聚ε-己酰胺薄膜的制造方法

文档序号:4482405阅读:393来源:国知局
专利名称:聚ε-己酰胺薄膜的制造方法
技术领域
本发明涉及用一种ε-己内酰胺的单体聚合物制造均质聚ε-己酰胺薄膜的方法,特别涉及一种制造具有均匀厚度、良好透明性和低结晶度薄膜的方法。
已经提出多种方法作为制造无定向薄膜的双向拉伸法。这些方法可概括为一次双向拉伸法和二步双向拉伸法。
在一次双向拉伸法中,由于需对无定向薄膜在拉幅架中同时作纵横双向拉伸,故拉幅架夹钳的夹持机构十分复杂。由于这种机构至今尚未普遍应用,故这种方法的费用很高。此外,由于难以改变拉伸速度,其生产效率也很低。
在二步双向拉伸方法中,对经熔融并从“T”形模挤出的无定向薄片是依次用辊式纵向拉伸机和拉幅架式横向拉伸机进行拉伸的。挤出的薄片通常在象辊状转动冷却器这样一类的可动冷却器表面上冷却而固化。但采用这种方法所得的制品,其导热性很差,这是由于在熔融而未拉伸的薄片和转动冷却器之间混入了薄层空气。而且,由于熔融的薄片是在较高的速度下冷却而结晶的,故薄片的结晶度较高而透明性很差。此外,由于未拉伸薄片的拉伸性很差,所以拉伸薄膜的透明性也很差。
作者已发现,如使未拉伸的熔融聚合物薄片在移动中直接粘附在冷却器的表面上冷却而不使空气混入其间,就可使聚ε-己酰胺共聚物薄片的结晶速度降低并改善其拉伸性。
为使挤出的熔融薄片粘附在冷却器的表面上,本发明在“T”形模和冷却器之间或尽量靠近冷却器设置刀刃状、线状或多针状电极,在电极和冷却器表面之间加上高电压和低电流,并使未拉伸的薄片在电极和冷却器之间通过,从而形成了本发明所采用的静电附加机构,此机构可有效地使相应的薄片粘附在冷却器的表面上而受到冷却。最好采用针状静电附加机构而不采用昂贵的刀刃状或多针状静电附加机构。
就作为原料的聚酰胺树脂的聚合度而论,要求树脂的相对粘度应大于3.0或最好为3.0~4.5。
已发现,具有相对粘度低于3.0的聚合度的均质的聚ε-己酰胺树脂,在温度的影响下很易劣化。因此,在薄膜生产过程中,这种树脂使设备受到低聚物的沾染,而不能生产出具有所需各种稳定的物理性能的双向拉伸薄膜。在聚合度大于4.5时,由于在制造过程中产生较大的负载,很难制成薄膜。
本发明由于采用了上述静电附加机构就可用均质的聚ε-己酰胺制成透明性好、厚度均匀、结晶度低和结晶度偏差小的双向拉伸聚ε-己酰胺薄膜。
由于对无定向薄片进行了双向(纵向和横向)拉伸就可使这种热塑性薄膜具有改进的物理性能,例如气密性、抗针孔性、抗冲击性、断裂强度和透明性。
在本发明的方法中采用ε-己内酰胺的单体聚合物,即通称的尼龙6作为原材料。为改进拉伸薄膜聚合物的活性、抗粘着性、拉伸性、耐热性和除电性,可在相应的聚合反应中加入以下一类添加剂活性剂、抗氧化剂、紫外线吸收剂和静电防止剂,其加入量以使薄膜的性能不受有害影响为准。
本发明制造未拉伸、无定向和无定形薄片的方法是将聚ε-己酰胺聚合物加热到熔点以上,将其挤出,并利用静电粘附将其粘附在辊状转动冷却器表面上进行冷却和固化,静电是在辊状转动冷却器表面和电极之间加上4.0~10.0KV的高电压和低电流所形成的。在电压高于10.0KV时,会产生火花而使电线断裂,从而使静电难以形成。在电压低于4.0KV时,由于附加静电功率过低就不能达到双向拉伸的聚酰胺薄膜应有的生产能力(在双向拉伸聚酰胺薄膜的情况下,未拉伸薄片的拉伸速度一般应大于20m/分才能达到应有的生产能力)。在采用静电粘附法生产未拉伸薄片时,最好使结晶度低于5%以利以后拉伸工序中的双向拉伸。
参照示意说明本发明的具体实施结构的附图,可以更容易理解本发明。在各附图中

图1简略地示出了二步双向拉伸法的生产过程图2较详细地示出了静电粘附法中未拉伸薄片的冷却过程。
在图2中简略地示出了静电附加机构。在靠近辊状转动冷却器(2)的表面设有线状单线式电极(5),在电极(5)和接地冷却器(2)之间加上4.0~10.0KV的高电压和低电流。因此,在电极和冷却器表面之间产生了静电力。当挤出的融体进入其间时,就令人满意地粘附在冷却器的表面上。
此后,如图1所示,在纵向拉伸机(3)内对未拉伸薄片(S)进行纵向拉伸,纵向拉伸比(= (V2)/(V1) )在2.0以上,并在拉幅架式横向拉伸机(4)内进行横向拉伸,横向拉伸比(= (L2)/(L1) )在2.0以上。在将其拉伸到规定宽度并通过加热定型器(6)对其进行定型后,切去其两个边缘,即可卷取完成的薄膜。
尽管用上述方法所得双向拉伸的聚ε-己酰胺薄膜(F)已具有令人满意的性能,但还可进一步对其进行纵向和横向拉伸2以改进其特定的物理性能。
对按本发明取得的薄膜(F)可采用以下方法测定其特定值(1)厚度偏差率= (宽向最大厚度-宽向最小厚度)/(宽向平均厚度) ×100(2)相对粘度将树脂以1.0gr/100ml的浓度溶于浓度为96.3%的硫酸溶液中,并在20℃的恒温器内用奥斯特瓦尔德粘度计进行测量。
以下就一些非限制性实施例对本发明进行更详细的说明。
实施例1~6将相对粘度为2.0~4.5的聚酰胺系聚ε-己酰胺树脂放在回转式真空干燥器内在110℃下进行干燥。在将树脂的水分含量控制到0.1%(重量)后,将其装在直径为90mm的挤出机中在260℃下进行融化,融化后通过“T”形模(1)将其挤出。使挤出的熔融聚合树脂进入冷却到25℃的接地的辊状转动冷却器(2)和线状单线或电极(5)之间,在电极(5)上加有5.0KV的高电压和低电流。聚合树脂随即粘附在冷却器上并形成厚度均为150um、宽度为1m的无定形未拉伸薄片(S)。使此薄片(S)在辊式纵向拉伸机(3)内作纵向拉伸,纵向拉伸比超过一般纵向拉伸机拉伸比的3倍,并在拉幅架式横向拉伸机(4)内作横向拉伸,横向拉伸比超过一般拉幅架式横向拉伸机横向拉伸比的3.5倍。经热定型后即可卷取厚度为15um的双向拉伸薄膜(F)。
表1所示为制得的各种薄膜的拉伸性。在将静电附加机构的电压控制在5.0KV,将辊状转动冷却器的拉伸速度控制在实施例1-6的20m/分或40m/分的情况下,各拉伸薄膜的厚度偏差率取决于所采用的相对粘度。
如表1所示,在相对粘度为3.0~4.5时,可制得具有拉伸性良好厚度偏差率小于10%的薄膜。
*厚度偏差率小于10%的拉伸薄膜为良好实施例7~13干燥附加静电机构和拉伸机的条件与表1所示相同。在制取未拉伸薄片和拉伸薄片时,采用相对粘度为3.5的均质聚酰胺系聚ε-己酰胺树脂,外加电压控制在3.0~10.0KV,辊状转动冷却器的拉伸速度控制在5~70m/分。未拉伸薄片的厚度偏差率和拉伸性以及拉伸薄膜的厚度偏差率取决于使熔融聚合树脂粘附在辊状转动冷却器表面上的程度(表2)。表2示出了在外加电压为4.0-10.0KV时未拉伸薄片的拉伸速度大于20m/分的结果。与此同时也示出了拉伸薄膜拉伸性良好和厚度偏差率小于10%的结果。

因此,选用相对粘度大于3.0,最好为3.0-4.5的ε-己内酰胺的单体聚合物制成均质的聚酰胺系聚ε-己酰胺薄片,再使聚ε-己酰胺薄片固化而降低其结晶度,然后采用静电粘附法,即在辊状转动冷却器表面和朝向该冷却器的线状单线式电极之间加上4.0-10.0kv高电压和低电流来控制其聚合度,这样,本发明就可十分有效地高效制取厚度均匀、透明性良好和结晶度较低的双向拉伸聚ε-己酰胺薄膜。
权利要求
1.一种制造双向拉伸聚ε-已酰胺薄膜的方法,其特征是,在采用二步双向拉伸法作双向拉伸前,通过将聚ε-已酰胺聚合物加热至其熔点以上並将其挤出,再借助于在电极上加上4.0~10.0KV高电压和低电流所形成的静电使挤出的聚合物粘附在辊状转动冷却器表面上,然后通过冷却使其固化而形成聚ε-已酰胺薄膜的未拉伸薄片,聚ε-已内酰胺的聚ε-已酰胺聚合物的相对粘度大于3.0。
2.按照权利要求1所述方法,其特征是,聚ε-己酰胺的相对粘度为3.0~4.5。
3.按照权利要求1或2所述方法,其特征是,电极为一线状单线式电极。
4.按照权利要求1或2所述方法,其特征是,电极为一刀刃状或多针状电极。
5.按照权利要求1所述方法,基本上如前面所述。
6.按照权利要求1所述方法,基本上如前面所述,并参照任一实施例。
7.如权利要求1所述方法,基本上如前面所述,并参照附图。
全文摘要
一种制造双向拉伸聚ε-己酰胺薄膜的方法,此方法选用相对粘度大于3.0,最好为3.0~4.5的ε-己内酰胺的单体聚合物制取均质的聚酰胺系聚ε-己酰胺薄片,再使聚ε-己酰胺薄片固化而降低其结晶度,然后采用静电粘附法,即在辊状转动冷却器表面和朝向该冷却器的线状单线或电极之间加上4.0~10.0KV高电压和低电流来控制其聚合度,从而高效地制取厚度均匀、透明性良好和结晶度较低的双向拉伸聚ε-己酰胺薄膜。
文档编号B29C55/00GK1037479SQ89102928
公开日1989年11月29日 申请日期1989年5月3日 优先权日1988年5月4日
发明者权昌焕 申请人:株式会社Skc
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1