,因此,能够使蒸发气体再液化装置I小型化。另外,在冷冻循环部3中,由增压压缩机19压缩的制冷剂再通过制冷剂压缩机9压缩并向膨胀器13供给,因此,冷却用增压压缩机19压缩的制冷剂的第二后冷却器29被设于制冷剂压缩机9和增压压缩机19之间。因此,第二后冷却器29能够配置于接近制冷剂压缩机9,因此,在制冷剂压缩机9设置于例如机舱的情况下,第二后冷却器29也可以设置于机舱。这样,能够在比较宽的机舱中设置大型的第二后冷却器29,因此,例如,即使在货物设备室狭窄的航行的现有的LNG船中也能够设置蒸发气体再液化装置I。另外,由于清水的供给系统设置于机舱,因此,在冷冻循环部3的中冷器23、第一后冷却器25及第二后冷却器29均设置于机舱时,它们的配管能够简化,能够提高冷却效率。这样,蒸发气体再液化装置I能够成为小型且高效率,能够减少其设置空间。因此,例如,在将现有的BOG等天然气作为锅炉的燃料使用的LNG船上设置蒸发气体再液化装置I的情况下,能够大幅减轻改造工程。另外,即使在用于新造船的情况下,也能够容易地进行设计变更。该情况下,燃料用压缩机33为比较大的容量,但是,向其供给的BOG通过BOG预冷却器57加热,容积增加,因此,可以不会成为超过容量而使用。因此,在航行的现有的LNG船中,能够有效地活用现有的燃料用压缩机33,因此,能够减小改造工程的范围,能够廉价地进行改造。另外,本发明不限于本实施方式,在不脱离本发明的宗旨的范围内能够进行适当地变更。符号说明I蒸发气体再液化装置3冷冻循环部5液化处理部9制冷剂压缩机13膨胀器17凝缩器19增压压缩机25第一后冷却器29第二后冷却器33燃料用压缩机35 BOG供给配管39 BOG输送配管43雾分离器
53 BOG 增压器57 BOG预冷却器
权利要求
1.一种蒸发气体再液化装置,其中,其具备: 气体供给部,其具有向气体压缩部供给在箱内产生的蒸发气体的气体供给管线及输送在该气体压缩部压缩的蒸发气体的压缩气体输送管线; 冷冻循环部,其具有凝缩部,该凝缩部将在制冷剂压缩部压缩后的在第一中冷器中冷却的制冷剂通过膨胀器进行膨胀减压而成为进一步的低温状态,通过该制冷剂将在所述压缩气体输送管线中输送的所述蒸发气体冷却凝缩, 在所述气体供给部具备热交换部,该热交换部在所述凝缩部的上游侧,在通过所述压缩气体输送管线的所述蒸发气体和通过所述气体供给管线的所述蒸发气体间进行热交换。
2.按权利要求1所述的蒸发气体再液化装置,其中,在所述冷冻循环部具备:在所述凝缩部的下游侧通过所述膨胀器驱动且压缩所述制冷剂的增压压缩机、用该增压压缩机压缩且冷却向所述制冷剂压缩部供给的所述制冷剂的第二中冷器。
3.一种蒸发气体再液化装置,其中,其具备: 气体供给部,其具有向气体压缩部供给在箱内产生的蒸发气体的气体供给管线及输送在该气体压缩部压缩的蒸发气体的压缩气体输送管线; 冷冻循环部,其具有凝缩部,该凝缩部将在制冷剂压缩部压缩后的在第一中冷器中冷却的制冷剂通过膨胀器进行膨胀减压而成为进一步的低温状态,通过该制冷剂将在所述压缩气体输送管线中输送的所述蒸发气体冷却凝缩, 在所述冷冻循环部具备:在所述凝缩部的下游侧通过所述膨胀器驱动且压缩所述制冷剂的增压压缩机和用该增压压缩机压缩且冷却向所述制冷剂压缩部供给的所述制冷剂的第二中冷器。
4.按权利要求1 3中任一项所述的蒸发气体再液化装置,其中,在所述气体供给管线的所述热交换部的上游侧具备对液化天然气喷雾并冷却所述蒸发气体的缓热器。
5.按权利要求1 4中任一项所述的蒸发气体再液化装置,其中,所述气体压缩部分为两个阶段。
6.按权利要求5所述的蒸发气体再液化装置,其中,所述气体压缩部的第一阶段的压缩通过作为燃料向锅炉供给的燃料用压缩机进行。
全文摘要
本发明提供一种蒸发气体再液化装置,减小热负荷且制成小型且高效率的冷冻循环部,且对设备的配置进行设计,即使在现有的LNG船中也可以设置。一种蒸发气体再液化装置(1),其具有液化处理部(5),该液化处理部具有BOG供给配管(35)、燃料用压缩机(33)、BOG输送配管(39);冷冻循环部(3),其具有凝缩部(17),该凝缩部(17)将来自制冷剂压缩机(9)的制冷剂通过膨胀器(13)进一步降温,冷却通过BOG输送配管(39)的BOG,其中,在液化处理部(5)具备BOG预冷却器(57),该BOG预冷却器(57)在凝缩部(17)的上游侧在通过BOG输送配管(39)的BOG和通过BOG供给配管(35)的BOG间进行热交换,在冷冻循环部(3)具备在凝缩部(17)的下游侧通过膨胀器(13)驱动的增压压缩机(19)和冷却来自增压压缩机(19)的制冷剂的第二后冷却器(29)。
文档编号F25J1/00GK103097237SQ201180032758
公开日2013年5月8日 申请日期2011年9月16日 优先权日2010年9月30日
发明者冈胜 申请人:三菱重工业株式会社