专利名称:用于制造包括至少一次焊接的多层空心体的方法
技术领域:
本发明涉及用于制造包括至少一次焊接的多层空心体的方法。
为了满足不可能由单一的热塑性塑料赋予的特性的应用需要,已经开发了基于塑料的多层空心体。尤其是,当需要制造在常温下具有高刚度以及对于它们要容纳的液体和气体具有良好不透性的塑料空心体时,已经使用了这种技术。在这种情况下,不透性功能一般由结构的内层(具有较小的厚度以及较低的机械强度)来提供,其中结构的内层由对于容纳在空心体中的液体和气体来说相当于防渗层的材料制成。
通常通过下述方法来获得塑料基的多层空心体模塑作为单个部件(将夹紧/焊接在模具中的单个型坯吹塑或热成型,或将直接焊接在模具内的多个型坯部分吹塑或热成型)或焊接多个分离的模塑部件。
此外,要求从容纳有机物质的容器中泄漏入环境的蒸气和液体的可容许量显著降低。在燃料箱领域,将很快实施极低限度可容许损失的强制新标准。
在如上所述通过组装一个或多个焊接的多层部件制成的空心体内,焊接区的不透性被降低,因为在焊接平面内的多层结构被破坏,这样通常导致一个部件的层折叠于焊接部件的层上以及每个部件的内层与其它部件的内层焊接。这通常导致在制得的空心体的结构的防渗层中出现间断性,从而产生蒸气和液体渗漏物的首选通道。
在专利申请EP 1190837中,申请人通过完成下列步骤提出了解决此问题的方法在焊接区,利用锥形附件(其向着防渗层连接起来的地方逐渐变细),焊接部件向着空心体的外部延伸。
现在,在目前的吹塑或热成型方法中,通常实用的是,在开始模塑时立刻冷却模具的型腔,以便能够提高制造速率。然而,如上所述,该申请人已观察到,这种方法通常导致不良的焊接质量,尤其是在用锥形焊料进行焊接的情况下。
因而,本发明的目的是提供用于制造包括至少一次焊接的多层空心体的方法,该方法使得在不降低焊接质量的情况下实现高生产率成为可能。
为此,本发明涉及一种通过模塑来生产具有多层结构的塑料空心体的方法,该多层结构包括液体防渗层,所述方法涉及至少一次焊接操作并且包括以下步骤a)将包括至少一个待焊接部件的型坯插入包括至少两个型腔的开模中,该型腔设有焊接区以便将待焊接部件定位在焊接区中;b)闭合模具,将其型腔并置,以便夹紧待焊接部件并进行焊接;c)将加压流体注入模具和/或在模具型腔后面抽真空,以便将型坯紧压住模具型腔以及模塑空心体;以及d)打开模具并取出空心体,
所述方法的特点在于在步骤a)至d)期间,除焊接区以外,模具型腔是冷却的,其中至少在步骤a)和b)期间,利用适当的装置对焊接区进行加热。
在其外部件(模具型腔)中加热焊接区的事实使得获得更好的焊接质量(其具有较小的断开倾向)成为可能。
根据本发明,加热焊接区的另一个优点由下述事实组成这使得在该区的材料更容易被挤压,因而可以获得更薄的焊缝。这使焊料具有更好的机械强度并且使获得的空心体更容易脱模。因而可以用人工进行这种脱模并且不再需要容易损害焊缝(附件,视情况而定)的刮刀。从不透性的角度看,这种厚度的减小,以及由此产生的防渗层的并置,也是有利的(因为渗漏通道的厚度被减小)。
可以通过下述方法来获得本发明的最后一个优点在吹塑(lowmoulding)并且直到对箱进行脱模期间,加热焊接区。利用下文将描述的专用装置,可以更容易地将废料(型坯的外周部分,其构成制造废物并通常称作“熔渣”)和箱分开。
对于给定的夹紧设备,分型线被加热的事实可改善模具的闭合(易于实现完全的模具闭合)。修边的简易随在焊接区内模具温度的增加而增加。
术语“空心体”是指在各种不同操作和环境条件下能够贮存流体的密封箱。非常适宜的箱的实例是燃料箱以及尤其是安装在机动车辆上的那些燃料箱。
根据本发明的空心体由塑料制成。
术语“塑料”是指包含至少一种合成树脂聚合物的任何材料。
所有类型的塑料都是适合的。非常适合的塑料属于热塑性塑料类。
术语“热塑性塑料”是指任何热塑性聚合物,包括热塑性弹性体、以及其混合物。术语“聚合物”是指均聚物和共聚物(尤其是二元或三元共聚物)。这种共聚物的非限制性实例是无规共聚物、线型嵌段共聚物、其它嵌段共聚物、以及接枝共聚物。
任何类型的熔点低于分解温度的热塑性聚合物或共聚物都是适合的。熔程范围在至少10摄氏度的热塑性塑料是特别适合的。这种材料的实例包括在它们的分子量上呈现多分散性的那些材料。
尤其是,可以使用聚烯烃、热塑性聚酯、聚酮、聚酰胺以及它们的共聚物。也可以使用聚合物或共聚物的掺和物,正如聚合物材料与无机、有机和/或天然填料的掺和物,例如,但不限于碳、盐和其它无机衍生物,以及天然或聚合物纤维。
根据本发明,空心体是一种包括结合在一起的叠层的多层结构,包括至少基于上述聚合物或共聚物之一的层以及防渗层。经常用于非防渗层或多层的聚合物是聚乙烯。用高密度聚乙烯(HDPE)已获得极好的结果,尤其在上述燃料箱的情况下。
至于防渗层的特性和厚度,对其进行选择以便将与空心体内表面接触的液体和气体的渗透性降低到最小程度。尤其是,如果空心体是燃料箱,则该层优选基于防渗树脂,也就是说燃料不可渗透的树脂,如EVOH(部分水解的乙烯/乙酸乙烯酯共聚物)。该层优选位于聚合物多层结构内,因而该层在两侧被至少一层没有防渗性能的塑料(优选HDPE参见上文)包围。特别有利的是,最特别是在燃料箱的情况下,防渗层基于EVOH并且它在两侧被至少一基于HDPE的层包围。在这样的结构中,粘合剂通常被置于每一上述层之间。有利地,这种粘合剂是改性的HDPE(例如,接枝有马来酸酐或接枝有类似的官能化合物的HDPE,使其与每个相邻层具有一定的相容性)。
根据本发明,模塑空心体的型坯包括至少一个待焊接的部件。这时,通常意味着空心体具有必须被闭合的间断性(开口),也就是说,其边缘必须被压紧在一起并且焊接。
这种型坯可以由基本上为圆柱形的单件组成,其两端构成待焊接的部分(通过将在每一端获得的两个边缘夹紧在一起,并将它们彼此焊接,来压平圆柱体)。可替换地,型坯可以由至少两个分开的片材组成,其边缘构成待焊接的部分(两个片材被沿着它们的周边彼此焊接)。在这种情况下,待焊接的片材优选具有类似的结构。这时,意味着每个片材的结构包括彼此相差不多于三层的若干层,并且优选不多于两层;从化学角度和从其通过焊接被组装的能力的角度考虑,在焊接表面每一侧上的相应层内的聚合物的特性是相容的。其中片材具有相同数目的层结构,尤其是其中片材具有相同结构的空心体是优选的。
在吹塑箱的情况下(其中加压流体被注入模具),型坯优选由两个分开的“片材”组成,该片材于切割自一个并且相同的挤压型坯,如在以本申请人的名义在申请EP 1110697中所描述的,为此将该申请所披露的内容以引用方式结合于本申请。根据这种变化方案,在单个型坯被挤压以后,沿着两条完全相反的线在其整个长度进行切割,以便获得两个分开的部分(片材)。这样的方法(不同于两个分开挤压片材的吹塑,其厚度是常量)使得可以使用不同厚度的型坯(也就是说在其长度方向厚度不是常量),其是通过适当的挤压装置来获得的(通常为装备有模具的挤压机,该模具配备有位置可调节的模芯)。这样的型坯在吹塑期间、在型坯上的某些位置,由于模具中的材料产生不同程度的变形,会考虑到厚度减小。
优选地,利用与在专利GB 1410215中描述的类似的方法,在包括两个型腔(或外部件)和型芯(或内部件)的模具中吹塑两部分型坯,将上述专利所披露的为此目的的内容以引用方式结合于本申请。在这种变化方案中,型芯使得可以在模具闭合以前将部件置于型坯上。术语“型芯”是指具有合适大小和形状以便能够被插入模具型腔中的构件。在例如专利GB 1410215中描述了这样的构件,将其所披露的为此目的的内容以引用方式结合于本申请。根据本发明的变化方案的这种型芯还可以用来将压缩气体注到模具中,以便于型坯紧压住模具型腔。最后,型芯还可以用来至少部分地对过程进行监测。为此目的,可以在模芯中引入例如照(摄)相机,以便借助于图像分析来观察和检查附件固定的质量。用于测量一个或多个量(如力、行程、压力、温度)的一个或多个传感器可以安装到型芯上,以便更好地控制固定附件的方式。
可替换地,可以通过热成型两个片材(或通过真空成型、通过在模具型腔后面抽真空)来模塑箱。这样的方法通常导致很少或非不均匀的厚度减小,因而可以适合恒定厚度的型坯(例如挤压的片材)。在实践中,一种实施这种变化方案的方式包括将片材各自保持在框架中,使得它们能够被置于模具型腔上并提供为抽真空所必要的密封(在型坯和所述型腔之间)。在根据本发明的这种变化方案的方法中,在闭合模具之前可以进行第一真空成型(或预成型),并且通过利用适宜的夹紧工具(机械臂)可以接着将附件置于型坯(或片材)上。当然,这种附件置放也是在闭合模具之前进行的。
根据本发明的方法的特点在于在步骤a)至d)期间,除焊接区以外,在模具型腔的整个内表面冷却模具型腔,其中至少在步骤a)和b)期间,利用适当的装置对焊接区进行加热。术语“内表面”是指与型坯接触的表面,而术语“外表面”是指在第一表面相反侧的表面(其通常与周围环境接触)。
应当注意到,可以在整个过程中(即,也在步骤c)和d)期间)对焊接区进行加热。
后一种变化方案的一个优点在于下述事实可以非常容易地进行修边操作(或除去上述熔渣),加热区构成箱和所述废料之间的实际过渡。根据这种变化方案,在脱模期间,所有需要的是利用在此区中的材料已被软化的事实使用专用工具将箱和熔渣分开。然而,在这种变化方案中,一定不要损害焊缝。因而,一种非常适宜的方法包括在模具型腔的外侧将型坯的边缘折起来并且仅仅将它们固定于两个型腔之一。因而,在脱模期间,通过确保箱本身仍然附着于模具的另一个型腔,熔渣可以快速并容易地与箱分离。
这种变化方案的另一个优点在于可以容易地实施根据本发明的方法。这是因为,可以一直保持加热而不会暂停然后再开始。
如果在步骤c)和d)期间中止加热,则优选使用适当的具有低热惯性的装置(因而能够快速加热的装置)。为此目的,可以通过感应加热对上述的模具部件进行加热。这些模具部件由特殊合金制成,以便将加热局限于其中。
一般说来,在步骤a)至d)期间,模具型腔的整个内表面被冷却到0℃至20℃之间的温度,但在步骤a)和b)期间,焊接区被加热到至少40℃,优选至少60℃或甚至至少80℃。
在上述情况下,通过一种方法来进行模塑,所述方法涉及使用型芯(吹塑)或使用框架(热成型),至少在部分过程期间优选也对这些装置进行加热。一般说来,在模塑型坯以前,型芯或机械臂用来向型坯配备功能部件,尤其用于置放内部构件(例如通过铆接)、用于某些部件(例如管道)的压缩模塑等。在本发明的范围内,这种方法可以包括在步骤a)和b)之间的下述步骤
a1)将型芯插入位于模具中的型坯内;a2)第一次闭合模具(其中型腔恢复到型芯周围);a3)将型坯紧压住模具型腔(借助于通过型芯的吹气和/或借助于型腔后面的抽真空);a4)借助于型芯,型坯配备功能部件;以及a5)打开模具并移走型芯。
可替换地,当型坯由两个需要热成型的片材组成时,这样的方法可以在步骤b)以前包括下述步骤a1)沿着片材的周边将两个片材固定于两个框架;a2)将两个框架置于模具型腔上以便获得在片材和模具型腔之间的密封区;a3)借助于型腔后面的抽真空将片材紧压住模具型腔;a4)可选地,借助于机械臂向型坯配备功能部件;以及a5)移走框架。
在两种变化方案的每一种变化方案中,实际型坯成型的操作(即,其变形是为了给出基本上为箱的形状)主要发生在步骤a3)期间。在步骤c)期间(其间进行上述焊接),简单地保持压力(或真空)以确保箱的尺寸稳定性。
在根据本发明的方法的上述两个变化方案中,在型芯上闭合模具的阶段,必须开始加热焊接区(优选在其外部件(型腔)和其内部件(型芯或框架))。
在方法的某些阶段,用于加热模具型腔的区域是否失活取决于这些区域可以改变温度的速率(尤其是取决于它们的组成材料的特性),因为在下述制造周期期间,模具绝对需要是热的。
型芯加热操作的活化/失活可以更容易地实现,因而可以如上述加以优化。
这是因为以下事实在形成焊缝期间(当第二次闭合模具以便焊接型坯以及模塑确定的空心体时),当模具本身已闭合时,加热型芯(嵌入件),可防止在型坯的内表面上以及在由型坯产生的空心体的内表面上产生过大的焊缝。在这种变化方案中,应当明了,型芯具有适当的形状和尺寸以避免焊接待焊接的型坯部分(当其存在时)(否则之后不能对其进行脱模)。因此它好像包括多余物(excrescence),其在模具的第一次闭合期间被插入在模具型腔(因而防止它们靠近)的边缘之间。在上述步骤,正是优选加热这种“多余物”。
在根据本发明的方法中,有利的是,焊接的部分向着空心体的外侧延伸(沿着在夹紧待焊接部分以进行焊接期间所积聚的材料的焊缝),与上述申请EP 1190837一样。在两个部件(片材或型坯的边缘)之间的焊接点的附近边缘产生延伸和以附件的形式向外侧延伸,其中附件包括每个部件的防渗层。这种附件可以具有各种形式。优选地,其固定于空心体的基底(base)比其末端具有更大的横截面。该附件可以是多余物的形式,该多余物的横截面(垂直于箱的表面以及焊缝的表面)具有矛尖端的形式,其中防渗层的末端被连接起来。该附件还可以是多余物的形式,该多余物的横截面具有基本上为三角形的基底,并且在空心体的外侧以变平的片(flattenedblade)结束,其包括末端连接起来的防渗层。这种变化方案是优选的,因为它使得可以更好地将包在待焊接的每个部件中的防渗层的末端焊接在一起。
因而在根据本发明的方法中特别有利的是,待焊接部分包括一个相同结构或类似结构的两个边缘,其必须被焊接在一起并且一旦所述部分被焊接,其以附件的形式并沿着焊缝向空心体的外侧延伸,附件的横截面(在垂直于空心体的表面以及垂直于焊缝的平面)具有基本上为三角形的基底,并且在空心体的外侧以变平的片结束,来自待焊接部分的边缘的防渗层被连接到所述变平的片的末端。
在这样的附件中,在片的末端的多个防渗层之间的距离优选为小于50μm。此外,优选的是,长度为至少0.5mm,优选至少1mm或甚至长达4mm(取决于期望的渗透性),防渗层之间的距离为小于250μm、或甚至小于200μm、并且优选小于150μm。这些参数(防渗层之间的距离以及与该距离有关的长度)事实上确定了渗漏通道。
本发明还涉及适合于实施上述方法的装置。这种装置优选由包括至少两个型腔的模具组成,所述型腔分别具有外表面和包括焊接区的内表面,除安置有加热装置的焊接区以外,这些型腔在其整个内表面安置有冷却装置。
上述冷却和加热装置可以是任何已知的类型(循环冷却剂或传热剂;加热筒或电热丝等)。有利地,通过冷却剂(水)的循环来进行冷却。有利地,借助于电热丝(加热电阻)来进行加热。
如上所述,模具还可以包括型芯,该型芯还优选地设置有可加热焊接区。
有利地,这些冷却和加热区安置有热控装置,如热电偶。
为了构造上述模具,必须考虑到加热区相对于冷却区的膨胀。为了解决此问题,该模具优选由之间具有间隙的各种组装块组成。间隙约为1毫米的十分之几(通常从0.1至0.5mm),以致当焊接区较冷时不会让材料进入并且当焊接区较热时不会引入热应力。选择这些不同块的组成材料还可以有助于优化获得的结果。一般说来,这些块基于金属,并且优选基于不同的金属。在铝块用于模具的冷却主体(cooled bulk)以及钢块用于加热焊接区的情况下已获得良好的结果。最特别优选地,冷却块基于铝并且包括用于循环冷却剂的回路,以及加热块基于钢并且包括加热电阻和热电偶。
根据一种特别优选的变化方案,模具型腔在焊接区设置有适当形状的空腔,使防渗层在它们的末端能够紧靠以及使得可以模塑焊缝,该焊缝具有三角形基底以及变平(如上所述)的片形式的一端。这种空腔以及由其产生的附件的长度是如此,以致渗漏通道(或防渗层之间的渗透性)足够长,从而将在给定时间内能够在其中通过的液体和/或气体的量降低到非常低的数值(参见上文,在“方法”方面)。
优选地,在根据本发明的方法中的焊接部分是借助于附件基本上在其整体上进行延伸。在由两个片材模塑的空心体的情况下,这相当于两个型腔装备有沿它们的周边延伸的空腔,所述空腔是独立于模具的其余部分被热调节。
最后,在本发明的最后一种优选的变化方案中,该变化方案非常适合于具有上述自动修边的变化方案的情况,模具型腔之一配备有固定装置(A),用于将熔渣固定在其外表面,而另一个型腔包括止动装置(B),用于将箱保持在其内表面上。
装置(A)可以由夹具或优选多个夹具组成,该夹具被均匀地围绕上述型腔的周边放置。关于装置(B),其可以由在另一个型腔的内表面上的可伸缩嵌入件或优选多个可伸缩嵌入件组成。这些嵌入件被“推进”和置放,以致在模塑期间和在打开模具期间,与型腔的内表面成显著的对照,并且从所述表面缩回以便能够从该型腔对箱进行脱模。如上所述,在打开模具以后,熔渣将仍然附着于一个型腔和箱,或另一个型腔。
根据本发明的这种变化方案的装置优选包括型芯,该型芯的形状或结构使得它可以沿型腔的外表面将型坯的边缘折起来。该装置还优选包括夹紧工具(机械臂或操纵装置),用于在打开模具后从模具分别移走熔渣和箱。
通过
图1至图15非限制性地说明本发明。图1和图2说明根据本发明的某些变化方案的焊缝的几何形状。图3和图4说明在本发明的一种特定变化方案中模具的几何形状。图5至图16说明根据本发明的方法的实施方式的连续步骤。在这些附图中,相同的数字表示相同的部件。
图1和图2说明燃料箱1的壁,其包括在两个HDPE层3之间的EVOH基的防渗层2。燃料箱是在模具中,该模具包括两个型腔4、4′,这些型腔设置有在焊接区给定形状的空腔。在图1中这种形状是矛末端的形状而在图2中这种形状是具有横截面为以变平的片结束的三角形基底的附件的形状。相邻于空腔的区5、5′配备有加热装置,而型腔的剩余部分配备有冷却装置。
图3示出与图2所示类似的模具的平面的细节。该模具也具有两个由铝制成的型腔4、4′,这些型腔具有其相应的由钢制成的焊接/加热区5、5′。此图还示出,该型腔4′设置有冷却回路6,该加热区5、5′包括借助于铝塞8固定的电阻器7。该加热区5、5′设置有热电偶9。在钢块和铝块之间(当它们被装备在一起时)具有约为1毫米的十分之一的间隙10以便抵消这些块的相对膨胀。
图4是理论简图,该图说明箱1的通过其分型线的横截面,并示出在对箱进行模塑期间,焊接区安装有4个不同的电阻器7,每个电阻器连接于热电偶,以致可以最佳地调节该焊接区中的温度。
图5至图16说明如下文解释的方法的实施方式的连续步骤·图5-型坯14被挤压并被放置在模具的两个型腔4、4′之间。型腔4、4′设置有焊接区18。型芯11被插入位于模具中的型坯14内·图6-第一次闭合模具,型坯14紧压住型腔4、4′。型腔4设置有夹具12,用于固定型坯14的外围部分,即熔渣·图7、8-打开模具并移走型芯11·图9-第二次闭合模具并对箱17吹气,同时焊接箱的外围部分。利用装置15加热焊接区。对箱进行修边,即,从箱切去熔渣。
·图10-模具开始打开。型腔4设置有作为喷射器的可伸缩嵌入件13,其将吹制的箱17推向型腔4′,同时夹具12将切下的熔渣(即废料)20保留在型腔4中。型腔4′包括止动装置16,该止动装置将吹制的箱17保持在型腔4′中
·图11-在打开模具以后,废料20被固定于型腔4而箱17被固定于型腔4′·图12-将操纵装置19插入模具的型腔4、4′之间·图13-操纵装置19夹紧废料20和箱17,夹具12卸下废料20·图14-操纵装置19从模具型腔4、4′分别移走废料20和箱17·图15-模具准备好用于下一次生产过程
权利要求
1.一种通过模塑来生产具有多层结构的塑料空心体的方法,其中所述多层结构包括液体防渗层,所述方法涉及至少一次焊接操作,并且包括以下步骤a)将包括至少一个待焊接部分的型坯插入包括至少两个型腔的开模中,其中所述型腔设置有焊接区以便将所述待焊接部分定位在所述焊接区中;b)闭合所述模具,将其型腔并置,以便夹紧所述型坯的待焊接部分并进行焊接;c)将加压流体注入所述模具和/或在所述模具型腔后面抽真空,以便使所述型坯紧压住所述模具型腔并模塑所述空心体;以及d)打开所述模具并取出所述空心体,所述方法的特点在于在步骤a)至d)期间,除所述焊接区以外,所述模具型腔被冷却,其中至少在步骤a)和b)期间,利用适当的装置对所述焊接区进行加热。
2.根据前述权利要求所述的方法,其特征在于,所述空心体是燃料箱,所述防渗层基于EVOH(部分水解的乙烯/乙酸乙烯酯共聚物),以及所述防渗层在两侧被至少一基于HDPE(高密度聚乙烯)的层所包围。
3.根据前述权利要求中任一项所述的方法,其特征在于,在步骤c)和d)期间所述焊接区也被加热,在步骤b)之前,所述型坯仅被固定于所述两个型腔之一,所述型坯的边缘在所述两个型腔之上被向外折起来,以及所述边缘被固定于所述两个型腔之一未固定所述型坯的型腔。
4.根据前述权利要求中任一项所述的方法,其特征在于,在步骤a)至d)期间,所述型腔被冷却到0℃至20℃之间的温度,以及在步骤a)和b)期间,所述焊接区被加热到至少40℃的温度。
5.根据前述权利要求中任一项所述的方法,其特征在于,在步骤a)和b)之间插入以下步骤a1)将型芯插入位于所述模具中的所述型坯内;a2)第一次闭合所述模具(所述型腔恢复到所述型芯周围);a3)将所述型坯紧压住所述模具型腔(借助于所述型芯的吹气和/或借助于所述型腔后面的抽真空);a4)借助于所述型芯,使所述型坯配备功能部件;以及a5)打开所述模具并移走所述模芯。
6.根据权利要求1至4中任一项所述的方法,其特征在于,所述型坯由两个待热成型的片材组成,并且所述方法在步骤b)以前包括下述步骤a1)将所述两个片材沿着其周边固定于两个框架;a2)将所述两个框架放置在所述模具型腔上,以便获得在所述片材和所述型腔之间的密封区;a3)借助于所述型腔后面的抽真空将所述片材紧压住所述模具型腔;a4)可选地,借助于机器臂,使所述型坯配备有功能部件;以及a5)移走所述框架。
7.根据权利要求5或6所述的方法,其特征在于,当在所述型芯上闭合所述模具时,所述焊接区在其外部(在所述型腔处)以及在其内部(在所述型芯或框架中)均被加热,所述框架与所述型坯接触。
8.根据前述权利要求中任一项所述的方法,其特征在于,所述待焊接部分由一个相同结构或类似结构的两个边缘组成,一旦所述部分被焊接以后,其以附件的形式沿着焊缝向所述空心体的外侧延伸,所述附件的横截面(在垂直于所述空心体的表面以及垂直于所述焊缝的平面)具有基本上为三角形的基底,并且在所述空心体的外侧以变平的片结束,来自所述待焊接部分的边缘的防渗层被连接到所述变平的片的末端。
9.一种适用于实施根据前述权利要求中任一项所述的方法的装置,所述装置基本上由包括至少两个型腔的模具组成,所述两个型腔分别具有外表面和包括焊接区的内表面,除所述焊接区以外,这些型腔在其整个内表面设置有冷却装置,而所述焊接区设置有加热装置。
10.根据前一项权利要求所述的装置,其特征在于,所述模具由用于所述加热区和冷却区的分开的块组成,以及组装这些块时在它们之间具有大约1毫米的十分之几的间隙。
11.根据前一项权利要求所述的装置,其特征在于,所述冷却块基于铝并且包括循环冷却剂的回路,以及所述加热块基于钢并且包括加热电阻和热电偶。
12.根据权利要求9至11中任一项所述的装置,其特征在于,所述模具型腔在所述焊接区设置有空腔。
13.根据权利要求9至12中任一项所述的装置,其特征在于,所述模具型腔之一设置有固定装置(A),用于使所述型坯(或所述“熔渣”)的边缘固定于其外表面,所述另一个型腔包括止动装置(B),用于使所述箱保持在其内表面上。
14.根据前一项权利要求所述的装置,其特征在于,所述装置(A)由若干均匀地围绕所述型腔的周边(与所述熔渣接触的表面)设置的夹具组成,以及所述装置(B)由在所述另一个型腔的内表面上的若干可伸缩嵌入件组成。
15.根据权利要求12或13所述的装置,其特征在于,所述装置包括型芯,所述型芯的形状或结构使得所述型芯可以沿所述型腔的外表面使所述型坯的边缘折起来。
16.根据权利要求12至14中任一项所述的装置,其特征在于,所述装置包括在打开所述模具以后能够分别夹紧所述型坯的边缘、或熔渣以及所述箱的夹紧工具。
全文摘要
本发明涉及一种通过模塑来生产具有多层结构的塑料空心体的方法,其中该多层结构包括液体防渗层,所述方法涉及至少一次焊接操作,并且包括以下步骤a)将包括至少一个待焊接部分的型坯(14)插入包括至少两个型腔(4,4’)的开模中,其中该型腔设置有焊接区(18),以便将该待焊接部分定位在焊接区中;b)闭合模具,将其型腔并置,以便夹持型坯的待焊接部分并进行焊接;c)将加压流体注入模具和/或在模具型腔后面抽真空,以便使型坯紧压住模具型腔并模塑空心体;以及d)打开模具并取出空心体,所述方法的特点在于在步骤a)至d)期间,除焊接区以外,冷却型腔,其中至少在步骤a)和b)期间,利用适当的装置对焊接区进行加热。
文档编号B29C51/42GK101080311SQ200580043533
公开日2007年11月28日 申请日期2005年12月16日 优先权日2004年12月16日
发明者比约恩·克里埃尔, 埃尔韦·勒穆瓦纳 申请人:因勒纪汽车系统研究公司