用于碳热还原炉的衬里的利记博彩app

文档序号:4696010阅读:258来源:国知局
专利名称:用于碳热还原炉的衬里的利记博彩app
背景技术
发明领域本发明涉及由石墨和其它耐火材料制得的用于氧化铝碳热还原生产铝的衬里(linings and liners)。
相关技术的描述一个世纪以来,铝工业依靠于铝熔炼的Hall-Heroult方法。在与生产其它竞争材料例如钢和塑料使用的方法比较时,该方法是耗能的和成本高的。因此,一直在寻求可替换的铝生产方法。
其中一种这样可替换的方法是称为氧化铝直接碳热还原的方法。如在US专利2,974,032(Grunert等人)中描述的,进行能用总反应Al2O3+3C=2Al+3CO(1)概括的方法,或能分两步进行该方法2Al2O3+9C=Al4C3+6CO (2)Al4C3+Al2O3=6Al+3CO (3)在1900-2000℃温度进行反应(2)。在2200℃及以上温度进行实际的铝生产反应(3);随着温度的升高反应速度加快。除在反应(2)和(3)中提到的物质外,在反应(2)和(3)中形成包括Al2O的挥发性Al物质,并随废气排出。除非回收,这些挥发性物质代表了铝产量的损失。反应(2)和(3)均是吸热的。
已经进行各种尝试以开发有效的用于氧化铝直接碳热还原的生产技术(参见Marshall Bruno,Light Metals 2003,TMS(The Minerals,Metal & Materials Society)2003)。US专和3,607,221(Kibby)描述了一种方法,该方法中所有产物快速气化为基本上仅气态铝和CO,在一定温度下含有具有液体铝层的气态混合物,在该温度下温度足够低以使液体铝的蒸气压低于与之接触的铝蒸气的分压,同时温度足够高以阻止一氧化碳和铝的反应并回收基本上纯的铝。
其它的关于碳热还原生产铝的专利包括US专利4,486,229(Troup等人)和4,491,472(Stevenson等人)。在US专利4,099,959(Dewing等人)中描述了双反应区域。由Alcoa和Elkem最近的努力获得新的双室反应器设计,如US专利6,440,193(Johansen等人)描述的。
在双室反应器中,反应(2)基本上限定在低温室。在底流(underflow)间隔壁下Al4C3和Al2O3的熔浴流入进行反应(3)的高温室。由此生产的铝在熔融炉渣层顶部形成层,并从高温室流出。来自低温室和高温室的含有Al蒸气和挥发性Al2O的废气在单独的气体回收单元中反应形成Al4C3,并将其再次注入低温室。能通过高密度电阻加热例如通过浸入熔浴中的石墨电极提供低温室中维持温度所需的能量。相似的,能通过基本水平安置在反应容器高温室侧壁上的多个电极对提供高温室中维持温度所需的能量。
US专利4,099,959(Dewing等人)提出使用不具有任何内衬的钢壳用于反应容器。在炉操作中,在钢上将形成凝固炉渣的衬里,因此保护其不受反应室中苛刻环境的影响并进而防止电短路。但是,为了确保系统的安全性和避免熔融炉渣穿透的可能性,建议提供例如两套重复并完全独立的水冷却系统、红外探测器或其它检测钢壳温度的传感器,以及在钢壳的电接地连接中的电流探测器。当探测器检查到任何系统故障时,自动关掉电源并启动备用的水冷却系统。
除了安全操作系统的复杂性外,凝固的炉渣层仅在一些初始启动过程后形成,在启动过程中钢壳将受到熔融炉渣的严重侵蚀。此外,熔炉气氛是在压力下的并含有容易透过凝固炉渣并然后侵蚀钢表面的大量CO气。此外,在真实的操作条件下非常难以维持均匀的凝固炉渣层。因此,上述安全系统将经常引起电源关闭使得难以进行有效和连续的生产工艺。最后,一旦非常热的熔融炉渣接触钢壳,那么仅通过水喷射装置冷却系统是非常困难的任务。
发明概述因此,本发明的目的是提供碳热还原炉的衬里,该衬里克服迄今已知的这种通常类型设备和方法的上述缺点,具体的,目的是提供用于氧化铝生产的碳热还原炉的钢壳内衬,特别的由耐火材料和石墨制成的衬里,该衬里提供对于熔融炉渣的保护,不污染熔体,不被富CO的熔炉气氛侵蚀,并且还提供在关闭电源情况下有效的热消散系统。
关于前述的和其它目的,根据本发明提供用于碳热还原炉的反应容器,特别用于氧化铝碳热还原。该容器包括具有内壁表面的外壳;和位于内壁表面上并保护外壳不受反应容器内熔融炉渣侵蚀的衬里结构,该衬里具有位于内壁表面上的相对厚的石墨基底层和在石墨基底层上并与之紧密接触的相对薄的耐火材料层。
该衬里结构具有至少35W/m·K,优选120-200W/m·K范围的热导率。
该衬里结构特别适于氧化铝碳热还原。外壳是钢壳并形成衬里结构以保护氧化铝熔融炉渣不受来自钢壳的铁污染和保护钢壳不受CO侵蚀。衬里结构优选可基本抗CO侵蚀并具有低于0.1重量%的低Fe含量。
根据本发明附加的特征,耐火材料层是刚玉层。优选的,由刚玉和约25重量%Sialon形成刚玉层。
可作为涂层形成刚玉层或可由用基于分散在树脂(例如酚醛树脂、呋喃(furanic)、环氧)中石墨颗粒的高温胶附着在石墨基底层上的多个薄刚玉瓦片形成刚玉层。
关于上述和其它的目的,根据本发明提供生产用于碳热还原炉的衬里结构的方法。该方法包括在高于沥青软化点的温度混合主要部分的煅烧低铁焦炭和次要部分的沥青,并将混合物成型(例如挤出)为一个或多个块体;煅烧该块体以形成煅烧的块体;用浸渍沥青浸渍煅烧的块体,再次焙烧浸渍的块体,煅烧块体,并加工煅烧块体;用包括研磨刚玉的浆料涂覆每个块体的至少一个表面,并热处理浆料以形成在石墨块体至少一个表面上并与之紧密接触的耐火材料涂层;和连接块体以形成碳热还原炉的固体衬里,使具有耐火材料涂层的表面朝向炉内部。
根据本发明附加的特征,混合步骤包括提供约82份阳极品味焦炭(anode grade coke)和约18份沥青并在约150℃温度进行混合。
根据本发明另一特征,涂覆步骤包括用约75%细研磨刚玉和约25%Sialon颗粒的浆料涂覆,并在约2500℃温度热处理浆料。
根据本发明的又一特征,在高于2800℃的煅烧温度煅烧石墨块体。
总之,本发明提供由石墨和其它耐火材料制成的用于氧化铝碳热还原生产铝的衬里。石墨衬里与外部钢壳直接接触,且耐火材料衬里与石墨衬里紧密接触。
对于衬里结构,具有优异的热传输即具有好的热导率值以有效的冷却熔浴边缘区域以形成并维持凝固的熔渣层是重要的。热导率应至少35W/m·K并优选在120-200W/m·K范围。
特别在氧化铝碳热还原的环境中,石墨衬里基本上是抗CO侵蚀的和它们具有低于0.1%的低Fe含量也是十分重要的。新的耐火材料衬里是在化学和物理上耐熔融炉渣的。因此,优选的衬里由刚玉(氧化铝)形成,更优选的用由25%Sialon结合的刚玉制得。
在高炉中使用石墨炉衬里是已知的。然而,在氧化铝碳热还原情况下,将根据反应(1)消耗作为高度结构化类型碳的石墨,尽管没有添加到熔体中的低结构化碳物质的消耗那样快。因此,需要用化学和物理抗熔融炉渣的耐火材料薄层保护石墨。这种保护在炉启动阶段尤其重要并且对于确保不污染熔体也尤其重要。
材料可以是刚玉,其是氧化铝(Al2O3)的特定形式。在关键的启动阶段,它能抵抗熔融炉渣,因为它是化学均一的,其不会溶出任何污染物到熔体中。然而,根据反应(1),在启动过程中在凝固炉渣层最终形成前轻微程度的消耗石墨,并保护其表面不受进一步消耗。通过使用Sialon结合的刚玉能提供进一步提高的化学稳定性。Sialon是市售可获得的,例如从提供这种材料用作高炉陶瓷杯的Saint-GobainCeramics获得。Sialon是添加有小百分比氧化铝的氮化硅陶瓷。Sialon的化学式是Si(6-x)AlxOxN(8-x),其中x<4.2。在本文中Sialon的好处是由高x值产生的显著提高热稳定性和整体抗腐蚀性。
在生产的偶然情况下,熔体可能过热,因此使在内层刚玉衬里上的凝固的炉渣层熔融,并逐渐损耗刚玉衬里。在此期间,具有非常好热导性的相邻石墨衬里将在轴向和在径向上快速将热量消散到炉的外部。当石墨受到最终破坏通过薄刚玉衬里熔体的侵蚀时,熔体温度已经显著降低到开始形成凝固炉渣层的温度。即使如果这种影响局部稍微延迟,在低于约1000℃的温度,石墨材料能提供有效的阻挡层以阻止熔体的进一步化学侵蚀。
通常用于高炉和其它应用的石墨衬里含有多于0.1%Fe。由于加压的热的碳热还原炉气氛用CO气饱和,它将渗过内层刚玉衬里并优选与石墨衬里含Fe区域反应。为了确保石墨衬里的使用寿命,石墨衬里应只含有低于0.1%的痕量Fe。在本发明的另一实施方式中,使用低铁焦炭更优选阳极焦炭作为原材料以达到最终石墨衬里要求的纯度水平。阳极焦炭是非常纯的具有最少铁含量的焦炭。
由附加的权利要求说明作为本发明性质的其它特征。
尽管这里以用于电热还原炉的衬里实施方式说明和描述本发明,但并不认为限制本发明为所示的细节,因为可在权利要求及其等同的范围内在没有脱离本发明主旨的情况下进行各种改进和结构的变化。
然而,将通过下面本发明示例实施方式的描述更好理解本发明的内容,及附加的目的和其优点。
附图简要描述

图1是在块体的一个表面上具有保护性耐火层的石墨衬里块的部分透视图;图2A是取自衬里块体的部分横截面图,衬里块体在块体表面上形成有刚玉涂层;图2B是相似的取自炉衬里的截面,衬里具有粘附在块体上的由刚玉瓦片形成的保护性耐火层;和图3是取自反应容器壁的部分截面,反应容器具有钢壳和根据本发明衬里结构。
典型实施方式的详细描述参照详细的参考附图,并首先特别的参考其图1,图1显示了形成根据本发明衬里建筑块的石墨块体1的示意图。石墨块体1在其一个表面上具有薄的保护性耐火层2。在本发明优选的实施方式中,保护性层2是以涂层或瓦片层形式的刚玉层。保护性层2相对于石墨块体1是非常薄的。层2的厚度比块体1的厚度小的程度多于两个数量级典型的约三个数量级。例如刚玉涂层约3mm厚且刚玉瓦片层约0.5-2mm厚。在一个优选的实施方式中石墨块体约1.2m(1200mm)厚。
如图2A所示,保护性层2是与石墨块体1形成紧密结合的涂层3。在优选的实施方式中,在块体1上沉积约75%刚玉细粉和约25%Sialon的浆料,并然后在约2500℃温度进行焙烧。制得的涂层3具有约3mm厚度。
在如图2B中说明的可替换的实施方式中,也可以通过在石墨块体1上粘附刚玉瓦片4形成保护层2。刚玉瓦片4具有0.5-1mm厚度。它们相当薄,因为在初始的启动过程中保护性层2对于保护炉壳和更具体的石墨块体1是非常重要的。瓦片4可以具有75mm×75mm或100mm×100mm的扁平尺寸。
瓦片4通过高温胶合剂5粘附在块体1上。高温胶合剂或高温胶由约50%(w/w)细研磨石墨颗粒和树脂组成,其在完全处理时碳化。树脂可以是酚醛基树脂、或呋喃树脂或环氧树脂。
现在参考图3,其中说明了碳热还原炉钢壳6的部分截面。由用高温胶合剂或胶7粘附于钢壳6并彼此粘附的多个石墨块体1形成壳内壁表面上的衬里。在紧密放置的块体1上的保护性层2形成具有高温胶7窄浆线的连续保护性层。也可使用相同的胶合剂7用于将块体粘附到钢壳6上和将块体1粘附在一起。因此,确保胶是抗高温的同时并不降低衬里结构高的热导性是重要的。换句话说,胶合剂7也具有好的热导性。
当炉启动时,石墨衬里轻微膨胀,且这种压力和热量使得胶合剂7固化。这确保了块体1间的充分紧密性和与钢壳间的好的热接触。
如图3所示,该炉用于氧化铝碳热还原。热的熔体9含有碳(C)、氧化铝(Al2O3)和碳化铝(Al4C3)的混合物。图示还包括在炉常规操作中形成的凝固炉渣层8。
提供下面实施例以进一步说明和解释本发明,但不应视为任何的限制。除非另外说明,所有份数和百分比以重量表示。
实施例1在150℃在强力混合器中在高能量输入下混合85份煅烧的低铁焦炭和18份具有110℃(Mettler)软化点的沥青15分钟。在115℃挤出混合物。挤出的块体在900℃最终烧成温度在Riedhammer型环形炉中煅烧3-4周。
在高压釜中在250℃和最高为25巴的压力下用浸渍沥青浸渍由此获得块体。之后,在1000℃在再焙烧炉中再次焙烧1-3周,接着在超过2800℃最终温度在Castner型炉中以最多20小时的烧成率进行石墨化。最后加工由此获得的石墨块体到需要的尺寸。
比较例1进行相同的过程,除了使用具有高铁含量的常规针状焦炭代替低铁的阳极品位焦炭作为石墨衬里的原材料。
实施例2将根据实施例1获得的石墨块体加工为1m×1m(长×宽)和1.2m高的块体。用75%细研磨的刚玉和25%Sialon颗粒的浆料涂覆一个1m×1m表面,在高于2500℃最终温度对其进行热处理。由此获得的涂层具有3mm厚度。
通过高温胶连接涂覆的石墨衬里和其它以相同方式制得的石墨衬里,以获得碳热还原炉钢壳的固体衬里壁。
上述说明书旨在能够使本领域技术人员实施本发明。而并未试图详尽说明在本领域技术人员阅读说明书后显而易见的所有的可能变化和改进。然而,所有这些改进和变化将包括在由下面权利要求限定的本发明的范围内。权利要求旨在涵盖在任何能满足本发明目的的设计和过程中说明的要素和步骤,除非上下文特别指示相反的。
权利要求
1.碳热还原炉中的反应容器,其包括具有内壁表面的外壳;和位于所述内壁表面上并保护所述外壳不受反应容器中熔融炉渣侵蚀的衬里结构,所述衬里具有位于所述内壁表面上的相对厚的石墨基底层和在所述石墨基底层上并与之紧密接触的相对薄的耐火材料层。
2.根据权利要求1的反应容器,其中所述衬里结构具有至少35W/m·K的热导率。
3.根据权利要求1的反应容器,其中所述衬里结构具有35-200W/m·K的热导率。
4.根据权利要求1的反应容器,其中所述衬里结构具有120-200W/m·K的热导率。
5.根据权利要1的反应容器,其设计用于氧化铝碳热还原,其中所述外壳是钢壳并形成所述衬里结构以保护氧化铝熔融炉渣不受来自钢壳的铁污染和保护所述钢壳不受CO侵蚀。
6.根据权利要求1的反应容器,其中所述衬里结构设计为基本上抗CO侵蚀并具有低于0.1重量%的低的Fe含量。
7.根据权利要求1的反应容器,其中所述耐火材料层是刚玉层。
8.根据权利要求1的反应容器,其中所述耐火材料层由刚玉和约25重量%Sialon形成。
9.根据权利要求1的反应容器,其中所述耐火材料层比所述石墨基底层薄多于2个数量级。
10.根据权利要求7的反应容器,其中所述耐火材料层由多个刚玉瓦片形成,用基于分散在树脂中的石墨颗粒的高温胶将所述多个刚玉瓦片附着在所述石墨基底层上。
11.根据权利要求10的反应容器,其中所述树脂选自酚醛树脂、呋喃树脂,和环氧树脂。
12.生产用于碳热还原炉的衬里结构的方法,包括在高于沥青软化点的温度混合主要部分的煅烧低铁焦炭和次要部分的沥青,并将混合物成型为一个或多个块体;煅烧该块体以形成煅烧的块体;用浸渍沥青浸渍该煅烧的块体,再次焙烧浸渍的块体,煅烧该块体,并加工该煅烧的块体;用包括研磨刚玉的浆料涂覆每个块体的至少一个表面,并热处理该浆料以形成在石墨块体至少一个表面上并与之紧密接触的耐火涂层;和连接块体以形成碳热还原炉的固体衬里,使具有耐火涂层的表面朝向炉内部。
13.根据权利要求12的方法,其中混合步骤包括提供约82份阳极品味焦炭和约18份沥青并在约150℃温度进行混合。
14.根据权利要求12的方法,其中涂覆步骤包括用约75%细研磨刚玉和约25%Sialon颗粒的浆料涂覆,并在约2500℃温度热处理该浆料。
15.根据权利要求12的方法,其中涂覆步骤包括形成约3mm厚的耐火层。
16.根据权利要求12的方法,包括将块体加工为约1m×1m×1.2m的基本最终尺寸。
17.根据权利要求12的方法,其中煅烧步骤包括在高于2800℃的煅烧温度进行煅烧。
18.根据权利要求12的方法,其包括通过挤出混合物将混合物成形为块体。
全文摘要
用于碳热还原炉的钢壳的内衬具有石墨的基底层和耐火材料的涂层。该耐火材料是由Sialon(Si-Al-O-N)结合的刚玉(Al
文档编号F27D1/00GK101076504SQ200580015206
公开日2007年11月21日 申请日期2005年5月13日 优先权日2004年5月13日
发明者J·戴默 申请人:Sgl碳股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1