专利名称::热交换器及工艺方法
技术领域:
:本发明涉及热交换器和工艺方法,特别涉及在传输工艺流体的热交换管与象管板这样的限定区域边界的装置之间有显著的不同热膨胀的工艺方法和热交换器,热交换介质在和通过热交换管的工艺流体进行热交换时穿过上述区域。在以上类型的热交换器中,工艺流体从工艺流体输入区通过由热交换介质穿过的隔层限定的热交换区内的热交换管,然后流入工艺流体输出区。象管板这样的装置用于分离上述区域。这种管板可将热交换介质通过的热交换区与例如输入室这样的与热交换管内部连通的区域分开,热交换管允许工艺流体输入该管或由该管排出。另一种设计是包括采用置于热交换区内的集管来限定工艺流体输入区工艺流体输入集管,从集管流入并穿过热交换管。同样,集管也可用于从热交换管排出工艺流体。另一方案,可以将管板和集管相结合,例如,工艺流体可以从由管板与热交换区分开的输入室输入热交换管,而置于热交换区内的集管用于从热交换管排出工艺流体。上述管板或集管在此称作分界装置,因为它们限定了热交换区与工艺流体输入区以及工艺流体输出区之间的界限。在象烃类的蒸汽重整这样一些应用中,热交换管相当长,通常数米长,而在冷态(即室温)和正常的工艺运转之间存在很大温差,经常为几百度,例如500-1000℃或更多。结果热交换管纵向膨胀相当大,相对于固定分界装置的隔层常膨胀10cm或更多。习惯的做法是在热交换管的一端或两端装备挠性接头(pigtail),以允许这种不均匀膨胀,因此将挠性接头而不是热交换管本身固定在分界装置上。另一方面,波纹管(bellow)装置常被采用,以允许上述膨胀。但是,可调节10cm或更大范围的不均匀膨胀的挠性接头或波纹管装置会带来实际困难。在某些类型的热交换器中,热交换介质为已通过热交换管的工艺流体,但该工艺流体在用作热交换介质之前需进一步处理。例如,热交换管可充填蒸汽重整催化剂,与蒸汽混合的烃原料通过该热交换管热交换管由热交换介质加热,以向吸热的一次蒸汽重整反应提供所需热量,从而得到一次重整气体。然后,所得一次重整气体进行部分氧化,其中一次重整气体与氧或空气部分燃烧,在某些情况下,在称为二次重整的工艺中再通过二次重整催化剂床。然后,所得部分燃烧的气体(在这方面我们包括二次重整气体)用作加热热交换管的热交换介质。GB1578270中描述了进行一次重整的这种工艺方法和热交换器的实例。在改进的这种工艺中取消了热交换管输出端的分界装置。热交换管通向导入空气或氧气之类气体的区域,从而产生一次重整气体的部分燃烧,所得部分燃烧的气体返回从热交换管旁边流过,加热热交换管。US2579843、US4919844和GB2181740中介绍了这种工艺和热交换器的实例。虽然这种热交换器避免了与热交换管的不均匀热膨胀有关的问题,但是它带来在采用部分燃烧的气体加热热交换管之前需要使该气体通过二次重整催化剂床的问题。例如,在US4337170和US5264202中也提议采用这种重整炉,其中热交换管的输出端“开口”,因此由热交换管排出的重整气体与热交换区连通,通过使原料和蒸汽穿过由常规重整炉中产生的一次重整气体加热的热交换管而产生原料的重整。上述US4337170还提议,在与热交换重整炉的热交换管排出的气体混合和用作热交换管的加热介质之前,由常规重整炉产生的一次重整气体可进行二次重整。在本发明中,上述难题通过提供带有密封管的分界装置而克服,该密封管与热交换管配接,但并不固定在热交换管上,这样,密封管为热交换管提供位置定位,同时使密封管和热交换管之间能滑动,以调节不均匀膨胀。然而,不可避免的是,在穿过密封管和热交换管之间间隙的分界装置的两侧区域之间的泄流通道必需提供以允许上述滑动。由于在使用中通常为高温,因此对上述间隙的密封提供滑动防漏(例如气密)会存在问题。泄流通道允许工艺流体(例如一次重整气体)流入热交换介质(例如部分燃烧的气体),反之亦然。泄流方向自然将取决于工艺流体和热交换介质的相对压力。一般而言,例如,由于工艺流体在用作热交换介质之前进行进一步处理时压力下降,当热交换介质是工艺流体进一步处理的产物时,工艺流体的压力将比热交换介质的压力高。这意味着,主要的泄流将是工艺流体流入热交换介质,这意味着某些工艺流体将走旁路而绕过进一步处理。这种绕过进一步处理通常是不希望的。因此,如果工艺气体是在热交换管中一次蒸汽重整烃类原料的产物,该一次重整的工艺气体的甲烷含量一般为10%(体积)或更高,而二次蒸汽重整上述一次重整的气体的产物中甲烷的含量一般低于1%(体积),通常低于0.5%(体积)。如果5%的工艺气体泄流到热交换区,即绕过二次重整阶段,则所得二次重整气体与泄流的一次重整气体的混合物的甲烷含量一般将为二次重整气体的甲烷含量的二倍。这不仅意味着大量甲烷未经重整,而且这种“泄漏的”甲烷在合成氨之类的后续工艺中一般只能起惰性气体的作用,因而为后续工艺提供的利用率较小。我们已经设计出一种热交换器,其中尽管热交换介质的压力比热交换管流出的工艺流体的压力稍低,但主要的泄流是热交换介质流入工艺流体。本发明提供的热交换器包括工艺流体输入区、热交换区和工艺流体输出区,第一和第二分界装置将上述区域相互分开,固定在一个分界装置上的许多热交换管贯穿热交换区,因而工艺流体可从工艺流体输入区通过热交换管流入工艺流体输出区,每根热交换管备有固定在另一个分界装置上的密封管,每根密封管与它相联的热交换管基本上同轴,以便每根密封管与它相联的热交换管滑动连接,从而限定热交换管和密封管相互重叠的重叠区,由此可在重叠区内调节热交换管的热膨胀,热交换管及与其相联的密封管的内管设有截面积减缩的内收缩部分,在该收缩部分下游沿工艺流体流动的方向形成低压区,和截面积比该收缩部分下游的收缩部分大的扩张区,和穿过内管管壁的一个或一个以上的孔道将低压区与内管外部连通,该孔道位于上述重叠区内,从而为流体提供从热交换区穿过重叠区流入内管中的低压区的流动通道。本发明还提供一种工艺方法,其中使工艺流体经过处理工序,该处理工序包括将工艺流体输入由分界装置与热交换区分开的工艺流体输入区,工艺流体从工艺流体输入区穿过贯穿热交换区的许多热交换管,其中工艺流体与热交换区内的热交换介质进行热交换,工艺流体从热交换管转入由第二分界装置与热交换区分开的工艺流体输出区,从工艺流体输出区流出的工艺流体经过必要的处理工序,然后,产生的处理后的工艺流体作为热交换介质通过热交换区,热交换管固定在一个分界装置上,每根热交换管备有固定在另一个分界装置上的密封管,每根密封管与和它相联的热交换管基本上同轴,以便每根密封管与和它相联的热交换管滑动连接,从而限定热交换管和密封管相互重叠的重叠区,由此可在重叠区内调节热交换管的热膨胀,热交换管及与其相联的密封管的内管设有截面积减缩的内部收缩部分,在该收缩部分下游沿工艺流体流动的方向形成低压区和截面积比该收缩部分下游的收缩部分大的扩张区,穿过内管管壁的一个或一个以上的孔道将低压区与内管外部连通,该孔道位于上述重叠区内,从而为流体提供从热交换区穿过重叠区流入内管中的低压区的流动通道,所述工艺方法这样操作,以使流入热交换区的处理后的工艺流体的压力大于低压区内的压力,从而使一部分流入热交换区的处理后的工艺流体穿过上述间隙和孔道流入低压区。上述工艺方法和热交换器对蒸汽重整烃类特别实用,其中烃原料和蒸汽的混合物通过含有蒸汽重整催化剂的热交换管,从而形成一次重整气体,然后,该一次重整气体与含氧气体(例如空气)进行部分燃烧,所得部分燃烧的气体用作热交换区内的加热流体。优选部分燃烧的气体通过二次重整催化剂床,以便在用作热交换流体之前实现进一步重整。由于在热交换管和密封管的内管中有收缩部分的结果,在内管中收缩部分的下游形成低压区通过适当规定收缩部分的尺寸,可使正常运转时低压区内的压力低于热交换区内的压力,从而有热交换介质(例如从工艺流体输出区流出的工艺流体的二次重整产物)从热交换区穿过上述间隙和孔道流入低压区。在低压区下游,工艺流体在扩张区内膨胀,造成工艺流体的压力大于低压区内的压力。因此还将有工艺流体从内管出口端穿过上述间隙流入孔道,然后回流或再循环到低压区。在热交换区和工艺流体输出区之间的分界装置处优选设置密封。这样,密封管固定在该分界装置上,而热交换管固定在工艺流体输入区和热交换区之间的分界装置(例如管板)上。在热交换介质是从工艺流体输出区流出的工艺流体进一步处理的产物,且工艺流体在通过例如含有催化剂的热交换管时产生显著的压力降时这是特别优选即在这种情况下可能很难保证由上述收缩部分产生的压力降超过工艺流体通过热交换管时产生的压力降加上工艺流体在用作热交换介质之前的进一步处理中产生的任何压力降。但是,在工艺流体输入区和热交换区之间的分界装置处设置密封有时会有利。例如,如果工艺流体在通过热交换管时进行化学反应,在热交换管输入端的工艺流体会有不同的密度,从而能通过收缩部分和/或组合部分达到较大压力降可使热交换管输入端的工艺流体的侵蚀性较小。此外,热交换管输入端的温度可较低,从而可在较低的温度下操作密封。可这样配置密封管,使热交换管在密封管内滑动在这种情况下,热交换管为内管,在其内部有收缩部分。假如这样,密封管可从分界装置延伸到热交换区,或可从分界装置向后延伸到分界装置另一侧的区域,即工艺流体输入区或输出区。热交换管可从固定它们的分界装置穿过热交换区,再穿过固定在另一个分界装置上的密封管延伸,并可伸入固定密封管的分界装置另一侧的区域,即工艺流体输入区或输出区。另一方面,可这样配置密封管,使密封管在热交换管内滑动。在这种情况下,密封管为内管,在其内部有收缩部分。如果这样,密封管从固定它们的分界装置延伸到热交换区。本发明的一些实施方案可通过参照附图来说明,其中图1为本发明第一实施方案中热交换器的横截面图,其中分界装置为管板,图2为第一实施方案中一根热交换管下端的横截面图,表示相联的管板和密封管。图3与图1相似,但它是第二实施方案的横截面图,其中支承密封管的分界装置是集管。图4至图6为各种可替代方案的密封配置的横截面图。图1表示热交换器,例如热交换重整炉,它具有保温耐压外壳10,该外壳内含由壳壁和管板15、16和17限定的四个区域11、12、13和14。区域11,工艺流体输入区,由壳壁和管板15限定,它设有送料管道18,并含有许多固定在管板15上并从管板15向下延伸的热交换管19,例如重整管。采用的热交换管的数量将取决于操作规模虽然图1只列出5根热交换管,但通常可有50根或更多的这种热交换管。为进行蒸汽重整,管19将充填适宜的蒸汽重整催化剂,例如负载在象氧化铝、氧化锆或铝酸钙胶结物之类的耐火材料载体上的镍。重整催化剂一般以成型单元的形式无规填充在重整管中。该成型单元的最大尺寸通常小于重整管直径的约五分之一,它们可呈圆柱形,具有一个,或优选一个以上的纵向贯穿该圆柱体的孔道。区域12,热交换介质输出区,构成热交换区第二(辅助)部分,它由壳壁和管板15及16限定。热交换管19穿过区域12,并穿过管板16延伸。各管19配有固定在管板16上,并从管板16向下延伸的环绕的环形套管20。套管20的内部与区域12联通,因此沿着套管20的内壁与该套管相套接的管19的外壁之间的空间向上流动的热交换介质可流入区域12。区域12还设有热交换介质输出管道21。区域13是热交换区的首要部分,它以外壳10的壳壁和管板16及17为界。在区域13下端设有热交换介质输入管道22。管19穿过区域13,并穿过区域13下端的管板17延伸。各套管20下端开口,在靠近区域13的下端终止,因此通过管道22输入区域13的热交换流体可流入套管20内表面与该套管相套接的管19外表面之间的环形空间。管19在套管20以下的下端各具有横截面减缩的部分23,该部分穿过管板17。区域14,工艺流体输出区,以外壳10的壳壁和管板17为界,它设有工艺流体输出管道24。管19的下段23穿过管板17,在其下端25处开口(参见图2),因此能使工艺流体从管19流入区域14,由此通过管道24流出。由此看出,如果把热交换区的两部分12和13看作一个热交换区,工艺流体输入区11通过构成固定热交换管19的分界装置的管板15与热交换区分开,而热交换区通过由热交换管19的末端穿过的管板17与工艺流体输出区14分开。如图2所示,管19的下段23不固定在管板17上。因此热交换管19相对于外壳10的热膨胀可以调节,各管段23伸入固定在管板17上并延伸到区域14中的密封管26中。伸入密封管26中的管19的部分23形成重叠区域,该重叠区域在管19下段23的外表面28和与管19相联的密封管26的内表面29之间有一个小间隙27。该间隙通常为0.05-3mm。在重叠区内,管段23在密封管26里面,管19下段23的内部有圆锥形部分30,它通向截面积减缩的圆柱形收缩区31。该收缩区31的截面积通常为管19下段23的截面积的约15-50%。收缩区31后面设置圆柱形低压区32,其截面积比收缩区大,但比管19的下段23小。管19的下段23以由内向外扩张区33终止。在重叠区内设有孔道34,它穿过管19下段23的管壁与收缩区31下游的低压区32连通。如果在圆锥区30入口处沿管19流下来的工艺流体的压力不比通过管道22流入区域13的热交换介质的压力高很多,通过适当选择收缩区31和低压区32的尺寸,在正常运转中,可以调节,使工艺流体穿过收缩区31流入低压区32而在低压区32中产生的压力低于通过管道22流入热交换区13的热交换介质的压力。因此将有热交换介质从区域13穿过间隙27流入上述重叠区,并穿过孔道34流入低压区32。热交换管19出口端25的压力也将高于低压区32的压力,因此还将有工艺流体从热交换管19的出口端穿过间隙27和孔道34重复循环流入低压区32。可以理解,由于允许热交换介质通过管板17泄流入低压区,以代替在密封管26和热交换管19的下段23之间形成狭窄的间隙,因此可借助于允许滑动的简单机械密封而使用较大的空隙。这样,密封的失效将使热交换介质能穿过密封流入低压区32。所以,可以在密封管26的上端,在管19的下段23的外壁28与密封管26的内壁之间的间隙27中装填能滑动的适宜的填料,以进一步减少热交换介质从区域13泄流入区域14。尽管热交换管19并非必须具有横截面减缩的下段23,即管19的横截面可以是全截面地通过管板17,而配以适当尺寸的密封管26,但设置横截面减缩的下段23可简化“泄流”通道的设计和结构。在另一种配置中套管20和管板16被取消,因而热交换区不分为主要的热交换部分和辅助的热交换介质输出部分,而是简单的一个热交换区,热交换介质从输入管道22流过该热交换区,然后通过输出管道21流出。在图3的实施方案中,图1下部的管板17、工艺流体输出区14和工艺流体输出管道24被连接在穿过壳壁延伸的工艺流体输出管道36上的一组集管35取代。热交换介质通过下端的管道22流入壳体,然后穿过相邻集管35之间的空间向上,经过管19下端流入套管20。密封管26固定在集管35上,从集管35向上延伸到热交换区13。密封配置与图2所示相似,不同的是,如上所述,管板17被取消,且密封管26从集管35向上延伸。图4、5和6表示在热交换管上端(工艺流体输入端)另外方案的密封设置。箭头A表示工艺流体流动的方向。在这些设置中,热交换管19固定在使热交换区和工艺流体输出区分开的分界装置(例如管板或集管)上(图4至图6中未表示出)。在图4和图5的实施方案中,密封管37固定在构成工艺流体输入区11和热交换区第二(辅助)部分12之间的分界装置的管板15上。在图4中密封管从管板15向下延伸到热交换区的部分12,而在图5中密封管从管板15向上延伸到工艺流体输入区11。在图6的设置中,密封管37设在热交换管19上端内。在上述各设置中,内管(即图4和图5中的热交换管19和图6中的密封管37)内部设有与上述图2相关构形相似的收缩部分、低压区、扩张区和穿过内管管壁的孔道。在这些设备中,热交换介质可以从热交换区的部分12穿过热交换管19和密封管37之间的间隙,再穿过孔道流入上述管的内管中收缩部分后面的低压区。在采用图1和图2的实施方案的经过核算的实施例中,天然气中添加了较小比例的从氨气的清洗气中回收的氢/氮混合物,然后通过加氢脱硫催化剂床和用作硫化氢吸收剂的氧化锌床进行脱硫。添加水蒸汽,所得混合物(物流A)预热到406℃,通过管道18输入重整炉的工艺流体输入区11,并在内径125mm,长10m的含有无规充填的蒸汽重整催化剂(载带在铝酸钙胶结物载体上的镍)的热交换管19中进行一次重整,上述载体呈长17.6mm,直径14.0mm的圆柱形,具有四个直径为4.0mm的轴向延伸的圆柱形穿孔。上述催化剂装载在位于过渡区上端的隔网上,在过渡区中重整管的直径减缩,形成下段23,因此内径为25mm的下段23不含催化剂。流入重整管19下段23的重整的工艺流体(物流B)的温度和压力分别为722℃和40.0巴(绝对)。产生的重整气体通过收缩区31和低压区32,使低压区的压力达38.6巴(绝对),管19出口端25的压力达39.3巴(绝对)。如下所述,存在气流C从热交换区13经过孔道34和低压区32泄流到工艺流体输出区14。然后,通过管道24将由物流B和泄流C组成的重整的工作气体(物流D)输入二次重整炉,其中物流D与预热到650℃的空气气流E进行部分燃烧,然后使部分燃烧的混合物通过无规充填的二次重整催化剂(载带在铝酸钙胶结物圆柱体上的镍)床进行二次重整。二次重整催化剂圆柱体长为17.6mm,直径为14.0mm,具有四个直径为4.0mm的轴向延伸的圆柱形穿孔。然后通过管道22将压力为38.8巴(绝对),温度为970℃的二次重整的气体(物流F)输入热交换区13。二次重整气体物流F的一部分(物流C)从区域13穿过孔道34和低压区32泄流到区域14,而剩余部分(物流G)在穿过套管20内的环形空间向上流入区域12时用作加热热交换管19的热交换介质。通过管道21从区域12流出的气体产物(物流H)的温度为530℃。热交换管下段23的内径为25mm,它逐渐缩小成内径12mm的收缩区31,然后扩展成内径18mm,长108mm的低压区32。热交换管的敞开端从低压区32的直径18mm扩展到管19下段23的外径31mm,全长78mm。在低压区32和环形间隙27之间设有12个直径为3mm的重复循环孔道34。密封管26和管19下段23的外表面28之间的环形间隙27的厚度为0.2mm。管19下段23和密封管26的长度足以在开始运转时(即设备处于室温和正常运转温度时)使重复循环孔道34和管19的敞开端25二者均在密封管26内。经过核算,在正常运转温度下,尽管圆锥区30入口处物流B的压力比流入区域13的二次重整气体(物流F)的压力高1.2巴,但是从管19的敞开端25流出的重整的工作气体的约3%穿过间隙27和重复循环孔道34重复循环,流入区域13的二次重整气体(物流F)的约3%作为泄流物流C,穿过管板17,通过间隙27和孔道34也流入低压区32。各种物流组分的流速(精确到0.1千摩尔/小时)以及物流的温度和压力列于下面表I。表I</tables>在经过核算的对比例中,采用管23的下段没有收缩区或低压区,也没有重复循环孔道,但其全长的内径为25mm。这样,从管端25流出的重整气体的压力为40.0巴(绝对),因而气体从工艺流体输出区14通过环形间隙27泄流到热交换区13。各种物流组分的流速(精确到0.1千摩尔/小时)以及物流的温度和压力列于下面表II。表II设计包括空气一次重整和二次重整的上述工艺方法,以便产生供生产氨气使用的重整气体。由于在氨生产厂中重整气体一般进行转换反应,其中基本上所有的一氧化碳与水蒸汽反应,生成二氧化碳和氢,因此可获得的氢的量(氢当量)等于物流H中的氢与一氧化碳的含量之和,该可获得的氢的量本身可确定能够产生的氨的量。在对比例中,由于气体从工艺流体输出区14泄流到热交换区13,因此用作热交换介质的气体的温度下降。在对比例中,气体流入二次重整炉的流速也降低,因此必须采用较少的空气,以达到二次重整炉出口的温度。这本身意味着从二次重整炉流出的气体(物流F)的量减少因此,尽管通过物流C的泄流增加而不是消耗可用作热交换介质的气体(物流G)的量,但是该气体(物流G)的量还是减小。上述热交换介质(物流F)数量的减少及其温度的下降意味着,为了在热交换管19中得到相同数量的重整,从重整炉通过管道21流出的气体产物(物流H)的温度会降低,因此可从该气流中回收的热量减少。上述对比例的特点可在下面表III中看出。表III</tables>由表III可见,本发明实施例的氢当量,从而可能的氨的产量,比对比例高约2.65%。此外,能够产生的氨的量还取决于重整气体的甲烷含量,因为甲烷在随后的氨的合成中是惰性材料如在对比例中那样,增加重整气体的甲烷含量意味着在随后的氨的合成循环中所需的清洗量必须增加,结果氨的产量降低。因此,本发明实施例中能够产生的氨的量将比对比例高明显超过2.6%。虽然上述内容主要涉及热交换重整,但是可以理解,本发明也适用于必须调节相当大的不均匀热膨胀,和不适宜将热交换介质泄流到工艺流体中的其他热交换应用。实例包括进料/流出物热交换器,例如,使放热反应(例如甲醇或氨的合成)这样的工序的进料通过与工序流出物热交换而加热的热交换器。在上述情况下,热交换管可以不含催化剂,除非象上述重整工艺那样,工艺流体在进行热交换的同时产生催化反应而需要催化剂。权利要求1.热交换器,包括工艺流体输入区、热交换区和工艺流体输出区,第一和第二分界装置将上述区域相互分开,固定在一个分界装置上的许多热交换管贯穿热交换区,因而工艺流体可从工艺流体输入区通过热交换管流入工艺流体输出区,每根热交换管备有固定在另一个分界装置上的密封管,每根密封管与和它相联的热交换管基本上同轴,以便每根密封管与和它相联的热交换管滑动连接,从而限定热交换管和密封管相互重叠的重叠区,由此可在重叠区内调节热交换管的热膨胀,热交换管及其相联的密封管的内管设有截面积减缩的内部收缩部分,在该收缩部分下游沿工艺流体流动的方向形成低压区和截面积比该收缩部分下游的收缩部分大的扩张区,穿过内管管壁的一个或一个以上的孔道将低压区与内管外部连通,该孔道位于上述重叠区内,从而为流体提供从热交换区穿过重叠区流入内管中的低压区的流动通道。2.权利要求1的热交换器,其中所述分界装置包括管板,热交换管穿过该管板延伸。3.权利要求1的热交换器,其中所述分界装置包括与工艺流体输出管道相通的集管。4.权利要求1-3中任一项的热交换器,其中每根热交换管配接在与它相联的密封管内。5.权利要求1-4中任一项的热交换器,其中热交换管固定在工艺流体输入区和热交换区之间的分界装置上。6.权利要求1-5中任一项的热交换器,其形式为在操作中与部分燃烧装置相连的热交换重整炉,该部分燃烧装置设计成在工艺流体通过热交换管之后能产生该工艺流体的部分燃烧,并在部分燃烧之后向热交换重整炉输送作为热交换流体的气体。7.权利要求6的热交换器,其中部分燃烧装置包括二次重整催化剂床,在向热交换重整炉输送作为热交换流体的部分燃烧的气体之前,该气体通过上述二次重整催化剂床。8.一种工艺方法,其中对工艺流体进行一个处理工序,该工序包括将工艺流体输入由分界装置与热交换区分开的工艺流体输入区,工艺流体从工艺流体输入区穿过贯穿热交换区的许多热交换管,其中工艺流体与热交换区内的热交换介质进行热交换,工艺流体从热交换管转入由第二分界装置与热交换区分开的工艺流体输出区,从工艺流体输出区流出的工艺流体经过必要的处理工序,然后,产生的处理后的工艺流体作为热交换介质通过热交换区,热交换管固定在一个分界装置上,每根热交换管备有固定在另一个分界装置上的密封管,每根密封管与和它相联的热交换管基本上同轴,以便每根密封管与和它相联的热交换管滑动连接,从而限定热交换管和密封管相互重叠的重叠区,由此可在重叠区内调节热交换管的热膨胀,热交换管及与其相联的密封管的内管设有截面积减缩的内部收缩部分,在该收缩部分下游沿工艺流体流动的方向形成低压区和截面积比该收缩部分下游的收缩部分大的扩张区,穿过内管管壁的一个或一个以上的孔道将低压区与内管外部连通,该孔道位于上述重叠区内,从而为流体提供从热交换区穿过重叠区流入内管中的低压区的流动通道,所述工艺方法这样操作,使流入热交换区的处理后的工艺流体的压力大于低压区的压力,从而使一部分流入热交换区的处理后的工艺流体穿过上述间隙和孔道流入低压区。9.权利要求8的烃类原料蒸汽重整工艺方法,其中流入工艺流体输入区的工艺流体包括烃类原料和水蒸汽的混合物,热交换管固定在工艺流体输入区和热交换区之间的分界装置上,并含有蒸汽重整催化剂,密封管固定在将热交换区与工艺流体输出区分开的分界装置上,由此使上述混合物在热交换管中进行蒸汽重整,产生一次重整气流,该一次重整气流从热交换管流入工艺流体输出区,从工艺流体输出区流出的一次重整的气体与含氧气体进行部分燃烧,产生的部分燃烧的气体通过热交换区,从而加热热交换管。10.权利要求9的工艺方法,其中部分燃烧的气体在输入热交换区之前通过二次重整催化剂床。全文摘要热交接器和工艺方法,特别是一次重整气体经过部分燃烧(并任选二次重整),所得部分燃烧的气体用作热交换介质,以提供一次重整所需热量的热交换一次重整。热交换器包括工艺流体输入区(11)和输出区(14),它们通过象管板(15、16、17)或集管(35)这样的分界装置与热交换区(13)分开。传输工艺流体的许多热交换管(19)从一个分界装置(15、16)穿过热交换区(13)延伸,在另一个分界装置(17)处与固定在该分界装置(17)上的密封管(26)滑动连接。密封管(26)及与其相联的热交换管(19)中的内管的内部设有截面积减缩的收缩部分(31),在该收缩部分下游形成低压区(32)和截面积比该收缩部分下游的收缩部分(31)大的扩张区(33),穿过上述内管管壁的一个或一个以上的孔道(34)将低压区与内管外部连通。孔道(34)位于密封管(26)和热交换管(19)的重叠区内,从而为热交换介质提供从热交换区穿过重叠区和孔道流入低压区的泄流通道。文档编号F28F27/00GK1192706SQ96196120公开日1998年9月9日申请日期1996年7月29日优先权日1995年8月7日发明者M·D·邓恩,S·J·奥尼恩,P·W·法内尔申请人:帝国化学工业公司