专利名称:激光透过性着色树脂组合物及其相关技术的利记博彩app
技术领域:
本发明涉及激光透过性着色树脂组合物及由该树脂组合物形成的激光透过性构件、激光透过性构件形成用激光透过性着色树脂组合物、激光透过性构件的制造方法、激光焊接用激光透过性构件以及激光焊接体的制造方法。
背景技术:
作为将由热塑性合成树脂形成的构件之间接合的方法,已知有通过激光焊接的方法。这种激光焊接通过例如以下的方法来进行。使显示有激光透过性的一构件与显示有激光吸收性的另一构件相抵接。从激光透过性构件侧向两构件的抵接部位照射激光,透过了激光透过性构件的激光被激光吸收性构件吸收,由此引起激光吸收性构件发热。由于该热,以吸收激光的部分为中心,激光吸收性构件熔融,同时,与该部分相抵接的激光透过性构件也熔融,于是两构件在抵接部位融合。如通过降低温度将熔融树脂固化,则可将激光透过性构件与激光吸收性构件以充分的焊接强度接合。
作为该激光焊接的优点,可例举如不需要使需要焊接的部位与激光发生部接触即可使其焊接、由于是局部加热因而对周边部分的热影响很小、没有机械振动的危险、可在具有微细部分或复杂立体结构的构件之间进行焊接、重现性高、可维持高气密性、焊接强度高、焊接部分的焊缝肉眼难以分辨以及不产生粉尘等。另外,除了通过简单的操作即可进行可靠的焊接之外,还可以获得与以往的树脂构件的接合方法,如通过连接用构件(螺栓、螺丝、夹子等)的连接、通过粘合剂的粘合、振动焊接以及超声波焊接等方法同等或以上的焊接强度。而且由于振动或热的影响小,因此可以实现节能、生产性的改良以及降低生产成本等。
由此,激光焊接适合用于例如汽车产业或电气·电子产业等中的需要避免振动或热的影响的功能构件或电子构件的接合,同时也适用于复杂形状的树脂构件的接合。
作为与激光焊接相关的技术,例如有如日本专利特开平11-170371号公报(专利文献1)中记载的尝试。它是包括向不透明构件与无色透明构件相接的部分照射激光并使激光的焦点一致的工序的方法,其中不透明构件由吸收激光的材料和热塑性合成树脂形成,无色透明构件由透过激光的热塑性合成树脂形成。但是这种情况中,由于透过激光的构件是无色透明的,因此如从激光透过构件侧来看,焊接的部分和没有焊接的部分在颜色或平滑性上均不相同,因此谈不上美观。
另外,将激光透过性构件与激光吸收性构件相抵接的部分通过激光焊接来接合的情况中,将在抵接部位存在的间隙控制在充分小的范围内是非常重要的。
在实际的生产现场采用激光焊接作为接合方法的情况中,作为应对在接合对象构件之间会存在的间隙的对策,通过气动夹具(air clamp)等加压来在使间隙减小的状态下进行焊接是主流的对策。关于通过这种加压来减小间隙的方法,在例如涉及层压结构体的制造方法的日本专利特开昭63-118237号公报(专利文献2)、涉及树脂构件的焊接方法的日本专利特开2002-337236号公报(专利文献3)、涉及激光焊接方法及激光焊接装置的日本专利特开2004-66739号公报(专利文献4)等中有记载。
但是,在通过加压来减小间隙的方法中伴随有如下的课题,即由于气动夹具等加压设备的导入费用以及将激光焊接的对象构件安装在加压设备中所需要的时间,导致生产成本的增大以及生产性的下降(例如生产节拍时间的延长等)。
专利文献1日本专利特开平11-170371号公报专利文献2日本专利特开昭63-118237号公报专利文献3日本专利特开2002-33736号公报专利文献4日本专利特开2004-66739号公报发明内容本发明是鉴于以往技术中所存在的如上述的课题而进行的,其目的是提供一种激光透过性着色树脂组合物、激光透过性构件、使用上述树脂组合物的激光透过性构件的制造方法以及使用上述激光透过性构件的激光焊接体的制造方法,所述树脂组合物的成型精度优良、成型物的外观及光泽良好、将成型物用于激光焊接时可防止与焊接对象构件之间产生间隙或可有效减小间隙、耐热性以及牢固性良好,所述激光透过性构件大小稳定性和形状稳定性优良、用于激光焊接时可防止与焊接对象构件之间产生间隙或可有效减小间隙。
达到上述目的的本发明的激光透过性着色树脂组合物是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,其特征在于,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上。
本发明的激光透过性构件由上述激光透过性着色树脂组合物形成,并且在DSC热分析中具有放热能的峰和吸热能的峰各一个。
本发明的激光透过性构件形成用激光透过性着色树脂组合物由上述激光透过性着色树脂组合物形成。
另外,本发明的激光透过性构件制造方法是将上述激光透过性着色树脂成型,并使其在DSC热分析中具有放热能的峰和吸热能的峰各一个。
另外,本发明的激光焊接用激光透过性构件由上述激光透过性着色树脂组合物形成,并且在DSC热分析中具有放热能的峰和吸热能的峰各一个。
另外,本发明的激光焊接体的制造方法是如下的方法,即在上述激光透过性构件与激光吸收性构件实质上抵接的状态下,照射激光焊接用激光,该激光透过上述激光透过性构件后被上述激光吸收性构件吸收,这样使上述两个构件的抵接部位焊接。
在该制造方法中,也可以例如对于1个激光吸收性构件,在多个方向分别使本发明的激光焊接用激光透过性构件激光焊接。
另外,本发明的另一激光焊接体的制造方法是使一方的构件与另一方构件焊接来制造焊接体的方法,其中,上述一方的构件是上述激光透过性构件,在隔着激光吸收性薄层使上述一方的构件与另一方的构件实质上抵接的状态下,照射激光焊接用激光,激光透过上述激光透过性构件后被上述激光吸收性薄层吸收,藉此通过激光吸收性薄层使上述两个构件焊接。
这种情况的激光吸收性薄层可以由与上述两个构件独立的构件形成,也可以在上述两个构件的一方或者两方上形成。
本发明的激光透过性着色树脂组合物可形成成型精度优良、外观和光泽良好的成型物,在激光焊接中使用作为成型物的激光透过性着色构件时,可以防止与焊接对象构件之间产生间隙或者可有效地减小间隙,由于是经过着色的,因此从成型物的激光透过性构件侧很难看到和激光吸收性构件的激光焊接部,耐热性以及牢固性也良好。
另外,本发明的激光透过性构件大小稳定性以及形状稳定性优良,当将其用于激光焊接时,由于可以防止与焊接对象构件之间产生间隙或者可有效地减小间隙,因此可以得到抗拉强度稳定且品质良好的激光焊接体。根据本发明的激光焊接体的制造方法,由于通过使用本发明的激光透过性构件,可以防止与焊接对象构件之间产生间隙或者可有效地减小间隙,因此可以得到焊接强度稳定、品质良好的激光焊接体。也可以使用简单的激光装置。
图1是显示激光焊接体制造工序例1的立体图。
图2是显示激光焊接体制造工序例2的立体图。
图3是显示激光焊接体制造工序例2的立体图。
图4是激光透过性试验片的立体图。
图5是显示弯曲量测定的立体图。
图6是显示激光焊接试验的截面示意图。
图7是实施例3的DSC曲线。
图8是实施例4的DSC曲线。
图9是实施例5的DSC曲线。
图10是实施例6的DSC曲线。
图11是比较例2的DSC曲线。
图12是eBIND LTW-8400C的TG/DTA曲线。
符号说明10激光透过性试验片12水平面14激光吸收性试验片C气动夹具G门部位J夹具L二极管激光焊接机
P玻璃板R激光W砝码h高度具体实施方式
本发明的激光透过性着色树脂组合物至少含有聚苯硫醚树脂(以下提到的“PPS树脂”是指聚苯硫醚树脂)和着色剂。
本发明的激光透光性着色树脂组合物也可以实质上由PPS树脂和着色剂形成。
本发明的树脂组合物中使用的着色剂,在TG/DTA热分析中,在200℃至300℃之间具有吸热峰。更加特定的话,该着色剂是在从30℃升温至550℃的TG/DTA热分析中,只在200℃至300℃之间具有实质的吸热峰的着色剂。
在对于该着色剂的TG/DTA热分析中,可采用空气200ml/分钟的气氛下、从30℃以10℃/分钟的速度升温至550℃的测定条件。另外,作为TG/DTA测定器,可使用セイコ一インスツルメンツ公司制的SII EXSTAR6000(商品名)。
另外,本发明的树脂组合物的DSC热分析中的结晶点记为TC,除不含上述着色剂以外与上述激光透过性着色树脂组合物相同的物质(树脂或树脂组合物)在DSC热分析中的结晶点记为TN,两者的差TC-TN需要在0℃以上。两个结晶点当然应该在同一条件下测定。
在该DSC热分析中,可以采用以下的测定条件,即从30℃以10℃/分钟的速度升温至330℃,以后从330℃以10℃/分钟的速度降温至30℃。另外,作为DSC测定器,可以使用セイコ一インスツルメンツ公司制的SIIEXSTAR6000(商品名)。
通过使上述树脂组合物的TC-TN满足在0℃以上,可以有效抑制在由该树脂组合物形成的成型物中可能出现的弯曲变形(将通过成型应该得到的成型物作为基准,所得的成型物的弯曲变形)。因此,将由本发明的树脂组合物形成的激光透过性构件用于与激光吸收性构件的激光焊接中时,可以防止两构件之间出现间隙或者可有效地减小间隙,由两构件形成的激光焊接体的焊接品质稳定。
另外,对于TC-TN,较好为30℃≥TC-TN≥5℃,更好为20℃≥TC-TN≥10℃。这样可以得到成型精度高的激光透过性构件。
本发明的激光透过性构件由上述激光透过性着色树脂组合物形成,并且还需要DSC热分析中,具有放热能的峰和吸热能的峰各一个。更加特定的话,在从30℃升温至330℃,之后又从330℃降温至30℃的DSC热分析中,需要实质地只具有放热能峰和吸热能峰各一个。
在该DSC热分析中,可采用如下的测定条件,即从30℃以10℃/分钟的速度升温至330℃,之后,再从330℃以10℃/分钟的速度降温至30℃的条件。另外,作为DSC测定器,可以使用セイコ一インスツルメンツ公司制的SIIEXSTAR6000(商品名)。
PPS树脂在工程塑料中结晶速度较慢。因此,使用金属模将PPS树脂成型时,为了使树脂的结晶化完全,通常高设定金属模的温度(通常为150℃)。
如果在PPS树脂的成型中将金属模的温度设定地低,则由于金属模内的熔融树脂骤冷,因此在所得的成型物中,存在结晶化完全的部分和结晶化不完全的部分,在成型品中结晶度出现了差异。如对这样的成型物进行DSC测定,由于结晶化不完全的部分在测定过程中进行结晶,因此出现称为重结晶点的放热能的峰。在DSC测定的升温时,在达到熔点(吸热能的峰)之前出现重结晶点(放热能的峰)的情况可以判定该PPS树脂成型物的结晶化状态不稳定,并且缺乏大小稳定性和形状稳定性。
本发明的激光透过性构件由将上述本发明的激光透过性着色树脂组合物成型获得,并且它在DSC热分析中具有放热能量的峰和吸热能的峰各一个。
即使成型用的金属模温度为130℃,将不含有着色剂的PPS树脂注入成型所得的成型物也确认存在重结晶点。将不含有着色剂的PPS树脂注入成型,为了得到没有重结晶点的成型物,金属模的温度较好设定在150℃附近。但是,本发明的树脂组合物由于含有上述着色剂,因此即使在130℃的金属模温度下进行注入成型,也可以得到没有重结晶点的成型物。即,低设定金属模温度可以减少生产成本,还可以得到大小稳定性以及形状稳定性良好的着色成型物。
更加特定的话,本发明的激光透过性构件的弯曲量在0.5mm以下,更好在0.2mm以下。本说明书中的“弯曲量”表示如下的意思,即,使用具有纵80mm×横50mm×厚度1mm的直方体形型腔的金属模进行成型,得到成型物,将所得成型物的内外两面分别放置在水平面上,将各个角用100g的砝码压住,这时对角高出水平面的最大高度即是弯曲量。
本发明的激光透过性构件的成型精度优良,所得构件的外观、表面光泽良好。从这方面来看,如果更特定的话,本发明的激光透过性构件在光束60度的测定条件下的光泽度较好在100以上。当在光束60度的测定条件下,激光透过性构件的光泽度为100以上的情况时,由于表面的平滑度高,因此进行激光焊接使之与激光吸收构件重合时,即使在两者之间产生间隙,该间隙对激光焊接的影响也很小,可以使焊接品质更加稳定化。
作为上述的在TG/DTA热分析中于200℃至300℃之间具有吸热峰的着色剂,可将1种或者2种以上(可见光吸收范围重复或不重复的均可)的在激光波长范围(800nm至1600mm的波长)具有透过性的染料混合使用。当为含有在200℃至300℃之间具有吸热峰的着色剂和PPS树脂的着色树脂组合物时,在PPS树脂的熔点(DSC测定中的熔点)附近的温度下,着色剂在树脂中均一分散。因此,将含有这种着色剂和PPS树脂的着色树脂组合物成型时,如果金属模温度在130℃至150℃时,则着色树脂成型物显示出比较均一的状态。
另一方面,对于在200℃以下具有吸热峰的着色剂,着色剂的分解物有各种各样。如将含有这样的着色剂和PPS树脂的着色树脂组合物进行注入成型时,即使金属模的温度在150℃,也有部分较早或较慢地进行结晶化。因此,在所得的着色树脂成型物中,出现结晶化不完全的部分,在DSC测定中出现重结晶点。结晶的大小也不均一。
如果是在激光焊接中使用的对1种或2种以上的特定波长的激光具有透过性的着色剂,其结构就没有特别的限定。具体可例举如,偶氮系、偶氮含金属系、偶氮甲碱系、蒽醌系、喹吖酮系、二嗪系、二酮基吡咯并吡咯系、蒽吡啶酮系、异吲哚啉酮系、靛蒽醌系、紫环酮系、苝系、靛蓝系、硫代靛蓝系、奎酞酮系、喹啉系、三苯甲烷系等各种有机染颜料。在对于PPS树脂的相溶性方面,较好为有机染料。
作为混合有2种以上的着色剂的着色剂的示例,可例举如通过将蓝色、紫色、绿色的蒽醌系染料与黄色及/或红色的着色剂组合,形成的绿色(例如蓝色+黄色的组合)、紫色(例如蓝色+红色的组合)、黑色(例如蓝色+黄色+红色的组合,或者紫色+黄色的组合)等显示各种色调的着色剂。作为在工业应用中重要的黑色着色剂的示例,可例举如将蒽醌系蓝色染料与它结构的红色着色剂和黄色着色剂组合形成的黑色着色剂、将蒽醌系绿色染料与其它结构的红色着色剂组合形成的黑色着色剂。作为这些示例中较好的红色着色剂,可示例如偶氮系红色染料、紫环酮系红色染料、蒽吡啶酮系红色染料。
作为这种着色剂的市售品,可例举如东方化学工业公司制的激光透过性着色剂,商品名为“eBIND LTW-8400C”(“eBIND”以及“LTW”分别为注册商标)等。
相对于PPS树脂,本发明的激光透过性着色树脂组合物中着色剂的含量较好为0.01重量%至10重量%。更好为0.03重量%至5重量%。更加好为0.05重量%至1重量%。
作为本发明的激光的光源,可例举如固体激光器(Nd-YAG,YVO4,RUBY)、半导体激光器、可调谐激光器、钛蓝激光器。较好使用其中在较可见光波长长的区域的800至1600nm具有激发波长的激光。更好为在800至1100nm具有激发波长的激光。另外,也可将产生波长在700nm以上的红外线的卤素灯或氙灯作为光源。
本发明的激光透过性着色树脂组合物对波长940nm的激光的透过率为T着色树脂,除了不含着色剂之外与上述激光透过性着色树脂组合物相同的物质对波长940nm的激光透过率为T非着色树脂,T着色树脂与T非着色树脂之比(T着色树脂/T非着色树脂)较好在0.5以上,更好在0.7至1.1,再更好在0.8至1.1。
PPS树脂是以由[-φ-S-](φ为具有或不具有取代基的亚苯基)表示的硫代亚苯基形成的重复单元为主的聚合物。该树脂可通过使对二氯苯和硫化碱金属盐(硫化アルカリ)在高温、高压下反应,再使合成的单体聚合而得。该树脂大体可分为只通过使用聚合助剂的聚合工序达到目标聚合度的直链型和在氧存在下使低分子聚合物热交联的交联型两类。由于直链型的树脂的激光透过性优良,因此特别适合本发明。作为本发明的PPS树脂,可使用聚合物-合金。可例举如PPS/聚烯烃系合金、PPS/聚酰胺系合金、PPS/聚酯系合金、PPS/聚碳酸酯系合金、PPS/聚亚苯基醚合金、PPS/液晶聚合物系合金、PPS/聚酰亚胺系合金、PPS/聚砜系合金。另外,PPS树脂的熔融粘度只要可以熔融混炼即可,没有特别的限定,通常使用5至2000Pa·s范围内的PPS树脂,更好为100至600Pa·s的范围的PPS树脂。上述的PPS树脂具有适用于电子元器件或汽车构件等用途的特性。
根据用途和目的,本发明的着色树脂组合物可适量含有各种增强材料。作为该增强材料,可使用通常的合成树脂的增强中使用的材料,没有特别的限定。
作为上述增强材料的较好的示例,可例举如玻璃纤维、碳纤维、其它的无机纤维以及有机纤维(芳纶、尼龙、聚酯以及液晶聚合物等)等。在要求激光透过性的本发明的着色树脂组合物的增强中,较好为玻璃纤维。适宜使用的玻璃纤维的纤维长为2至15mm、纤维径为1至20μm。对玻璃纤维的形态没有特别的限定,例如粗纱、磨碎纤维等任一种均可。这些玻璃纤维即可单独使用一种,也可将2种以上组合使用。其含量较好为相对于PPS树脂100重量份为5至120重量份。如果不满5重量份,则难以得到充分的玻璃纤维增强效果,如果超过120重量份则成型性容易下降。另外,以激光焊接的接合为目的时,由于原理上是树脂之间的焊接接合,因此玻璃纤维较少者的焊接强度高。从该方面考虑,玻璃纤维的含量较好为10至60重量份,特好为20至50重量份。
作为其它的增强材料,可添加云母、绢云母、玻璃片等板状填充材料;滑石、陶土、粘土、硅灰石、膨润土、硅酸铝等硅酸盐;氧化铝、氧化硅、氧化镁、氧化锆、氧化钛等金属氧化物;碳酸钙、碳酸镁、白云石等碳酸盐;硫酸钙、硫酸钡等硫酸盐;玻璃珠、陶瓷珠、氮化硼、碳化硅等颗粒状填充材料。
本发明的着色树脂组合物可根据需要掺入各种添加剂。作为这样的添加剂,可例举如助色剂、分散剂、稳定剂、增塑剂、改性剂、紫外线吸收剂或者光稳定剂、抗氧化剂、防带电剂、润滑剂、脱模剂、结晶促进剂、结晶成核剂、阻燃剂以及耐冲击性改良用的弹性体等。
本发明的着色树脂组合物可将原材料通过任意的混合方法配合获得。通常较好为使这些配合成分尽量均质化。具体可例如,通过用混合机、捏和机、班伯里混炼机、辊、挤出机等混合机将全部的原材料混合使之均质化而得到。另外,也可例如将一部分原材料用混合机混合之后,再添加剩余的成分进一步混合使之均质化而得。另外也可例如将事先干混的原材料用加热的挤出机熔融混炼使之均质化后,挤出成金属线状,再切成希望的长度得到呈着色粒状的着色颗粒。
本发明的着色树脂组合物,可通过将在PPS树脂中高浓度含有上述着色剂的母料再用PPS稀释而制得。通过使用母料,可得到着色剂良好分散的着色树脂组合物。上述母料可通过任意的方法获得。例如将成为母料的基质的树脂的粉末或颗粒和着色剂用翻转机或超混合机等混合机混合后,通过挤出机、间歇式混炼机或者辊式混炼机加热熔融进行颗粒化或粗粒子化而得。另外可以例如在合成后向仍呈溶液状态的母料用树脂中添加着色剂之后,除去溶剂得到母料。
本发明的着色树脂组合物的成型可通过进行通行的各种工序而完成。例如,可使用由本发明的着色树脂组合物形成的着色树脂颗粒,通过挤出机、注入成型机、辊式研磨机等加工机的成型来进行。另外也可,将PPS树脂的颗粒或者粉末、粉碎的着色剂、根据需要的各种添加物在适当的混合机中混合,再使用加工机将该混合物成型来进行。或者也可例如,向含有适当的聚合催化剂的单体中添加着色剂,通过聚合将该混合物形成希望的PPS树脂,再将其通过适当的方法成型。作为成型方法,可采用例如注入成型、挤压成型、压缩成型、发泡成型、吹塑成型法、真空成型、注坯吹塑、旋转成型、压延成型、溶液流铸等,可采用一般使用的任意的成型方法。通过这样的成型,可得到各种形状的激光透过构件。
一般激光焊接方法的优点是,由于可以3维焊接,因此模形状的自由度提高;与振动焊接不同,焊接面没有焊瘤因此图案性提高;不产生振动或者磨损粉末;容易应用到电子元器件等。作为缺点可例举如,对激光焊接装置需要先行投资,由于树脂材料成型之后的收缩在焊接构件之间形成间隙。特别是该间隙的问题,是操作激光焊接装置进行焊接时的最大的问题。因此,实际的做法是根据焊接构件的形状,分别单独制造压紧夹具,再在利用气动夹具等压紧焊接对象使间隙消除或减小的状态下进行焊接。
而与此相对,本发明的激光透过性构件成型精度高,弯曲量小。因而,使用本发明的激光透过性构件的激光焊接中,可防止激光透过性构件和激光吸收性构件的相接部位处的两构件的间隙因弯曲而变大,因此利用气动夹具等来减小间隙等的必要性减小,能够用较简单的装置进行激光焊接。上述两构件的间隙较好为0至0.05mm。
激光焊接装置可例举激光照射部移动的扫描型、焊件移动的掩蔽型(masking type)、从多个方向同时向焊件照射激光的类型等,汽车工业界所重视的方法是扫描型,目前,以其扫描速度例如5m/分钟的数值作为生产节拍时间的基准。
由于原理上激光焊接是利用激光的光能转换为热能,因此焊接条件对焊接性能有显著的影响。因此焊接条件对焊接性能有显著的影响。一般,在吸收构件表面上受到激光照射而产生的热量可由下式算出。
吸收构件的表面热量(J/mm2)=(激光的功率(W))×激光透过性构件的透过率(%)×1/100)/(激光的斑径(mm)×激光的扫描速度(mm/sec))…(I)
由(I)式可知,在激光焊接中为了提高生产效率,需要使用高功率型的激光焊接装置并同时提高扫描速度。由聚酰胺树脂所得的激光透过性优良的材料可通过这样的方法达到生产效率的提高。
但是,使用PPS树脂的激光焊接中,由于树脂的用途上构件自身的大小并不太大了,不一定希望高功率、高速的焊接条件,反而具有如下的倾向,即低速的焊接品质容易稳定,比较理想。
另外PPS树脂时,由于树脂自身的激光透过性不高,因此激光到达激光吸收性构件表面前在激光透过性构件中被吸收的比率比较高,因此以高功率进行激光焊接易出现在激光透过性构件的表面起火等不良情况。这样,在PPS树脂的激光焊接中,相对于这样的不良情况,例如在激光透过性构件的上面放置玻璃板,使激光透过性构件产生的热量被该玻璃板吸收等对策是很重要的。
一般,为了提高焊接强度,需要使激光吸收性构件产生一定程度的表面热量。因此,需要根据作为对象的激光吸收性构件和激光透过性构件的性质来研究提高激光功率、降低扫描速度、减小斑径等各种条件。
即使使用产生波长700nm以上的红外线的卤素灯,本发明的着色树脂组合物的成型构件也可以非接触焊接。作为这种情况的灯的形状,多为将灯配置成带状。作为照射形式,可例举如灯照射部移动扫描型、焊件移动掩蔽型、从多个方向使灯同时向焊件照射激光的类型等。另外,可适当调整红外线照射宽度、照射时间、照射能量等来进行照射。
但是,由于卤素灯以近红外区域为中心分布能量,因此在其能量分布的短波长侧,即可见光区域存在能量。这种情况时,由于又会在构件表面产生焊接痕,因此可使用节流过滤器(cut filter)等来遮断可见光区域的能量。
由于PPS树脂的成型物多为电气、电子元器件等小型物品,因此在其接合时适合采用设定各种焊接条件可进行精细控制的激光焊接。
在激光焊接中,作为激光透过性构件较好使用使至少15%的较可见光波长长的区域(800至1600nm)的激光透过的构件。另外更好使用对半导体激光器的808nm、840nm、940nm的波长以及YAG激光器的1064nm的波长中的1个或2个以上的波长的红外线的透过率至少为20%的激光透过性构件。透过率低于此的情况下,由于这些波长的激光不能充分透过,因此可能发生如上述的不良情况,导致焊接品质的下降。
激光吸收性构件较好为由至少使用了炭黑作为激光吸收剂兼黑色着色剂的激光吸收性着色树脂组合物(较好为热塑性树脂组合物)形成的构件。这种情况的炭黑较好使用1次粒径为18至30nm的炭黑。通过使用这样的炭黑,可以高吸收率吸收激光、得到高分散的激光吸收构件。
另外,可同时使用炭黑和苯胺黑染料作为激光吸收剂兼黑色着色剂。通过使用苯胺黑染料可以良好地调节激光吸收率。作为苯胺黑染料较好使用属于C.I.溶剂黑7的苯胺黑染料。另外,不使用炭黑作为激光吸收剂兼黑色着色剂,而通过使用了其它激光吸收剂(例如酞菁系、花菁系、金属配合物等)的(或者使用了其它的激光吸收剂兼着色剂[例如苯胺黑])激光吸收性着色树脂组合物也可得到激光吸收性构件。
另外,激光吸收性构件也可通过含有炭黑以外的着色剂和以酞菁系、花菁系、金属配合物等示例的激光吸收剂(或者使用其它的激光吸收剂兼着色剂)的非黑色的激光吸收性着色树脂组合物形成。也可以由含有炭黑以外的激光吸收剂兼着色剂的激光吸收性着色树脂组合物形成。
激光吸收性构件的制造与激光透过性构件同样也可通过成型激光吸收性着色树脂组合物来进行。也可使激光吸收性着色树脂组合物中还含有在激光透过性构件的制造中可使用的上述各种着色剂、各种染颜料等有机染颜料或添加剂等。在激光吸收性构件的制造中使用的材料与在激光透过性构件中使用的材料相比较,由于没有激光透过性这一限制,因此可以进行广泛的选择。激光吸收性着色树脂组合物中的着色剂的使用量相对于树脂(较好为热塑性树脂),例如可为0.01至10重量%,较好为0.05至5重量%。
激光吸收性薄层可以例如是将激光吸收性构件以薄的厚度形成的(例如膜状物),或者也可在激光焊接对象的两个构件的一方或两方上形成。后者的情况时,例如可在对象面上涂布(或者印刷)通过含有在上述激光吸收性构件中使用的着色剂而具有激光吸收性的油墨或者涂料,再使之固化来形成。
作为这种激光吸收性油墨的示例,可例举如在有机溶剂中溶接或者分散有激光吸收剂的油墨。作为在PPS树脂上涂布的较好的油墨的组成,可例举如至少由醇或二醇溶剂、在该溶剂中溶解的激光吸收剂、在上述溶剂中溶解的树脂构成的油墨。这样的激光吸收性油墨可含有pH调节剂、粘度调节剂、防腐剂、抗氧化剂、光稳定剂等添加剂。作为在有机溶液中溶解的激光吸收剂较好为苯胺黑。
下面,说明由本发明的激光透过性着色树脂组合物形成的激光透过性构件和由激光吸收性组合物形成的激光吸收性构件的激光焊接体,或者隔着激光吸收性薄层将激光透过性构件之间焊接而得的激光焊接体的制造方法。
由本发明的制造方法而得的激光焊接体,除了由1次激光焊接所得的焊接体之外也包括多次激光焊接所得的焊接体。作为多次激光焊接的示例,可例举如在激光透过性构件之间夹着激光吸收性构件或激光吸收性薄层来进行激光焊接的示例。当使用激光吸收性构件厚度十分薄的激光吸收性薄层的情况时,可以通过来自一方的激光透过性构件的激光的照射而焊接(也可以从两方的激光透过性构件分别照射激光),但当为较厚的激光吸收性构件的情况时,需要从夹住该激光吸收性构件的两方的激光透过性构件分别照射激光(可以同时也可以顺次)进行激光焊接。
激光焊接体制造工序例1(图1)(A)使用本发明的激光透过性着色树脂组合物,成型激光透过性构件1。
(B)使PPS树脂组合物制的激光吸收性构件2与上述激光透过性构件1的焊接对象部位之间抵接。
(C)接着,一边适当调节激光3使激光3透过上述激光透过性构件1被激光吸收性构件2吸收,一边进行照射。扫描需焊部位进行照射。
(D)照射的激光3透过激光透过性构件1,到达激光吸收性构件2,通过激光吸收剂等的作用被激光吸收性构件2吸收,引起发热,通过热熔融使两个构件1、2融合。
(E)通过将两个构件1、2的融合部位冷却固化,将上述激光透过性构件1和激光吸收性构件2的焊接对象部位之间接合。
激光焊接体制造工序例2(图2、图3)(F)使用本发明的激光透过性着色树脂组合物,成型多个激光透过性构件1。
(G)使激光吸收性薄层4(例如PPS树脂组合物制的激光吸收性薄膜)介置在上述多个激光透过性构件1的焊接对象部位之间。
或者,在上述多个激光透过性构件1的相互焊接的两面的一方(或者两方),形成激光吸收性薄层5。该激光吸收性薄层5可通过例如在对象面上涂布(例如印刷)具有激光吸收性的树脂油墨,再使之固化来形成。
(H)接着,从多个方向(一方的激光透过性构件1侧或者其它的激光透过性构件1侧),一边适当调节激光3使激光3分别透过激光透过性构件1被上述激光吸收性薄层4(5)吸收,一边进行照射。扫描需焊部位进行照射。
(I)从多个方向照射的各激光3分别透过激光透过性构件1,到达激光吸收性薄层4(或者5),通过激光吸收剂等的作用被激光吸收性薄层4(或者5)吸收,引起发热,通过热熔融使两激光透过性构件1与构成含有激光吸收剂的层的激光吸收性薄层4(或者5)融合。另外,也可通过从一方的激光透过性构件1侧照射激光3,使激光吸收性薄层4(或者5)发热,分别使两激光透过性构件1与构成含有激光吸收剂的层的激光吸收性薄层4(或者5)热熔融,使它们融合。
(J)通过将两个激光透过性构件1与激光吸收性构件4(或者5)的融合部位冷却固化,将两激光透过性构件1的焊接对象部位之间通过激光吸收性构件4(或者5)接合。
本发明的激光焊接体的制造方法中,由于激光透过性构件的成形精度高,因此可以防止激光吸收性构件的抵接部位处的两个构件的间隙增大,从而可以用比较简单的装置进行激光焊接。本发明的激光焊接体的制造方法中的上述两构件的间隙较好为0至0.05nm。
由本发明的制造方法所得的激光焊接体是耐热性、耐光性等牢固性高,另外耐移动性、耐化学性良好,而且显示鲜明的色度的焊接体。
实施例以下例举实施例具体说明本发明,但是本发明不限于此。
实施例1按照用フオ一トロン1130A6(聚塑料公司制的含有30重量%玻璃纤维的PPS树脂[商品名])将eBIND LTW-8400C(东方化学工业公司制的PPS树脂用激光透过性着色剂[“eBIND”和“LTW”均为注册商标]稀释25倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为130℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片(图4)。
实施例2按照用フオ一トロン1130A6将eBIND LTW-8400C稀释25倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为140℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
实施例3按照用フオ一トロン1130A6将eBIND LTW-8400C稀释25倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
实施例4按照用フオ一トロン1140A6(聚塑料公司制的含有40重量%玻璃纤维的PPS树脂[商品名])将eBIND LTW-8400C稀释10倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
实施例5按照用フオ一トロン1140A6将eBIND LTW-8400C稀释25倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
实施例6按照用フオ一トロン1140A6将eBIND LTW-8400C稀释50倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
实施例7按照用トレリナA604(东丽公司制的含有40重量%玻璃纤维的PPS树脂[商品名])将eBIND LTW-8400C稀释25倍的计量,将两者混合,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽良好、没有色差的均一的黑色的激光透过性试验片。
比较例1将由C.I溶剂紫13的紫色染料与C.I溶剂黄114的黄色染料配合形成的混合着色剂(混合重量比5∶1)和フオ一トロン1130A6混合,其配比是混合着色剂相对于フオ一トロン1130A6为0.2重量%,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为120℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽暗淡的黑色激光透过性试验片。
比较例2将由C.I溶剂紫13的紫色染料与C.I溶剂黄114的黄色染料配合形成的混合着色剂(混合重量比5∶1)和フオ一トロン1140A6混合,其配合比是混合着色剂相对于フオ一トロン1140A6为0.2重量%,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为90℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽暗淡的黑色激光透过性试验片。
比较例3将由C.I颜料紫37的紫色染料和フオ一トロン1140A6混合,其配比是该紫色染料相对于フオ一トロン1140A6为0.2重量%,使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将所得的混合物注入成型,得到外观和表面光泽暗淡的紫色激光透过性试验片。
比较例4使用注入成型机(东洋机械金属公司制,商品名Si-50),通过具有纵80mm×横50mm×厚1mm的直方体形状型腔的模具,料筒温度为320℃、模具温度为150℃,按照通常方法将フオ一トロン1130A6注入成型,得到黄白色系的激光透过性试验片。
物性评价对于实施例1至7以及比较例1至4中的激光透过性着色树脂组合物以及激光透过性试验片,进行如下的物性评价。结果示于表1和表2。
(1)DSC测定用剪钳切取将激光透过性试验片10的A部位(如图4所示,在门位置G的对角附近)得到小片,用DSC测定器(セイコ一インスツルメンツ公司制,商品编号SII EXSTAR6000),使其以10℃/分钟的速度从30℃升至330℃,之后在使其以10℃/分钟的速度从330℃降温至30℃,进行重结晶点、熔点和结晶点的确定。
实施例3、实施例4、实施例5、实施例6以及比较例2的DSC的曲线分别示于图7、图8、图9、图10以及图11。
(2)TG/DTA测定使用TG/DTA测定器(セイコ一インスツルメンツ公司制,商品名SIIEXSTAR6000),在空气中200mL/分钟的气氛下,使各实施例和比较例的着色剂粉试样以10℃/分钟的速度从30℃升温至550℃,进行测定,进行在20℃至300℃之间是否含有吸热峰的确定。
eBIMD LTW-8400C的TG/DTA曲线示于图12。
(3)光泽度测定使用光泽度计(スガ试验机公司制商品名;HG-268型),测定角度60度的光束中各激光透过性试验片的光泽度。
测定值越高光泽度越高。
(4)弯曲量如图5在水平面上放置各激光透过性试验片,将各激光透过性试验片10的门位置G附近的角用100g的砝码压住,这时用游尺测定其对角高出水平面12的高度h,将其作为弯曲量。
(5)激光焊接试验向在各实施例以及比较例中使用的含玻璃纤维的树脂中添加炭黑0.5份,与各实施例及比较例同样操作,制造激光吸收性试验片14。
接着,如图6所示,使用夹具使激光透过性试验片10和激光吸收性试验片14重叠,在其上装置玻璃板P,再于其上通过气动夹具C施加压力(0、0.2MPa、0.4MPa)来固定。通过二极管·激光焊接机L(波长940nm,连续)(フアインデバイス公司制),从玻璃板的上面,一边使激光R(功率25W,扫描速度5mm/sec,斑径0.6mm)向图6中的内方向扫描30mm一边进行照射。
(6)抗拉强度试验使用抗拉试验机(岛津制作所公司制,商品名AG-50kNE)按照JISK7113-1995,对(5)所得的焊接体,在焊接体的长边方向(拉开焊接部的方向)以10mm/min的试验速度进行抗拉试验,测定抗拉焊接强度。
表1
表1中*1表示C.I溶剂紫13和C.I.溶剂黄114的混合着色剂(混合重量比5∶1)
表2
如表2所示,激光透过性试验片的弯曲量在0.5mm以下时,即使夹压为0,仅通过玻璃板P的自重的负载压即可确保激光吸收性试验片之间达到实用上充分的焊接强度。与此相对,当激光透过性试验片的弯曲量超过0.5mm时,即使调整夹压,由于与激光吸收性试验片之间的间隙也不能得到充分的焊接强度。
作为本发明的激光透过性着色树脂组合物、激光透过性构件以及由本发明的制造方法所得的激光焊接体的主要用途,可例举如OA机器、印制基板、汽车零部件。更具体些可例举内装的仪表板、机舱内的谐振器(消音器)。在接合热塑性树脂部件时,以往如果表面没有处理则难以使用粘合剂,因此需要对表面进行前处理等。而激光焊接不需要前处理或树脂的合金化等繁杂的工序,而且与使用粘合剂的情况相比,强度方面以及再循环利用方面也优良。
权利要求
1.激光透过性着色树脂组合物,它是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,其特征在于,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上。
2.如权利要求1所述的激光透过性着色树脂组合物,其特征在于,上述TC-TN在5℃以上30℃以下。
3.激光透过性构件,它是由激光透过性着色树脂组合物形成、在DSC热分析中具有放热能的峰和吸热能的峰各一个的激光透过性构件,其特征在于,上述组合物是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上。
4.如权利要求3所述的激光透过性构件,其特征在于,在光束60度的测定条件下,光泽度在100以上。
5.如权利要求3或4所述的激光透过性构件,其特征在于,弯曲量在0.5mm以下。
6.激光透过性构件制造方法,它是将激光透过性着色树脂组合物成型,使其在DSC热分析中具有放热能的峰和吸热能的峰各一个的激光透过性构件制造方法,其特征在于,上述组合物是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上。
7.激光焊接体制造方法,它是在将激光透过性构件与激光吸收性构件实质上抵接的状态下,照射激光焊接用激光,该激光透过上述激光透过性构件后被上述激光吸收性构件吸收,藉此使上述两个构件的抵接部位焊接的激光焊接体制造方法,其特征在于,上述激光透过性构件是由激光透过性着色树脂组合物形成、在DSC热分析中具有放热能的峰和吸热能的峰各一个的激光透过性构件,上述组合物是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上。
8.如权利要求7所述的激光焊接体的制造方法,其特征在于,在上述激光透过性构件与激光吸收性构件的抵接部位的两构件的间隙为0至0.05mm。
9.激光焊接体的制造方法,它是使一方的构件与另一方的构件焊接制造焊接体的方法,其特征在于,上述一方的构件是由激光透过性着色树脂组合物形成、在DSC热分析中具有放热能的峰和吸热能的峰各一个的激光透过性构件,上述组合物是至少含有聚苯硫醚树脂和着色剂的激光透过性着色树脂组合物,上述着色剂在TG/DTA热分析中于200℃~300℃之间具有吸热峰,在DSC热分析中,上述激光透过性着色树脂组合物的结晶点TC,与除了不含上述着色剂之外与上述激光透过性着色树脂组合物相同的组合物的结晶点TN之差TC-TN在0℃以上,在隔着激光吸收性薄层使上述一方的构件与另一方的构件实质上抵接的状态下,照射激光焊接用激光,激光透过上述激光透过性构件后被上述激光吸收性薄层吸收,藉此通过激光吸收性薄层使上述两个构件焊接。
全文摘要
本发明提供了成型精度优良、成型物的外观·光泽良好、将成型物用于激光焊接时可防止焊接对象构件之间出现间隙或者可有效使间隙减小、耐热性·牢固性良好的激光透过性着色树脂组合物,以及大小稳定性·形状稳定性优良、用于激光焊接时可防止焊接对象构件之间出现间隙或者可有效使间隙减小的激光透过性构件。该激光透过性着色树脂组合物含有聚苯硫醚树脂和在TG/DTA热分析中于200℃~300℃之间具有吸热峰的着色剂,在DSC热分析中,激光透过性着色树脂组合物的结晶点T
文档编号B29C65/16GK1923897SQ20061012614
公开日2007年3月7日 申请日期2006年8月23日 优先权日2005年9月1日
发明者畑瀬芳輝, 油科平八 申请人:东方化学工业株式会社