专利名称:热交换器的利记博彩app
技术领域:
本发明涉及一种具备供热介质流通的流路管且使流路管外的热交换对象物与热介质进行热交换的热交换器。
背景技术:
以往,公知有一种热交换器,其构成为以从两面夹持发热体的方式配设流路管,以进行内置有半导体元件的半导体模块等发热体的散热。在这样的热交换器中,形成发热体与流路管交替层叠的结构,层叠的多个流路管通过连通构件连通,冷却介质在各流路管中流通。在这种热交换器中,公开有如下结构,S卩,在流路管内配设分隔构件,从而在一个流路管内沿流路管的厚度方向形成两层热介质流路,并且,在形成为两层的热介质流路中分别配置有内翅片(4 >于一 7 4 >),以提高热交换性能(例如,参照日本特开 2005-191527 号公报)。然而,在这种热交换器中,由于形成为从连通构件向各流路管分配热介质的结构, 因此流路管内的热介质的流速变慢。为了实现这样的流路管内的微小流量区域的热交换性能的提高,公开有如下结构,即,使用具有流路管内的热介质的混合促进功能的波形翅片 (,工一吁” ^ > )作为内翅片,并沿流路管的厚度方向多层层叠该波形翅片(例如,参照日本特开2010-10418号公报)。并且,为了提高基于内翅片的热传导率,还通常使用如下这样的实现促进紊流的方法,即,采用偏置翅片(才7卜7 4 作为内翅片且在内翅片的侧面形成突出部或
狭缝等。然而,通过内翅片促进紊流在流路管内的热介质的流速快、即雷诺数大于1000且热介质流动成为过渡区域或紊流区域的情况下会发挥效果。并且,虽然热介质为高速时可提高促进紊流效果,实现高性能化,但热介质的流通阻力变得非常大。另外,在将热交换器用于冷却混合动力机动车的变换器的情况下,当实现用于使热介质在变换器冷却回路中循环的泵的小型化、低流量化或者热介质流路的并列化时,在热交换器的流路管中流通的热介质流量变小。并且,在热介质流量小的情况下,无法利用上述的促进紊流效果。具体而言,例如在使用偏置翅片作为内翅片时,热介质流动与翅片的壁面碰撞而本应该实现促进紊流,但由于热介质擦过碰撞的壁面而进行流动,因此无法得到期待的性能提高效果(R/AP)。即,虽然通常都知道当使用偏置翅片或钉状翅片等时,对实现促进紊流有效,但既使使用上述的翅片,在流路管内的热介质流量为微少流量区域的情况下,也无法得到能够消除流通阻力的上升那么大的性能提高效果。
发明内容
本发明鉴于上述方面,其目的在于,在热介质在雷诺数为1000以下的层流区域流通的热交换器中,确保热交换量。为了达成上述目的,在本发明的一例中,热交换器具备流路管,流路管具有供热介质流通的热介质流路,在流路管中层叠多个内翅片,内翅片将热介质流路分割成多个细流路,并且使热介质与流路管的传热面积增大,在雷诺数为1000以下的层流区域,热介质在细流路中流通,所述热交换器的特征在于,内翅片为波形翅片,其具有沿着流路管的长度方向延伸的板部和将相邻的板部之间相连的顶部,且与长度方向正交的截面形状为波状,并且从内翅片的层叠方向观察时,板部在长度方向上折曲成波形,相对于流路管的长度方向及内翅片的层叠方向都正交的方向为流路管宽度方向,在内翅片的与层叠方向正交且通过细流路的层叠方向的中心部的截面中,在板部的波形状的间距为波间距WP[mm]、板部的波形状的振幅方向的尺寸为波深度WD [mm]、相邻的板部之间的流路管宽度方向的距离为流路宽度H[mm]时,波间距WP及波深度WD设定为满足下面的数学式1及数学式2所示的关系,(数学式1)2. 2 ^ WP/WD ^ 4. 28(数学式2)0. 5 < WD/H < 1. 8。如此,在流路管中的热介质流量为微少流量区域、即流路管中的热介质流成为雷诺数1000以下的层流区域的热交换器中,通过将波间距WP及波深度WD设定为满足上述数学式1及数学式2所示的关系,从而能够提高流路管中的热介质的混合促进效果。因此,能够确保热交换器中的热交换量。进而,能够确保内翅片的加工性,并且也能够抑制流路管内的孔眼堵塞。另外,在上述热交换器中,其特征在于,所述波间距WP及所述波深度WD设定为满足下面的数学式3及数学式4所示的关系,(数学式3)2. 2 ^ WP/WD ^ 3(数学式4)0. 5 < WD/H < 1. 8。由此,能够更加可靠地提高流路管内的热介质的热介质混合促进效果,从而能够更加可靠地确保热交换器中的热交换量。然而,在雷诺数为500 1000的区域中,还存在因为热介质的特性等而形成热介质流过渡区域的情况。与此相对,在上述热交换器中,其特征在于,在细流路流通的热介质的雷诺数为 500以下。由此,能够使在细流路流通的热介质流可靠地成为层流。另外,在上述热交换器中,可以构成为,流路管设置有多个,多个流路管通过连通构件连通,在多个流路管的外侧配置有与热介质进行热交换的热交换对象物。
图1是表示本发明的实施方式涉及的热交换器的主视图。图2是图1的II-II截面图。图3A是表示内翅片的与流路管长度方向正交的截面形状的截面图,图:3B是从流路管层叠方向观察到的内翅片的俯视图。图4是图3A的IV-IV截面图。图5是表示Re ^ 1500的情况下的波形翅片的热交换性能的说明图。图6是表示Re ( 500的情况下的波形翅片的热交换性能的说明图。
具体实施例方式以下,基于图1 图6,说明本发明的一实施方式。图1是表示本实施方式涉及的热交换器1的主视图。如图1所示,本实施方式的热交换器1为从两面冷却作为与热介质进行热交换的热交换对象物的多个电子部件2的层叠型热交换器。本实施方式的电子部件2为从两面进行散热的两面散热结构。热交换器1具备扁平形状的多个流路管3和连通多个流路管3的连通构件4,其中,流路管3具有使热介质流通的热介质流路30(参照图2、。多个流路管3以能够从两面夹持电子部件2的方式多个层叠配置。在本实施方式中,作为电子部件2,使用内置有IGBT等半导体元件和二极管的半导体模块。该半导体模块可以用于机动车用变换器、工业设备的电动机驱动变换器、大楼空调用的空调变换器等。需要说明的是,作为电子部件2,除了上述半导体模块以外,例如还可以使用功率晶体管、功率FET、IGBT等。图2是图1的II-II截面图。如图2所示,本实施方式的流路管3为所谓的冲压外圈(κ 口 >力y 7。)结构。g卩,流路管3构成为具有一对外壳板31,在一对外壳板31之间形成有热介质流路30。在流路管3中设置有内翅片33,其将热介质流路30分割成多个细流路333,增大热介质与流路管3的传热面积。在本实施方式中,内翅片33在一对外壳板31之间、即在热介质流路30中沿流路管3的层叠方向(以下,称为流路管层叠方向)配置成三层重叠。对于该内翅片33的详细情况后述。需要说明的是,由于内翅片33在热介质流路30中沿流路管层叠方向层叠配置三层,因此流路管层叠方向与内翅片33的层叠方向一致。返回图1,电子部件2相对于流路管3的一对外壳板31分别各设置有两个。在各外壳板31设置的两个电子部件2分别在热介质的流动方向上串联配置。另外,在流路管3的外壳板31中的长度方向两端部形成有向外侧、即向相邻的另一流路管3侧突出的大致圆筒状的凸缘部300。并且,通过钎焊使相邻的流路管3的凸缘部 300彼此接合,由此形成连通多个流路管3的连通构件4。在多个流路管3中配置在层叠方向最外侧的流路管3设为外侧流路管3a时,在两个外侧流路管3a中的一方的外侧流路管3a的长度方向两端部分别连接用于将热介质向热交换器1导入的热介质导入口 401和用于将热介质从热交换器1排出的热介质排出口 402。 热介质导入口 401及热介质排出口 402通过钎焊接合于一方的外侧流路管3a。需要说明的是,本实施方式的流路管3、连通构件4、热介质导入口 401以及热介质排出口 402为铝制。从热介质导入口 401导入的热介质通过连通构件4而从长度方向上的一方的端部向各流路管3流入,在各个热介质流路30中朝向另一方的端部流动。之后,热介质通过连通构件4而被从热介质排出口 402排出。如此,热介质在热介质流路30中流通的期间与电子部件2进行热交换,从而对电子部件2进行冷却。本实施方式的热交换器1中,在雷诺数为1000以下的层流区域使热介质在细流路 333中流通。需要说明的是,作为热介质,在本实施方式中使用混入有乙撑二醇(- ★ > > 7 1J 系的防冻液的水。然而,由于热介质的特性等,也有在雷诺数为500 1000的区域中热介质流成为过渡区域的情况。因此,优选在细流路333中流通的热介质的雷诺数为500以下。由此,能够使在细流路333中流通的热介质流可靠地成为层流。图3A及图;3B表示本实施方式涉及的热交换器1的内翅片33,图3A是表示流路管3的与长度方向(以下,称为流路管长度方向)正交的截面形状的截面图,图:3B是从流路管层叠方向观察到的俯视图。如图3A及图:3B所示,分别使用波形翅片来作为在一个流路管3内层叠配置的三层的内翅片33。具体而言,内翅片33具有沿着流路管长度方向延伸并且分割细流路333的板部331和将相邻的板部331间相连的顶部332,且与流路管长度方向正交的截面形状形成为梯形波状,并且从流路管层叠方向观察时,板部331形成为在流路管长度方向上折曲成三角波形。图4是图3A的IV-IV截面图,即是内翅片33的与流路管层叠方向正交且通过细流路33中的流路管层叠方向中心部的截面图。在此,将相对于流路管长度方向及流路管层叠方向都正交的方向作为流路管宽度方向。另外,在内翅片33的与流路管层叠方向正交且通过细流路33中的流路管层叠方向中心部的截面(以下,称为中心截面)中,板部331的三角波形状的折曲角度为波角度 α ]。即,波角度α可以说是在中心截面中在一个板部331的流路管长度方向上相邻的直线部分331a彼此所成的角度。另外,在中心截面中,板部331的三角波形状的振幅方向的尺寸为波深度WD [mm]。 即,波深度WD可以说是在中心截面中在一个板部331中的相邻的顶点部331b之间的流路
管宽度方向的距离。另外,在中心截面中,板部331的波形状的间距为波间距WP[mm]。另外,在中心截面中,在流路管宽度方向上相邻的板部331间的流路管宽度方向上的距离为流路宽度 H [mm] ο然而,如本实施方式所示,在通过热介质冷却电子部件2的层叠型的热交换器1 中,距电子部件2的距离越远,则流路管3内的热介质的温度越低,基于内翅片33的热交换效率降低。在此,虽然热交换器1的热交换性能与传热面积成比例,但若热交换效率降低, 则无法得到与基于内翅片33的传热面积扩大效果相应的性能提高效果。与此相对,若热交换介质的流量大,则在促进紊流效果上能够实现性能提高,但在雷诺数为1000以下的微小流量区域,由于热介质在不与障碍物(内翅片33的板部331)碰撞的情况下通过,因此无法得到所期望的热交换性能。为了改善该问题,本发明者通过实验研究清楚知道使流路管3内的热介质强制地运动的方法有效,在微小流量区域中,使用波形翅片作为内翅片33最适合。然而,提及到波形翅片的最佳规格的文献非常少。并且,由于波形翅片本来作为促
6进紊流的机构使用,因此对在雷诺数为1500以上的过渡区域 紊流区域中的最佳规格进行了研究(参照导热工学资料(修订第四版)(日本机械学会)),但未提及微少流量区域 (Re ^ 1000)中的最佳规格。图5是表示Re ^ 1500的情况下的波形翅片的热交换性能的说明图。图5的横轴表示WP/WD,图5的纵轴表示R(热阻力)/ Δ P (流路管3内的压力损失)。需要说明的是, R/Δ P越小,热交换性能越高。在此,在流入流路管3中的热介质的温度为Tin[°C ]、电子部件2的表面即与流路管3的外表面接触的面的温度为T1 [°C ]、电子部件2的发热量为Q[W]时,热阻力R[°C /W] 可以由下面的数学式Fl表示。R = (T1-Tin) /Q …(Fl)如图5所示,在Re ^ 1500的情况下,由于波形翅片引起的流动剥离、热介质的流通阻力增加而使R/Δ P具有某一极小值。S卩,WP/WD越小,热介质的流通阻力越小,但基于波形翅片的热交换性能提高效果降低。另一方面,WP/WD越大,基于波形翅片的热交换性能提高效果越高,但热介质的流通阻力变大。并且,根据上述导热工学资料,在WD/H为0. 25、 WP/WD为4. 28时能够得到该极小值(最佳规格)。与此相对,如本实施方式所示,在流路管3中的热介质流为微少流量区域 (Re ^ 1000)的情况下,热介质沿着板部331的壁面流动,因此流路管3内的压力损失(Δ P) 的变动变少。并且,在流路管3内使热介质运动的频率越高,就越促进热介质的混合,使流路管3内的热介质的温度差变小。因此,在微小流量区域中,为了增加热介质的混合的频率,优选无限制地缩小波间距WP。因此,考虑现状的加工界限,将波间距WP设定为2. 2mm以上。然而,若相对于流路宽度H,越增大内翅片33的波深度WD,则流路管3内的热介质的移动越激烈、即混合促进效果越高,因此优选相对于流路宽度H尽可能地增大波深度WD。 然而,在波间距WP接近上述最小值(2. 2mm)的情况下,若波深度WD比流路宽度H的1. 8倍大,则在波成形时,作为材料的金属板可能破损。因此,需要将波深度WD设定为流路宽度H 的1.8倍以下。考虑孔眼堵塞性而需要将流路宽度H设定为0. 9mm以上。因此,为了同时实现热介质的混合促进效果和抗孔眼堵塞性,优选波深度WD为1mm。并且,在波间距WP为2. 2mm、波深度WD为Imm的情况下,WP/WD 2. 2,因此在本实施方式中将WP/WD设定为2. 2以上。另一方面,如果波间距WP超过4mm,则在波深度WD为0. 9mm的情况下,波弯曲角度α最大约为20°,因此在微小流量区域的混合促进效果显著降低。在此,在波间距WP为 4mm、波深度WD为0. 9mm 的情况下,WP/WD = 4 4. 4。因此,在本实施方式中,WP/WD 设定为上述导热工学资料中公开的值4. 28以下。图6是表示Re ( 500的情况下的波形翅片的热交换性能的说明图。图6的横轴表示WP/WD,图6的纵轴表示R/AP0如图6所示,波间距WP及波深度WD设定为满足下面的数学式1所示的关系。(数学式1)2. 2 彡 WP/WD 彡 4. 28
需要说明的是,根据本发明者的实验,清楚可知WP/WD为3以下的情况下,混合促进效果尤其提高。因此,优选将WP/WD设定为2.4以上且3以下的范围。然而,如上所述,由于内翅片33的波深度WD越大,流路管3中的热介质的混合促进效果越高,因此优选尽可能地增大波深度WD。因此,在本实施方式中,波深度WD设定为流路宽度的1/2以上。另一方面,如上所述,在波间距WP接近上述的最小值0.2mm)的情况下,若波深度WD比流路宽度H的1. 8倍大,则在成形时金属板可能破损,因此在本实施方式中,波深度WD设定为流路宽度H的1. 8倍以下。S卩,波深度WD设定为满足下面的数学式2所示的关系。(数学式2)0. 5 彡 WD/H 彡 1. 8在以往的热交换器、即利用平直翅片(;^卜 >一卜7 4 > )或偏置翅片作为内翅片的情况下,通过紊流促进效果来实现内翅片的热交换性能的提高。与此相对,在本实施方式中,通过使用波形翅片作为内翅片33,从而实现内翅片 33的与热介质的传热面积的扩大。并且,在本实施方式中,通过在热介质流动慢的层流区域配置内翅片(波形翅片)33,并且将波间距WP及波深度WD规定成上述数学式1及数学式2所示的关系,由此促进流路管3中的热介质的混合,容易向流路管3中的与电子部件2对应的部分供给低温的热介质。S卩,在本实施方式中,不是基于内翅片33的促进紊流效果,而通过热介质的混合促进效果来确保作为热交换器1的热交换量。因此,在流路管3中的热介质流量为微少流量区域、即雷诺数为1000以下的层流区域使热介质在流路管3的细流路333中流通的热交换器中,通过将波间距WP及波深度WD 设定成满足上述数学式1及数学式2所示的关系,从而能够在确保内翅片33 (波形翅片) 的加工性的同时抑制流路管3的孔眼堵塞,并且通过提高流路管3中的热介质的混合促进效果,能够确保热交换量。本发明不局限于上述的实施方式,在不脱离本发明的主旨的范围内能够如以下这样进行各种变形。在上述的实施方式中,说明了在一个流路管3中层叠配置三层内翅片33的例子, 但不局限于此,也可以在一个流路管3中层叠配置两层内翅片33。在上述的实施方式中,说明了采用从两面进行散热的两面散热结构的电子部件2 作为热交换对象物的例子,但不局限于此,也可以采用仅从一面进行散热的单面散热结构的电子部件。图1记载的符号Q’意味着电子部件2的发热量[W],其与Q [W]可以相同,也可以不同。
权利要求
1.一种热交换器,其具备流路管(3),该流路管C3)具有供热介质流通的热介质流路 (30),在所述流路管(3)中层叠多个内翅片(33),该内翅片(3 将所述热介质流路(30)分割成多个细流路(333),并且使所述热介质与所述流路管(3)的传热面积增大, 在雷诺数为1000以下的层流区域,所述热介质在所述细流路(333)中流通, 所述热交换器的特征在于,所述内翅片(3 为波形翅片,其具有沿着所述流路管(3)的长度方向延伸的板部 (331)和将相邻的所述板部(331)之间相连的顶部(332),且与所述长度方向正交的截面形状为波状,并且从所述内翅片(3 的层叠方向观察时,所述板部(331)在所述长度方向上折曲成波形,相对于所述流路管(3)的长度方向及所述内翅片(3 的层叠方向都正交的方向为流路管宽度方向,在所述内翅片(3 的与所述层叠方向正交且通过所述细流路(333)的所述层叠方向的中心部的截面中,在所述板部(331)的波形状的间距为波间距WP[mm]、所述板部(331)的波形状的振幅方向的尺寸为波深度WD[mm]、相邻的所述板部(331)之间的所述流路管宽度方向的距离为流路宽度H[mm]时,所述波间距WP及所述波深度WD设定为满足下面的数学式1及数学式2所示的关系, 数学式12.2 彡 WP/WD 彡 4. 28 数学式20. 5 彡 WD/H 彡 1. 8。
2.根据权利要求1所述的热交换器,其特征在于,所述波间距WP及所述波深度WD设定为满足下面的数学式3及数学式4所示的关系, 数学式32.2 彡 WP/WD 彡 3 数学式40. 5 彡 WD/H 彡 1. 8。
3.根据权利要求1或2所述热交换器,其特征在于, 在所述细流路(33 流通的所述热介质的雷诺数为500以下。
4.根据权利要求1 3中任一项所述的热交换器,其特征在于, 所述流路管( 设置有多个,所述多个流路管( 通过连通构件(4)连通,在所述多个流路管(3)的外侧配置有与所述热介质进行热交换的热交换对象物O)。
全文摘要
本发明提供一种热交换器,该热交换器中,内翅片(33)为波形翅片,其具有沿着流路管长度方向延伸的板部(331)和将相邻的板部(331之间相连的顶部(332),且与长度方向正交的截面形状为波状,并且从流路管层叠方向观察时,板部(331)在流路管长度方向上折弯成波形,波间距(WP)[mm]、波深度(WD)[mm]、流路宽度H[mm]设定为满足2.2≤WP/WD≤4.28且0.5≤WD/H≤1.8的关系。
文档编号F28F1/40GK102297612SQ20111012947
公开日2011年12月28日 申请日期2011年5月11日 优先权日2010年5月21日
发明者杉本尚规 申请人:株式会社电装