专利名称:具有可变形腔壁的压模的利记博彩app
技术领域:
本发明涉及通过模具对聚合物材料制品的模压,该模具包括凹模和凸模,凸模适于插入凹模腔中以限定模具的模压腔。
本发明的一个典型但不限于此的应用是成形用于封闭装矿泉水、发泡饮料的塑料容器等的盖,其大致为圆柱形,其管状部分被通常基本扁平的底部部件封闭。
背景技术:
根据现有技术,要成形此制品,首先是把聚合物材料的计量体注入刚性(金属)凹模中,该计量体质量是根据基准值来计量的,随后把凸模加压插入该凹模中,直到将模具的模压腔关闭,该模压腔是当模具处于关闭位置时保持在凹模内表面和凸模之间的腔,并且其限定了制品的形状。
所述技术中存在的并与所述模具相关的技术问题是由于以下原因造成的在要注入凹模的聚合物材料体(计量体)的计量时(通常通过从由挤出装置供应的连续式且未成形的物质分割聚合物材料体),相对于预定基准值而言难免会有(小)差异,而需要被完全地填充聚合物材料以成形制品的模具腔(关闭的)的容积则对于每个模具来说都是恒定的;因此存在着相对于基准值来补偿计量体质量不精确性的技术问题。
为此,已知在凹模中有一个或多个可动部分,其允许在制品或多或少相对受限的部分中吸收计量误差。
在制造所述用于封闭塑料瓶的盖的情况下,通过把过多的计量体主要集中在底部部件中来补偿误差。
因此,该部件厚度产生不受控且明显的尺寸变化,这涉及到在模压之后的一些加工步骤中的技术问题,在这些步骤中采用该底部部件的内表面作为机器部件定位的基准表面,因为该表面相对于盖的几何位置不是恒定的(由于内外表面之间相对轴向位置的变化)。
发明内容
本发明的一个目的是通过实际并有效的方案来改善计量误差吸收的问题,特别是解决与所述封闭盖相关的所述技术问题。
本发明所要解决的另一个技术问题是,使模压过程中和之后产生的热量被快速有效地去除,以增加制品的坚固性并允许其脱模。
为了使制品的制造周期更快,特别是对于用连续运转的转台式机器操作的模具来说,上述要求尤其重要;这是因为,由于本发明,可以减少冷却时间,从而增加了整个机器的综合操作速率。
通过具有如权利要求中特征的本发明来实现所述目的和其它目的。
根据本发明,在制品模压中计量质量误差的补偿是通过至少一部分凹模内表面的弹性变形来实现的。计量体质量的基准值是这样计算的,以便考虑到误差,计量体具有的质量总是以完全的方式注满“空载状态”(即模具不作用的状态)下计算的模具模压腔的容积,并且该误差就是相对于模压腔自身容积而言多出的聚合物材料。在制品模压的随后步骤中,由于存在所述过量的聚合物材料,并且由于凹模的结构特征,因此至少一部分凹模内表面相对于其在“空载状态”下具有的形状而弹性变形(变形程度根据误差大小而改变),从而相对于“空载状态”下的尺寸而增大制品尺寸。
这样,过量的聚合物材料以更均匀和规则的方式分布在制品的主体中;特别是,可以这样来完成,以便过量聚合物材料分布在相对很宽的主体部分上,从而在涉及的尺寸中产生适度或者甚至是分辨不出的误差。
如上所述弹性变形的凹模部分适于抵抗该变形,以使聚合物材料在最终模压步骤中达到基本与预定设计值相等的压力值。
此外,由于可变形壁本身的厚度相对很薄,因此非常有助于通过可变形壁的热传递,结果是制品的冷却(或者是任何调节方式)可以更快。
以下将借助附图来阐述本发明的进一步细节,附图以示例的方式表示了对用于塑料瓶的封闭盖模压的模具的实施例。
图1是根据本发明模具在关闭状态的轴向截面。
图1A是图1的细节。
图2是图1中可变形壁的透视图。
图3是图2中可变形壁从下方看的平面图。
图4A到4D表示在制品模压时一系列步骤中的图1的模具。
图5表示用图1中模具获得的盖的例子的透视图。
具体实施例方式
图示和下面描述的模具是用来成形封闭塑料容器的盖;但是,根据本发明可获得的制品形状可以是任何形式。
图示的盖10是公知传统类型的盖,用于热塑性树脂PET的瓶子,该盖包括大致圆柱形的侧管状部分11,其由大致扁平的底部部件(底部)12封闭。沿着管状部分11内表面设有普通的螺旋突出,其形成了用于把盖拧到瓶颈上的螺纹13。沿着管状部分11外壁设有普通的竖直突起111,其形成了滚花。沿着底部12内表面设有普通的轴向环形突起14。还有普通的环形安全箍15,其由通过一个薄段结合起来的上部和下部形成。
制品(盖)10通过模压工艺而制成,即将凸模20(模具的阳部件)加压插入闭腔式中空凹模(模具的阴部件)中,该凹模装有大致为粘稠状态的聚合物材料(尤其是热塑性树脂)的计量体8,其质量是根据基准值来计量的。
采用根据本发明的模具的模压机一般为连续旋转的转台类型,但不限于此,并且一般具有多个依次被驱动的相同模压组,也不限于此。
附图所示仅是根据本发明的一般性模具。另一方面,没有示出模压机,因为是常规类型。
模具包括凹模30和凸模20。凸模20和凹模30的腔一起形成了模压腔7,其把期望形状赋予给制品。在凹形制品的情况下(如所描述的封闭盖10),凹模腔把形状赋予给制品的全部或大部分外表面,同时凸模外表面把形状赋予给制品的全部或大部分内表面。
根据图示的实施例,模具的凹模30具有连续的、凹形的内表面30a,其形成凹模腔。
如已知的,根据盖10形状的复杂程度,凸模20由几部分构成,以实现盖10的模压和连续传送。
具体地,凸模20包括中央部件21,其下表面21a限定了底部12内表面的中央部分。第一管状部件22与中央部件21同轴地结合,第一管状部件的侧表面限定了盖的管状部分11的内表面形状(有相关的螺纹13)。此外,在部件21和22的下部区域赋予形状给环形突起14。
沿着部件22的外表面结合有第二管状部件23,其外表面上结合有第三管状部件24;最后,第四管状部件25结合到部件24的外表面。
在关闭的模具构型中(如图1所示),所有部件21、22、23、24、25在压紧位置彼此联合,相当靠近中央部件21的下表面21a,并且共同使盖形成图5所示的完整形状。此外,在该构型中,最外面的管状部件25完美地插入凹模30上部形成的上腔35,且部件25的外圆柱形表面25a与相应的上腔35的内圆柱形表面35a接触。
当然,本发明也适用于具有与上述凸模不同的凸模的模具,例如,在模压封闭盖时,该凸模的用来与凹模对中的对中部件具有截头圆锥形表面。
根据本发明,凹模30包括不可变形的支撑体,其内部容纳有至少一个可变形壁31,壁31内表面限定了至少一部分的凹模内表面30a,所述可变形壁31的至少一部分厚度相对较薄,从而允许其在制品模压的最后步骤中在聚合物材料的压力下弹性变形(特别是沿着一般轴向平面的部分通过弯曲而变形),以增加盖的厚度。
所述可变形壁31由钢或其它等同材料制成。
根据图示的实施例,可变形壁31包括管状的侧向部分32和横向于凸模20轴线的(水平)部分33,侧向部分32的内表面确定了管状部分11外表面的形状,而部分33的内表面确定了底部12外表面的形状。
所述部分32和33在单一主体中连接在一起,并且它们的内表面限定了凹模的整个内表面30a。内壁31以及因此这两个部分32和33具有相对较薄的厚度,从而使其在模压步骤中在所受聚合物材料的压力下可弹性变形。但是,可变形壁31包括一增大部分,其限定了靠近壁31上端的环形箍34。
可变形壁31封闭在凹模30支撑体中形成的同轴腔44中,支撑体的内表面距壁31外表面一定距离(也就是距侧向部分32和横向部分33一定距离),这样壁31可以径向变形而不会被支撑体阻碍。
具体地,在图示实施例中,所述支撑体由具有平坦的水平上表面的下主体41和附着到下主体41上表面的上主体42构成。所述同轴腔44限定在这两个主体41和42之间。
上主体42具有圆柱形腔,其内表面42a限定了同轴腔44的侧表面,而下主体41具有平坦的上表面41a,其限定了同轴腔44的下表面。
同轴箍34的外表面布置成与侧表面42a径向接触,且具有与肩42b同轴接触的腔,其中肩42b位于腔44的上端部并向下折转。
环形箍34以及其与侧表面42a的接触使可变形壁31在径向上固定和稳定地对中。
腔44通过下导管48或其它出口导管49而与适于导入、循环和排出调节流体的装置相连,该调节流体能从可变形壁31以及因此从制品10中除去热量,从而对它们进行热调节(冷却)。
为此目的,可变形壁31以其自身独特的方式作贡献,这是由于其厚度相对很薄,从而极大地方便了通过其进行热传递。
此外,该壁31可在其外表面上具有不同的突起36和37,突起36和37作为热交换部件。具体地,突起36在侧向部分32上,而突起37在横向部分33上。
沿着圆周方向,突起36是间断的,以便不阻碍侧向部分32在模压步骤中的径向弹性膨胀。
在图示实施例中,突起36为翅片形,其径向地离开侧向部分32,且在轴向延伸有限的距离;此外,这些突起在一条线与另一条线之间交错布置,以在调节流体通道中实现最大紊流,从而使得与壁的热交换最大化。
位于横向部分33上的突起37为翅片形,其轴向地离开部分33,且在径向延伸有限的距离。突起37也是在一条线与另一条线之间交错布置,以在调节流体通道中实现最大紊流。
位于横向部分33外表面上的突起37具有自己的自由端表面37a,其靠在同轴腔44的下表面41a上。因此,在可变形壁31通过环形箍34而与之接触的肩42b和可变形壁31通过下突起37而与之接触的下表面41a之间,可变形壁31被轴向地阻挡。
另一方面,位于侧向部分32外表面上的突起36的自由端部分保持距腔44的侧向表面42a一定距离,以便部分32的径向弹性变形(弯曲)不受阻碍。通过单个环形箍34,可变形壁31保持被上主体42径向约束。
操作中,首先(见图4A)将聚合物材料的计量体8注入凹模30的腔中,其质量是根据基准值来计量的,该基准值是这样确定的,以便考虑到在计量体的计量中难免存在的误差,计量体8通常以全部的方式填满“空载状态”下计算的模具模压腔7的容积,并且误差就是相对于模压腔自身容积而言多出的聚合物材料。
随后,使模具组件相互接近,例如,通过操作下部装置(图中未示)来提升凹模30,同时凸模20保持静止。
在图4A到4D中,水平基准轴线用X表示,其保持不变,且与凸模20的下表面21a相称。
但是,显然与相互接近相关的运动很重要;可选择地,这可以通过凸模20向下运动并可能伴随有凹模30向上运动来实现。
首先,随着凹模30的向上移动,最外的管状部件25的下端插入腔35中,直到与腔的下表面区域接触(图4B),并且凸模开始插入凹模腔,从而开始使计量体8变形。
随后(图4C),凸模继续插入(通常随着凹模30向上移动)到凹模腔中,使计量体8变形而呈封闭计量体的腔的形状,直到凸模完全把模具关闭,当管状部件22、23、24和25处于最大程度相互接近的构型时模具完全关闭而明确地限定了模压腔7(图4D所示状态)。此时,凸模的插入停止。
在制品模压的该最终步骤中,当模压腔7还没关闭时,首先是计量体的聚合物材料完全填充模压腔7,同时可变形壁31还没有变形,至少是没有明显变形,从而在模压结束时达到可预见设计值范围内的适当高的压力值。然后,凸模继续插入凹模腔中,直到模具关闭,由于聚合物材料相对于模压腔7容积具有过剩的量,因此,该材料在凸模插入所产生的压力推动下使弹性壁31的一般轴向部分以向外径向位移的方式自由弯曲和弹性变形,以便吸收相对于模压腔7而言的过剩量。
计量体8质量的基准值是这样计算的,以至于考虑到计量体8形成的误差以及模压过程中制品冷却时发生的体积收缩,实现了模压腔7的完全填充,并且此外,聚合物在模压中受到具有适当设计值(约几百巴)的压力。
对于可变形壁31自身而言,其结构特征(特别是材料和关于长度而言的厚度)设计成使得其能弹性变形,以便吸收计量体的过剩量,同时仅借助于其自身的结构特征(无需外部装置或操作的干预)就为弹性变形提供足够的阻力,以允许计量的聚合物材料在最终模压步骤中达到就压力而言的所述设计值,此外壁31的变形在模压腔完全填充后发生。
因此,可变形壁31的尺寸应就几个参数而言设定,包括涉及的挤压力和计量误差的大小。
因此,侧向部分32通过在径向弯曲而变形,在包围其的腔44中没有阻碍。特别是,侧向部分32所受的变形是在沿着一般轴向平面的部分中弯曲,同时中部区域向外弯曲移动。另一方面,沿着一般横向平面,变形导致侧壁32直径增加,在轴向的中部区域具有最大值。
相反,横向部分33通过翅片37与下表面41a轴向接触。然而,部分33也可以在一个翅片37与另一个翅片之间以及一排翅片37与另一排翅片之间的自由区域受到有限的弯曲变形。
横向部分33也发生其它变形(有限的程度),这是由于翅片37(特别是位于部分33中部的翅片37)的端面37a延伸量相对较小,因此在操作压力作用下受到轴向压缩的变形,这实际上允许带有所述翅片37的部分33的中部有相对较小的弹性弯曲(在轴向)。
位于部分33外周边部分的翅片37优选地尺寸更大,从而几乎不变形,因此保持侧向部分32在轴向被阻挡。
可选择地,部分33的中央区域没有翅片37,或者翅片37在“空载状态”时不与表面41a接触。
因此,计量体质量的误差分布在与可变形壁31相对应的制品的部分上,并从而或多或少地分布在盖10的整个主体上(更大程度是在管状部分11上)。
例如,对于质量为2.3克、轴向总长度为20mm的制品来说,在凹模中采用不锈钢制成的可变形壁31,碳含量低,而Mo、Ni、Co、Ti含量高,其中部厚度为1.5mm。在测试中,在计量体8质量最大误差为2%时,壁31的径向变形约为0.02-0.05mm。
在图示实施例中,侧向部分32和横向部分33在单个主体中具有连续性的连接在一起。
可选择地,可变形壁31包括独立于所述横向部分的侧向部分,但侧向部分与横向部分相连,以形成各自内表面的连续性。
还可选择地,可变形壁31仅包括所述侧向部分或仅包括所述横向部分,且凹模内表面的其余部分限定为不可变形的主体。
此外,特别是在计量体质量误差相对很大的情况下,通过可变形壁31的弹性变形以及利用传统技术可获得的补偿来进行对该误差的补偿,所述传统技术的补偿是通过在模压结束时改变阴部分(凹模)和阳部分(凸模)之间的相对轴向位置来实现的。特别是,根据图示实施例,传统方式的补偿是通过改变包括下主体41、上主体42、管状部件25和管状部件24的阴部分和包括中央凸模部件21和两个管状部件22和23的阳部分之间的最终相对轴向位置来进行的。
尽管已经关于模压用于封闭塑料瓶的盖对本发明进行了描述,但本发明可以方便地应用于模压不定种类的不同形状制品。
权利要求
1.一种用于模压聚合物材料制品的模具,包括凹模(30)和凸模(20),凸模适于插入凹模腔中以确定模具的模压腔,该制品是通过把凸模(20)加压插入预先放有聚合物材料计量体(8)的凹模(30)腔中而成形的,该计量体的质量是根据基准值来计量的,其特征在于,凹模(30)包括至少一个可变形壁(31),其内表面限定了至少一部分的凹模(30)内表面,所述可变形壁(31)至少部分地具有相对较薄的厚度,以允许其在制品模压的最终步骤中在聚合物材料压力下弹性变形,从而吸收计量体(8)质量相对于所述基准值的误差。
2.根据权利要求1所述的模具,其特征在于,所述可变形壁(31)适于在最终模压步骤中在聚合物材料压力下弹性变形,从而增加制品的厚度,以吸收计量质量误差。
3.根据权利要求1所述的模具,其特征在于,所述可变形壁(31)包括至少一个管状的侧向部分(32)和/或至少一个横向于凸模(20)轴线的部分(33)。
4.根据权利要求1所述的模具,其特征在于,所述可变形壁(31)封闭在凹模的支撑体(41,42)中形成的同轴腔(44)中,该支撑体的内表面(41a,42a)距可变形壁(31)的外表面一定距离,这样可变形壁(31)可以变形而不会被支撑体(41,42)阻碍。
5.根据权利要求4所述的模具,其特征在于,所述可变形壁(31)在其至少一个部分中具有沿外表面设置的突起(37),其端面(37a)邻靠所述同轴腔(44)的内表面,所述端面(37a)延伸以承受压缩变形,允许带有所述突起(37)的可变形壁(31)的部分(33)弯曲。
6.根据权利要求1所述的模具,其特征在于,所述可变形壁(31)适于借助于其自身的结构特征来抵抗弹性变形,以至于聚合物材料在最终模压步骤中达到基本与预定设计水平相等的压力水平。
7.根据权利要求6所述的模具,其特征在于,所述可变形壁(31)适于抵抗弹性变形,以使变形在完全填充模压腔(7)之后发生。
8.根据权利要求6所述的模具,其特征在于,所述可变形壁(31)用钢或等同材料制成,且通过在沿着一般轴向平面的部分弯曲而发生变形,而其厚度没有明显变化。
9.根据权利要求1所述的模具,其特征在于,所述可变形壁(31)具有沿外表面设置的突起(36,37),它们形成了热交换部件,沿着圆周方向间断,以便不阻碍可变形壁(31)的弹性变形。
10.根据权利要求3所述的模具,其特征在于,该模具包括沿着侧向部分(32)设置的翅片形突起(36),其径向凸出且在轴向延伸一定距离,此外所述突起(36)在一条线和另一条线之间以交错的方式设置,以便在冷却流体通道中实现最大的紊流。
11.根据权利要求3所述的模具,其特征在于,该模具包括沿着横向部分(33)设置的翅片形突起(37),其轴向凸出且在径向延伸一定距离,此外所述突起(37)在一条线和另一条线之间以交错的方式设置,以便在冷却流体通道中实现最大的紊流。
12.一种聚合物材料的制品,其通过把凸模(20)加压插入放有聚合物材料计量体(8)的凹模(30)腔中而成形,该计量体的质量是根据基准值来计量的,其特征在于,在计量体(8)计量时产生的相对于质量基准值的过多质量分布在制品的主体上。
13.一种通过权利要求1的模具来模压聚合物材料制品的方法,其特征在于,计量体质量的基准值是这样计算的,以便考虑到计量误差,计量体总是完全地填充模压腔的容积,且该误差成为相对于模压腔容积的过量聚合物材料;在制品模压的最终步骤,首先计量体的聚合物材料完全填充模压腔(7),随后继续将凸模插入凹模腔,直到模具关闭,相对于模压腔(7)容积而言的过量聚合物材料在凸模插入所产生的压力推动下使弹性壁(31)弹性变形,直到其吸收所述过量聚合物材料。
全文摘要
一种模具,包括凹模(30)和凸模(20),凸模适于插入凹模腔中以确定模具的模压腔,该制品是通过把凸模(20)加压插入预先放有聚合物材料计量体(8)的凹模(30)腔中而成形的,该计量体的质量是根据基准值来计量的。根据本发明,凹模(30)包括至少一个可变形壁(31),其内表面限定了至少一部分的凹模(30)表面,所述可变形壁(31)至少部分地具有相对较薄的厚度,以允许其在制品的最终模压步骤中在聚合物材料压力下弹性变形,从而吸收计量体(8)质量相对于所述基准值的误差。
文档编号B29C33/00GK101094754SQ200580038997
公开日2007年12月26日 申请日期2005年9月8日 优先权日2004年10月12日
发明者亚历山德罗·巴尔博尼, 费奥伦佐·帕利内罗, 泽诺·祖法 申请人:萨克米伊莫拉机械合作社合作公司