专利名称:用于飞机的脱氧燃料冷却的环境控制系统预冷却器的利记博彩app
技术领域:
本发明涉及一种热能管理系统,具体涉及使用燃料稳定单元的热能管理系统,带有用于飞机的环境控制系统的燃料-空气预冷却器。
背景技术:
飞机使用复杂的热能管理系统(TMS)来实现部件和环境热能管理。环境控制系统(ECS)提供调节的空气到封闭体,如飞机机舱和驾驶员座舱。传统的ECS使用与液体回路形成热量交换关系的空气循环冷却系统。液体回路一般用于冷却其他热负荷,如航空电子装置组件。空气和液体子系统之间的相互作用比较复杂。
在传统的ECS中,放气流从燃气涡轮发动机的中压或高压发动机压缩机部分产生。尽管有效,但使用放气的惩罚性代价是排出空气的发动机的工作效率下降。此外,放气温度常常超过华氏700度,必须在固定于发动机支架的空气-空气热交换器预冷却到华氏450度以下,然后连通到飞机翼并进入ECS。与空气-空气热交换器连通的冷却空气是飞机发动机的风扇部分产生的鼓风旁路空气流。鼓风旁路空气流是来自燃气涡轮发动机的风扇管路的空气,这样使得发动机的工作效率进一步降低。
因此,希望能提供一种有效的重量轻的热能管理系统,用于飞机ECS,使发动机工作效率的下降最小。
发明内容
根据本发明的基于燃料的热能管理系统包括燃料稳定系统,允许燃料温度超过传统的焦化温度。空气-燃料热交换器作为环境控制系统(ECS)预冷却器,使得来自发动机压缩机放气的热量传递到燃料中。脱氧燃料的空气-燃料热交换器减少了传统的空气-空气预冷却器的发动机旁路空气流,否则会降低发动机的工作效率。
因此,本发明提供了一种有效的重量轻的热能管理系统,可用于飞机ECS系统,使得发动机工作效率的降低最小。
所属领域的技术人员从下面对当前优选实施例的详细介绍可对本发明的各特征和优点更加了解。伴随所述详细介绍的附图可简单介绍如下图1是根据本发明的热能管理系统的普通方框图。
具体实施例方式
图1显示了能量转换装置(ECD)12的基于燃料的热能管理系统(TMS)10的方框图。TMS包括燃料回路14和环境控制系统回路16。
燃料稳定系统(FSU)18接收来自燃料储存系统20的液体燃料(示意显示)。应当知道FSU18的位置只代表许多可能位置中的一个,FSU可以位于其他位置,同时通过耐高温部件仍能够对燃料进行脱氧以便用于高温下。
ECD12可具有各种形式,其中燃料在最终用于进行处理,进行燃烧或某种形式的能量释放前的某些点,如果燃料中的溶解氧达到某个足够程度,燃料获得足够热量可支持自动氧化反应和焦化。ECD12的一种形式是燃气涡轮发动机,具体是示意显示的涡轮扇发动机,其包括风扇部分22,压缩机部分24,涡轮部分26和燃烧器部分28。
燃料一般是碳氢化合物,如液体喷气发动机燃料。FSU18包括燃料脱氧系统30,通过从液体燃料中去除溶解氧,可使燃料在非常高的温度下保持稳定且不会焦化。使得高温度荷载将其热量传输给燃料。应当知道各种脱氧系统都可用于本发明。为了更加了解燃料脱氧器系统和相关的部件,可参考美国专利Nos.6,315,815和6,709,492,这些专利转让给本专利的受让人,本文参考引用其内容。
燃料回路14中的燃料用作环境控制系统(ECS)回路16的冷却剂,吸收ECS的热量,并提升与ECD12的燃烧器部分28连通的燃料的温度。一般地,加热燃料可提高ECD12的效率。脱氧系统30允许燃料承受高达华氏900度的温度。
液体-空气热交换器系统32位于回路14,16的交界处。液体-空气热交换器系统32嵌入作为ECS预冷却器,但是,其他要求热能管理的子系统同样可从本发明受益,其他热交换器子系统可结合到TMS10。应当知道,由于压缩空气接近高温脱氧燃料,最好采取各种预防措施,这些预防措施已被热能管理领域的技术人员所熟知。
ECS回路14接收来自ECD12的压缩机部分24的压缩空气。压缩空气连通到液体-空气热交换器系统32,然后通过飞机环境控制系统(ECS)36连通到飞机机舱34。液体-空气热交换器系统32最好降低发动机的压缩空气的温度到大约华氏300度,然后进一步在ECS36进行常规冷却,以分配到机舱34,如通常都知道的。
脱氧燃料的温度最好通过液体-空气热交换器系统32上升到超过华氏325度,然后连通到ECD12的燃烧器部分。这个及更高的温度是可行的,因为脱氧系统30使得脱氧燃料可承受高达华氏900度的温度。ECD12的性能可通过其他无用的热能来提高。此外,在连通到ECS36之前通过液体-空气热交换器系统32增大冷却压缩空气最好可使得与ECS36相连的这个和其他热交换器的尺寸和/或重量最小化。这样的热量管理避免了或减少了使用鼓风旁路空气,否则可降低发动机工作效率。
虽然显示、介绍和公布了具体步骤程序,应当知道,除非特别指出,可以任何次序,单独或组合的,实施步骤,这些步骤仍属于本发明。
前面的介绍是示例性的,而不是定义为限制性的。在上述范围内本发明可进行许多改进和变化。对本发明的优选实施例进行了公开,所属领域的技术人员应认识到某些改进属于本发明的范围。因此,应当认识到,在所附权利要求的范围内,本发明可通过具体介绍以外的方式实施。为此,应当仔细研究所附权利要求,以确定本发明的真实范围和内容。
权利要求
1.一种热能管理系统,包括燃料稳定系统;液体-空气热交换器系统,其与所述燃料稳定系统流体连通;和环境控制系统,与所述液体-空气热交换器系统连通。
2.根据权利要求1所述的热能管理系统,其特征在于,所述燃料稳定系统包括脱氧系统。
3.根据权利要求1所述的热能管理系统,其特征在于,所述液体-空气热交换器与能量转换装置的压缩空气连通。
4.根据权利要求3所述的热能管理系统,其特征在于,所述能量转换装置是飞机燃气涡轮发动机。
5.根据权利要求1所述的热能管理系统,其特征在于,所述液体-空气热交换器是燃料-空气热交换器。
6.根据权利要求1所述的热能管理系统,其特征在于,所述液体-空气热交换器可降低压缩空气的温度至大约华氏300度。
7.根据权利要求1所述的热能管理系统,其特征在于,所述液体-空气热交换器可降低压缩空气的温度到接近所述液体-空气热交换器系统的液体入口温度。
8.根据权利要求6所述的热能管理系统,其特征在于,所述液体-空气热交换器的燃料温度超过华氏325度。
9.根据权利要求1所述的热能管理系统,其特征在于,所述环境控制系统连通空气流到飞机机舱。
10.根据权利要求1所述的热能管理系统,其特征在于,所述环境控制系统连通空气流到电子装置。
11.根据权利要求1所述的热能管理系统,其特征在于,来自所述液体-空气热交换器的燃料连通燃气涡轮发动机的燃烧器部分。
12.一种热能管理方法,包括步骤(1)使燃料脱氧,提供脱氧的燃料;(2)连通燃料到液体-空气热交换器系统;(3)连通来自能量转换装置的压缩空气到液体-空气热交换器系统,使压缩空气的热量传递到脱氧的燃料;和(4)连通来自液体-空气热交换器的压缩空气到环境控制系统。
13.根据权利要求12所述的方法,其特征在于,所述步骤(3)还包括步骤从燃气涡轮发动机的压缩机部分抽出压缩空气。
14.根据权利要求12所述的方法,其特征在于,所述步骤(3)还包括步骤传递热量到脱氧燃料,提高燃料的温度到大约华氏325度以上。
15.根据权利要求14所述的方法,其特征在于,还包括步骤连通来自液体-空气热交换器系统的脱氧燃料到燃气涡轮发动机的燃烧器部分。
全文摘要
根据本发明的一种基于燃料的热能管理系统,包括燃料稳定系统,其允许燃料温度超过传统的焦化温度。空气-燃料热交换器用作环境控制系统(ECS)预冷却器,使发动机压缩机放气的热量传递到燃料,以保持发动机的工作效率。
文档编号F23R3/28GK1927658SQ20061015180
公开日2007年3月14日 申请日期2006年9月7日 优先权日2005年9月7日
发明者R·L·贝特, D·R·萨巴蒂诺, M·K·萨姆, S·卡斯卢斯基 申请人:联合工艺公司