专利名称:燃料箱的利记博彩app
技术领域:
本发明涉及燃料箱,更具体地涉及制造包含两个或更多构件的燃料箱的改进方法,以及将零件粘接或连接在燃料箱上的改进方法。
背景技术:
在机动车上使用的燃料箱通常由金属制成,并且通常燃料蒸汽是不能渗透的。典型地,在车辆供应燃料的过程中,燃料蒸汽能够在车辆注入燃料期间从测试检测器端口、通往发动机的供油管线、或供油弯管的金属部分之间的接合处渗漏。
此前已经公知的是,用于机动车的燃料箱由例如塑料的合成材料制成。目前高密度聚乙烯(HDPE)是用于制造汽车塑料燃料箱的塑料材料的一种选择。HDPE在低至-50℃和高至70℃的温度下具有优异的拉伸和冲击性能,所述温度范围是燃料箱在使用中通常所经历的温度范围。由于HDPE成本低,它可与目前用于制造大多数车辆燃料箱的钢相竞争。
通常,利用如挤出吹塑成型的吹塑成型方法制造车辆的塑料燃料箱,而利用焊接模锻钢组件制造金属燃料箱。
在吹塑成型方法中,通过将型坯挤出到打开的模具中,关闭模具并吹塑型坯制造燃料箱。挤出吹塑成型是一种公知的方法。例如可参见由Hanser Publishers出版、Friendhelm Hense编辑的“塑料挤出技术”(Plastic Extrusion Technology)中第363-427页、H.G.Fritz的“挤出吹塑成型”(Extrusion Blow Molding)。
也能利用模锻或浇铸成型制成单一装置、或者将两个或多个部分粘接成一个成品装置来制造燃料箱。
如热板焊接和旋转焊接的各种塑料焊接技术是最普通的方法,用于将例如溢油接管、排油阀、箱口盖、卡箍的燃料箱零件和需要结合到燃料箱上的其它燃料系统零件连接在一起。使用模锻钢、模锻不锈钢和液压成形钢的燃料箱产品也需要焊接形成燃料箱体和附属零件。
然而,在燃料箱的两个或多个部分之间、或在零件和燃料箱之间的焊接点产生了渗漏通道,通过该通道燃料蒸汽可以逃逸至大气中。
焊接技术需要专用的设备,这样就增加了成本。焊接技术还需要精确的定位和平坦的表面来实现结构的、持久的、防渗漏的密封。由于汽油的各种组份,例如芳香和脂族的烃、如醚和低分子量醇的氧合物(oxgenates),在焊接过程中使用的聚合物就不具有防止在汽油混合物中发现的全部分子渗漏的化学特性。此外,随着由EPA提出的低排放需要,包含氧合物的更具挥发性的汽油出现在市场上。现有的焊接技术是针对纯的汽油(不包含氧合物的汽油)而设计的,就不能有效地防止氧合物从焊接点排放到大气中。
人们希望提供一种改进的制造/装配方法,该方法用于将零件连接在燃料箱上、或将燃料箱构件或部分连接在一起形成燃料箱。本发明人已经发现了使用粘合剂来代替焊接技术的方法,且该方法能够成功地用于金属燃料箱的制造中。
对于用如聚丙烯的塑料制成的燃料箱来说,由于聚丙烯是低能量塑料材料,很难利用粘合剂将聚丙烯零件连接在塑料燃料箱上。市售的粘合剂用于将低能量表面塑料基底粘接到另一低能量表面塑料材料基底上,在粘合剂粘接表面前需要花费时间或进行各种表面预处理。这些预处理包括电晕处理和火焰处理。各种表面预处理的需要对塑料燃料箱的制造产生明显的限制。
发明概述第一方面,本发明涉及一种燃料箱,包括用低能量表面材料的粘合剂粘接在一起的两个或多个构件或部分。
第二方面,本发明涉及一种金属燃料箱,包括用粘合剂粘接在一起的两个或多个部分。
第三方面,本发明涉及燃料箱装置,包括燃料箱和用粘合剂粘接在燃料箱上的燃料箱零件。
第四方面,本发明涉及一种用于将具有一个表面的燃料箱零件连接到燃料箱表面上的方法,包括用粘合剂涂覆一个或两个表面,挤压被涂覆的两个表面形成连接,并使粘合剂固化而将两个表面粘结在一起。
第五方面,本发明涉及一种燃料箱装置,包括(1)具有壁的塑料燃料箱,该壁上有向外延伸的开口,塑料燃料箱包括一个多层结构,该多层结构具有低能量表面材料的外层和内层以及它们之间的燃料阻挡层,和(2)沿着燃料箱壁开口周边利用粘合剂粘接到燃料箱壁上的燃料箱零件,该粘合剂具有燃料阻挡层的性能且可粘接低能量表面材料,该塑料零件包括一个多层结构,该结构具有热塑性的内层和外层以及它们之间的燃料阻挡层,该粘合剂接触塑料零件和燃料箱的阻挡层并跨越燃料箱和塑料零件的阻挡层之间的间隙,从而提供一种对于从燃料箱和塑料零件间的接口处燃料蒸汽排放的改进的阻挡。
图1表示按钮接头-配合装置的典型设计,使塑料零件与塑料燃料箱临时连接。
图2表示本发明一个实施例的剖视图。
图3表示用于重复密封机构的“补丁”或“柱塞”的“环形圈”设计。
图4表示在一种方法中使用本发明粘合剂的实例,来获得用于减少散发、改善燃料箱的耐久性和安全性的重复密封。
图5表示LESA和热板焊接的使用以获得重复密封。LESA是低能量表面粘合剂,将在下文中描述。
图6表示根据本发明的几个连接点设计以减少燃料蒸汽的散发。
具体实施例方式
优选地,燃料箱包括一个多层层压结构,该结构具有一个或多个低能量表面材料层和一个具有燃料阻挡性能的聚合物中心层。
更优选,燃料箱包括三层层压结构,它具有两个低能量表面材料的外层和具备燃料阻挡性能的聚合物中心层。
能够用于本发明实践中的低能量表面材料包括任何满足初级设备制造商(OEM)需要的材料,例如聚烯烃、聚四氟乙烯(PTFE)、聚对苯二甲酸乙二酯(PET)、缩醛(聚甲醛)均聚物和共聚物、尼龙、聚对苯二甲酸丁二醇酯(PBT)、液晶聚合物、聚偏1,1-二氟乙烯(PVDF)、聚偏1,1-二氯乙烯(PVDC)和乙烯乙烯醇(EVOH)。
能够在本发明实践中用于制备多层叠层结构的聚烯烃包括聚丙烯、聚乙烯和它们的共聚物和混合物,以及乙烯-丙烯-二烯三元共聚物。
优选的聚烯烃是聚丙烯、线性高密度聚乙烯(HDPE)、不均匀支化的线性低密度聚乙烯(LLDPE),例如DOWLEXTM聚乙烯树脂(DOW Chemical公司的商标);不均匀支化超低线性密度聚乙烯(ULDPE),例如ATTANETMULDPE(DOW Chemical公司的商标);均匀支化的、线性乙烯-α烯烃共聚物,例如TAFMERTM(MitsuiPetrochemicals有限公司的商标)和EXACTTM(Exxon Chemical公司的商标);均匀支化的、基本线性乙烯/α-烯烃聚合物,例如AFFINITYTM(DOW Chemical公司的商标)和ENGAGETM(DuPontDow Elastomers L.L.C.的商标)的聚烯烃橡胶,它们可根据美国专利5272236和5258272中所公开的内容制备;和高压、自由基聚合的乙烯聚合物和共聚物,例如低密度聚乙烯(LDPE)、乙烯-丙烯酸(EAA)共聚物如PRIMACORTM(DOW Chemical公司的商标),和乙烯-醋酸乙烯酯(EVA)共聚物,例如ESCORENETM聚合物(ExxonChemical公司的商标)和ELVAXTM(E.I.du Pont de Nemours & Co.的商标)。
更优选的聚烯烃是均匀支化的线性和基本线性乙烯共聚物,该共聚物具有0.85至0.99g/cm3的密度(根据ASTM D-792测得)、重均分子量与数均分子量的比值(Mw/Mn)为1.5至3.0、测得的熔融指数(根据ASTM D-1238(190/2.16)测得)为0.01至100g/10min、和I10/I2为6至20(根据ASTM D-1238(190/10)测得)。最优选的聚烯烃是高密度聚乙烯。
一般地,高密度聚乙烯(HDPE)具有至少0.94克每立方厘米(g/cc)的密度(ASTM测试方法D-1505)。通常制备HDPE所使用的技术与线性低密度聚乙烯的制备技术相同。这种技术公开于美国专利US2825721、2993876、3250825和4204050中。优选在本发明的实践中使用的HDPE具有0.94至0.99g/cc的密度和用ASTM测试方法D-1238确定的0.01至0.35克每10分钟的熔融指数。
可替换地,高能量表面材料即金属,也能用于本发明的实践中制造燃料箱。这类材料包括,例如涂覆的低碳钢、不锈钢、铝、铜、镀锌镍和镀锌钢(成型为非常薄的条状的镀锌钢(0.015至0.060英寸厚),它是通过熔融的铝/锌浴,其中的铝为铝/锌混合物重量的0.13-0.15wt%)。
能够用于本发明实践中制备塑料燃料箱和塑料零件、具有阻挡性能的聚合物包括聚酰胺、聚四氟乙烯(PTFE)、聚酰胺、氟橡胶、聚醛均聚物和共聚物、磺化的和氟化的HDPE、乙烯乙烯醇聚合物和共聚物、羟基-官能化的聚醚和聚酯,以及支化的聚酯。
聚酰胺的具体实例包括尼龙6、尼龙66、尼龙610、尼龙9、尼龙11、尼龙12、尼龙6/66、尼龙6/610、尼龙6/11、AMODELTM(BPAmoco的商标)和ZYTEL HTNTM(E.I.du Pont de Nemours & Co.的商标)。
连接层,通常也指粘合剂层可用于本发明实践中将多层结构中的一层与相邻的另一层粘接,该层是由如改性的聚乙烯弹性体的粘合剂材料制成。优选地,粘合剂材料为顺丁烯二酐接枝的聚乙烯或聚丙烯,如AMDERTM(Mitsui Petrochemicals的商标)粘合剂树脂或乙烯-乙烯醇共聚物树脂如ELVAXTM(DuPont的商标)。
能够用于本发明实践中将两个或多个构件粘接在一起制造燃料箱的粘合剂,包括能够支撑1334N载荷的那些粘合剂。
有益地,粘合剂具有根据ASTM E-96-94测定的不超过46g-mm/m2/天的燃料蒸汽渗透率,且更有益的是不超过12g-mm/m2/天。
优选地,能够在本发明实践中使用的粘合剂是粘接低能量表面塑料材料的那些粘合剂,该粘合剂用于将零件粘接在燃料箱上或粘接两个或多个构件形成燃料箱,公知的是可在市场上以LEA购得和在SPE Plastics Engineering杂志2001年3月、第22页广告中所述的那些粘合剂,所述粘合剂包括胺/有机硼烷络合物,例如在Skoultchi申请的系列专利申请US5106928、5143884、5286821、5310835和5376746中所述。这些专利公开了两部分引发剂系统,该系统据说可用于丙烯酸粘合剂组合物中。
该两部分系统的第一部分包括稳定的有机硼烷/胺络合物,而第二部分包括破坏稳定剂或催化剂如有机酸或醛。
络合物的有机硼烷化合物具有三个配位体,选自C1-10烷基或苯基。所公开的有用的胺包括辛胺、1,6二氨基己烷、二乙胺、二丁胺、二乙烯三胺、二丙烯二胺、1,3丙烯二胺和1,2丙烯二胺。
其它优选的能够在本发明实践中使用、用于将塑料零件连接或粘接在燃料箱上或将两个或多个构件粘接形成完成的单元的粘合剂,包括Zharov等申请的系列美国专利(US5539070。US5690780和US5691065)中公开的那些粘合剂。这些专利描述了可聚合的丙烯酸组分,该丙烯酸组分特别是用作粘合剂,其中的有机硼烷/胺络合物用于引发固化。所使用的有机硼烷具有连接在硼烷原子上的三个配合体,选自C1-10烷基或苯基。胺为烷醇胺或二胺,二胺中的第一胺基团为伯胺或仲胺而第二胺基团为伯胺。据透露这些络合物有助于引发粘接低表面能量基底的粘合剂的聚合。
Pocius在系列专利申请(US5616796、US5621143、US5681910、US5686544、US5718977和US5795657)中公开了具有胺/有机硼烷络合物,其中具有各种胺如聚氧化烯多胺和多胺,该多胺是二伯胺和具有与伯胺反应的至少两个基团的化合物的反应产物。
最优选的能够在本发明实践中使用、用于将塑料零件连接或粘接在燃料箱上或将两个或多个构件粘接形成完成的单元的粘合剂,包括优选等级的胺/有机硼烷络合物,该络合物在1999年12月17日申请、系列号为№.09/466321的待审的美国专利中有所描述。表明这些粘合剂不需要对将要粘接的表面进行准备或预处理。
在胺/有机硼烷络合物中的有机硼烷是三烷基硼烷或烷基环烷基硼烷,且胺选自(1)具有脒结构单元的胺;(2)在杂环上具有至少一个氮的脂肪族杂环,其中杂环化合物也可包含一个或多个氮原子、氧原子、硫原子或在杂环中的双键;(3)另外具有一个或多个氢键接受基团的伯胺,其中在伯胺和氢键接收基团之间有至少两个碳原子、优选至少三个碳原子,这样由于络合物中的分子间或分子内的相互作用,B-N键的强度就增加;和(4)共轭的胺。
优选地,三烷基硼烷或烷基环烷基硼烷由通式1表示通式1通式1其中B代表硼;R2为独立地选自C1-10的烷基、C3-10的环烷基,或者两个或多个R2可结合形成脂环。优选R2为C1-4的烷基,更优选C2-4的烷基,最优选C3-4的烷基。
胺包含具有伯胺和一个或多个氢键接收基团的化合物,其中在伯胺和氢键接收基团之间至少有两个碳原子、优选至少三个。在此氢键接收基团是指一种官能基团,该基团通过与胺络和的硼烷中氢的分子间或分子内的相互作用,增加了与硼烷络和的胺基团的氮的电子密度。优选氢键接收基团包括伯胺、仲胺、叔胺、醚、卤素、聚醚和多胺。
优选地,胺由通式2表示通式2其中R1是氢或C1-10的烷基或C3-10的环烷基;X是氢键接收部分;a是1至10的整数;b是分别选自0至1的整数,且a和b的和为2至10。优选R1为氢或甲基。优选X独立地选自氢键接收基团,其中当氢键接收基团是胺时,X为伯胺或仲胺。更优选X独立地选自-N(R8)e、-OR10或卤素,其中R8独立地选自C1-10的烷基或C3-10的环烷基或(C(R1)2)d-W;R10独立地选自C1-10的烷基或C3-10的环烷基或(C(R1)2)d-W;e为0、1或2。更优选X为-N(R8)e或-OR10。优选R8和R10为C1-4的烷基或(C(R1)2)d-W,更优选C1-4的烷基并最优选甲基;W独立地选自氢或C1-10的烷基或X且更优选氢或C1-4的烷基。优选a为1或更大,更优选2或更大。优选a为6或更小,更优选4或更小。优选b为1。优选a和b的和为整数2或更大,更优选3或更大。优选a和b的和为或更小,更优选4或更小。优选d独立地选自整数1至4,更优选2至4,最优选2至3。
优选对应于通式2的胺为二甲氨基丙胺、甲氧基丙胺、二甲氨基乙胺、二甲氨基丁胺、甲氧基丁胺、甲氧基乙胺、乙氧基丁胺、丙氧基丙胺、氨端基聚烷撑醚(例如三羟甲基丙烷三聚丙二醇、氨端基醚)、氨丙基吗啉、异佛尔酮二胺和氨丙基丙二胺。
在一个实施方案中,优选的胺络合物由通式3表示 通式3其中R1、R2、X、a和b如上文中所限定。
在另一个实施方案中,胺是在杂环上有至少一个氮的脂族杂环。该杂环化合物也可包含一个或多个氮、氧、硫或双键。
另外,杂环可包括多环,其中在至少一个环上有氮。优选脂族杂环胺由通式4表示 通式4其中R3独立地选自氢、C1-10的烷基或C3-10的环烷基;Z独立地选自氧或NR4,其中R4为氢、C1-10的烷基、或C6-10的芳香基或烷芳基;x为独立地选自1至10的整数;y是独立地选自0或1。优选R3独立地选自氢或甲基。优选Z是NR4。优选R4为氢或C1-4的烷基,更优选氢或甲基。优选x为1至5且出现的所有x的总和为3至5。
满足通式4的优选化合物包括吗啉、哌啶、吡咯烷(pyrolidine)、哌嗪、1,3,3三甲基6-氮杂双环[3,2,1]辛烷、噻唑烷、高哌嗪、氮丙啶、1,4-二氮杂环[2,2,2]辛烷(DABCO)、1-氨基-4-甲基哌嗪和3-吡咯啉。使用脂族杂环胺的络合物优选由通式5表示
通式5其中R2、R3、Z、x和y如上文所限定。
在另一个实施方案中,与有机硼烷络和的胺为脒。可以使用任何具有脒结构的化合物,其中的脒具有与上文所述有机硼烷结合的足够的能量。优选的脒化合物由通式6表示 通式6其中R5、R6和R7独立地选自氢、C1-10的烷基或C3-10的环烷基;R5、R6和R7中的两个或多个可以以任意的组合结合形成环结构,该环可以有一个或多个环。优选R5、R6和R7独立地选自氢或甲基。在一个实施方案中,其中两个或多个R5、R6和R7结合形成环结构,该环结构优选是单环或双环结构。优选的脒是1,8-二氮杂双环[5,4]十一碳烯-7、四氢化吡啶、2-甲基-2-咪唑啉和1,1,3,3-四甲基胍。
有机硼烷脒络合物优选有通式7表示通式7其中R2、R5、R6和R7与上述内容所限定的相同。
在另一个实施方案中,与有机硼烷络和的胺是共轭的胺。可以使用任何具有共轭的胺结构的化合物,其中的胺具有与上文所述有机硼烷结合的足够的能量。
该共轭的胺可以是直链或支链的胺或环胺。优选的胺化合物由通式8表示NR7=CR9-(CR9=CR9)c-Y通式8其中Y独立地选自氢、N(R4)2、OR4、C(O)OR4、卤素或与R7或R9形成环的亚烷基基团。R4是氢、C1-10的烷基或C6-10的芳香基或烷芳基。优选R4为氢或甲基。R7如前所述。R9独立地选自氢、Y、C1-10的烷基、C3-10的环烷基、(C(R9)2-(CR9=CR9)c)-Y,或者两个或多个R9能够结合形成环结构,其中的环结构与胺的氮原子的双键结合;c是1至10的整数。优选R9为氢或甲基。
优选Y为N(R4)2或OR4、或者与R7或R9成环的亚烷基基团。
更优选Y为N(R4)2或与R7或R9形成环的亚烷基基团。优选地,c是1至5的整数,最优选1。在本发明中有用的共轭胺为4-二甲氨基吡啶、2,3-双(二甲氨基)环丙烯胺、(二甲胺)丙烯醛胺和3-(二甲氨基)异丁烯醛胺。
优选的环胺是下述结构表示的那些 优选与胺结合的络合物由通式9表示 通式9其中R2、R7、R9、c和Y如上文所限定。
络合物中胺化合物和硼烷化合物的摩尔比是非常重要的。在一些络合物中,如果胺化合物与有机硼烷化合物的摩尔比太低,该络合物就可自燃。优选胺化合物与有机硼烷化合物的摩尔比为1.0∶1.0至3.0∶1.0。低于1.0∶1.0的比率,就会在聚合反应、络合物的稳定性、粘合剂的使用即粘合中产生问题。尽管在使用大于3.0∶1.0的比率中没有益处,也可以使用大于3.0∶1.0的比率。如果有太多的胺,就会对粘合剂或聚合物组份产生负面的不利影响。优选胺化合物与有机硼烷化合物的摩尔比为2.0∶1.0至1.0∶1.0。
可以用于粘合剂的聚合反应组份的可聚合的化合物包括丙烯酸酯和/或异丁烯酸酯化合物,有甲基丙烯酸甲酯、甲基丙烯酸丁酯、2-甲基丙烯酸乙基己酯、甲基丙烯酸异冰片酯、甲基丙烯酸四氢糠酯,二甲基丙烯酸环己酯是最优选的。
不能粘接低能量表面材料的粘合剂也可用于本发明的实践中。这些粘合剂需要对将粘接的材料表面进行预处理。这类粘合剂包括如聚氨基甲酸酯基、环氧基、聚酰亚胺基、酚/间苯二酚基、或丙烯酸酯基粘合剂。
金属的表面预处理包括磷酸盐转化被膜处理、钝化、酸洗、喷粒处理、各种等离子体处理例如氧、氦、氩、空气、一氧化二氮、二氧化碳、氮和氨的等离子体处理;载焰硅烷(Pyrosil)、带硅酸盐的砂纸、各种溶剂的浸泡和擦拭、研磨、碱清洗、硅烷基底层涂料、剥离层、和人工表面涂覆即e-涂覆。
塑料的表面预处理包括如蚀刻、碱性铝和电化学处理、溶剂清洗、火焰处理、化学处理、等离子体处理、人工处理、紫外线照射和光化学处理。
如前所述,可以通过形成单一的装置或将两个或多个部分连接成最终的装置来制造燃料箱。所述部分可以是合瓣的形式,在制造塑料燃料箱的情况下,它是利用吹塑成型、注射成型、热固或挤压成型制造的,在制造金属燃料箱的情况下,是利用模锻、液压成型或其它本领域公知的制造技术制造的。利用所述粘合剂将两个合瓣连接在一起制造燃料箱。将粘合剂自动或人工施加在要连接在一起的一个或两个表面上。
一般地,通过将粘合剂施加在要连接的一个或两个表面上可以使塑料零件连接或粘接在燃料箱上,挤压两个表面同时使粘合剂固化以达到可接受的湿强度。如果需要,可以利用如紫外线照射、射频和介质加热的机械方法促进粘合剂的固化速率。其它公知的加快粘合剂固化时间的方法包括感应固化,它是将基底暴露在电磁脉冲下进行对流传热。
参照图1,该图示出了HDPE燃料箱10和利用粘合剂12将塑料零件11连接在燃料箱10上。粘合剂12如前所述。燃料箱10包括壁15和穿过该壁通常为圆柱形的开口(未示出)。优选地,燃料箱10包括一个多层叠层结构,其中具有一个或多个低能量表面材料层和一个或多个具有燃料阻挡性能的聚合物层。
塑料零件11可以是例如溢油接管、排油阀、箱口盖、供油管线、油泵、供油开关阀、油位表、卡箍、偏心夹、送油器、传送器装置、加油管、滤碳罐、燃油滤清器、供油回油活动连接管、车载诊断零件、补给燃料蒸汽回收零件例如阀、蒸汽/液体分离器、以及其它需要连接在燃料箱上的燃料系统零件。
塑料零件11包括单或多壁的具有第一开口端和第二开口端的管体,第一开口端向外延伸经过箱壁的开口16,而第二开口端向内延伸进入燃料箱。塑料零件11可以利用注射成型来制造。
操作时,将塑料零件11的第二开口端推过箱壁的开口直到其外侧边缘接触到箱壁开口的边缘,并用粘合剂在此将它们粘接在一起,粘合剂在塑料零件和箱壁开口之间的接触面上能提供足够的燃料阻挡,燃料箱和塑料零件包含具有燃料阻挡性能的聚合物。
回来参看图1,塑料零件11在其一个开口端有按钮接头-配合13,按压该接头穿过箱壁开口的外围。按钮接头配合13和/或干涉配合、或其它机械连接例如夹子、卡子或螺帽和螺钉,在粘合剂固化形成足够湿强度时,用于将前述零件临时连接在燃料箱上以提供所需的压力时粘合剂液珠完全“浸湿”并支撑零件。
现在参照图2,图中示出燃料箱具有在其上有封闭罩21的开口20。利用粘合剂22沿着燃料箱开口20的周围将封闭罩21连接在燃料箱壁上。粘合剂22是具有粘性和阻挡性能的聚合物。该粘合剂如前所述。燃料箱壁包括高密度聚乙烯外层23和24以及它们之间的阻挡聚合物层25。封闭罩包括高密度聚乙烯外层23’和24’以及它们之间的阻挡聚合物层25’。如图所示,粘合剂层12与燃料箱壁的阻挡层25和分别罩的阻挡层25’相接触,跨越燃料箱开口的阻挡层和分别罩之间的间隙,于是防止燃料蒸汽从封闭罩和燃料箱开口之间的连接处逸出。
燃料蒸汽能够通过HDPE燃料箱和连接或粘接在燃料箱上的塑料零件间的连接处逸出。通过在连接处施加密封(初级的密封)能够解决这一问题。然而,这种初级密封并不总是可靠的。
为了确保燃料蒸汽不会从初级密封失效的连接处逸出,可以在初级密封周围施加重复的密封,也称作备份密封或二级密封。下面描述几个重复密封的方法。
可以使用图3C中所示的一个重叠的罩如“环形圈”设计作为重复密封机构。其外形和几何形状并不限于圆形设计,在内部连接处具有足够的重叠部分任何的几何形状都是可利用的。
参照图3C,图中示出了具有连接在塑料燃料箱30上的边缘34的溢油接管33。在边缘34和燃料箱30的接口处有漏隙36。补片/环形圈31置于溢油接管33上,如图所示。补片/环形圈31包括前述的多层叠层结构。将粘合剂珠粒32和32’分别施加在环形圈31的内侧和外侧边缘上。当使环形圈31向下滑落至溢油接管33并挤压边缘34和燃料箱30,粘合剂珠粒32将环形圈31的内边缘与溢油接管33的圆柱形外表面粘接在一起,而粘合剂珠粒32’就环形圈31的外边缘与燃料箱粘接在一起。环形圈31足够大以覆盖边缘34而且能防止燃料蒸汽从漏隙36的溢出。粘合剂珠粒32是初级密封而粘合剂珠粒32’是重复密封。
前述粘合剂的使用,并与热板焊接相结合改善了耐久性和安全性,所述热板焊接是另一种能获得减少溢出的重复密封的方法。在图5A和5B中图示了利用粘合剂52和焊接点53将塑料零件51连接在燃料箱50上。
图4A至4C表示重复密封的各种设计。在图4A中,将厚的粘合剂珠粒42施加在溢油接管43底部的圆柱体周围,而将厚的粘合剂珠粒42’施加在溢油接管底部的外缘周围,来获得改善耐久性和/或散发阻挡性的重复密封。
图4B图示了具有双环粘合剂珠粒42和42’的圆形罩/盖。
图4C图示了具有双矩形粘合剂珠粒42和42’的矩形罩/盖。
双珠粒能够将任何的零件、盖、罩粘接在燃料箱上。可以将每一个珠粒的起/终点设置在每一个珠粒路径相对的末端,以便使逸出散发的直接路线降至最低。另外,如果粘合剂供应系统出现了瞬间的波动,这样会导致在粘合剂珠粒中产生空隙,施加粘合剂的方法也将使渗漏的机会降至最低。
在连接设计中建立弯曲也能够使燃料蒸汽的散发降至最低。具有峰和谷的山形连接可降低渗漏率。
图6中所示的是多个连接的设计,它形成了弯曲的路线以使燃料蒸汽的散发降至最低。图6(b)和6(d)图示的是可限制渗漏的长弯曲路线。这些长且迂回的路线可结合到翻转阀上,而翻转阀伸出的边缘也可结合在凸轮锁上。图6(d)所示的一种特殊的凸轮锁设计具有一个定位器。该定位器连接凸轮锁和燃料箱,该燃料箱也具有一个定位器。这个定位器是功能性的。首先,定位器确保正确定位。其次,定位器封闭了该区域的间隙。凹窝可以结合到各种零件上来确保适当的粘接宽度。
对任何连接设计有三种破坏的方式方式1是剥离方式,方式2是剪切,方式3是扭转。
为了增加连接强度,将连接的破坏方式转变为剪切方式。图6表示几种连接设计,其中将连接的破坏方式转变为剪切。图6(a)至6(m)所示的所有连接设计将构件引入方式2的破坏。理想的是不采用对接设计,该设计在负载下使任何构件进入方式1的破坏。
图6(e)、6(f)、6(h)、6(i)和6(j)中所示的翻转阀有一个特别的边缘,形成了30°至80°的角。如图6(g)所示,该边缘不需要将翻转阀置于剪切中。90°角适用于一维的力,但这种情况是很少的。如图6(a)至6(m)所示,由于力是两个方向的,因此在连接设计中加入小于90°的角。图6(a)至6(d)和6(k)至6(m)所示的凸轮锁设计也表示连接设计的弯曲。由于粘接线的尺寸,连接的部分也可以是90°。然而,连接的部分不是90°以确保多维载荷容量,如图6(d)所示。
本发明还包括由具有燃料阻挡性能不充分的聚合物制成的燃料箱和燃料箱零件。这种燃料箱和燃料箱零件可以用VVP(汽相等离子)类涂层进行涂覆,该VVP涂层公开于2000年6月申请的序列号为№.60/209540的待审的美国专利申请中。这种等离子型涂层的实例包括电磁辐射产生的等离子、微波产生的等离子和在美国专利US5,702,770和5,718,967中指导的AC电流产生的等离子、在美国专利US6,110,544中指导的DC电流产生的等离子。等离子的磁性制导在美国专利US5,900,284中公开。对于在容器内表面上等离子产生的涂层来说,可以在容器的内部产生等离子,这与在美国专利US5,565,248所教导的相同,它受限于用于涂覆的含硅的等离子无机源。另外,在US5,900,284中所教导的等离子的磁性制导可以完全安装在容器内。用于在容器内表面上的阻挡涂层的等离子磁性制导也可以完全在容器外部安装磁性制导并且可选择在容器内安装产生等离子的电极。用于在容器内表面上的阻挡涂层的等离子磁性制导也可以部分在容器内、部分在容器外安装磁性制导。任意地,对于用于在容器内表面上的阻挡涂层的等离子磁性制导来说,其中在容器内安装部分磁性制导,在容器内可包括产生等离子的电极,同时也包括用于等离子反应剂的反应源,即硅烷。
一般地,在真空条件下可更容易地产生等离子。产生等离子的反应腔的绝对压力通常为小于100Torr,优选小于100mTorr。
权利要求
1.一种燃料箱,包括用粘接低能量表面材料的粘合剂粘接在一起的两个或多个部分。
2.如权利要求1所述的燃料箱,它是由热塑性或热固性聚合物制成。
3.如权利要求1所述的燃料箱,其中燃料箱是单层的低能量表面材料或一种多层结构,该多层结构包括燃料阻挡的聚合物中心层和低能量表面材料的外层。
4.如权利要求3所述的燃料箱,其中低能量表面材料是高密度聚乙烯,而燃料阻挡聚合物选自聚酰胺、氟橡胶、聚醛均聚物和共聚物、磺化和氟化的HDPE、乙烯乙烯醇聚合物和共聚物、羟基官能化的聚醚和聚酯、以及支化的聚酯。
5.如权利要求1所述的燃料箱,其中的粘合剂可支撑1334牛顿的载荷。
6.如权利要求1所述的燃料箱,其中的粘合剂具有由ASTM E96-94确定的、不超过46g-mm/m2/天的燃料蒸汽渗透率。
7.如权利要求1所述的燃料箱,其中的粘合剂包括胺/有机硼烷络合物。
8.如权利要求7所述的燃料箱,其中的有机硼烷是三烷基硼烷或烷基环烷基硼烷,而胺选自(1)具有脒结构单元的胺;(2)在杂环上具有至少一个氮的脂肪族杂环,其中杂环化合物也可包含一个或多个氮原子、氧原子、硫原子或在杂环中的双键;(3)另外具有一个或多个氢键接受基团的伯胺,其中在伯胺和氢键接收基团之间有至少两个碳原子,优选至少三个碳原子,这样由于络合物中的分子间或分子内的相互作用,B-N键的强度就增加;和(4)共轭的胺。
9.如权利要求7所述的燃料箱,其中有机硼烷和伯胺络合物由下面通式表示 有机硼烷杂环胺络合物由下面通式表示 有机硼烷脒络合物由下面通式表示 和有机硼烷共轭胺络合物由下面通式表示 其中B代表硼;R1分别为氢、C1-10的烷基或C3-10的环烷基;R2分别为选自C1-10的烷基、C3-10的环烷基,或者两个或多个R2可结合形成脂环结构;R3分别为氢、C1-10的烷基或C3-10的环烷基;R4分别为氢、C1-10的烷基、C3-10的环烷基、C6-10的芳香基或烷芳基;R5、R6和R7分别为氢、C1-10的烷基或C3-10的环烷基,或者R5、R6和R7中的两个或多个以任意的组合可结合成环结构,该环结构可以是单环或多环结构且该环结构可包括一个或多个氮、氧或在环结构是不饱和的;R9分别为氢、C1-10的烷基、C3-10的环烷基、Y、(C(R9)2-(CR9=CR9)c-Y,或者两个或多个R9能够结合成环结构,或者一个或多个R9可形成含Y的环结构,其中的Y使环结构与亚胺的氮原子的双键结合;X是氢键接收基团,其中当氢键接收基团是胺时,X为仲胺或叔胺;Y独立地选自氢、N(R4)2、OR4、C(O)OR4、卤素或与R7或R9形成环的亚烷基基团;Z分别为氧或-NR4;a独立地为1至10的整数;b独立地为0或1的整数,其中a和b的和应为2至10;c独立地为1至10的整数;x独立地为1至10的整数,其中出现的x的总和为2至10;和y独立地为0或1。
10.如权利要求7所述的燃料箱,其中的有机硼烷/胺络合物包括脂肪族杂环胺,该脂肪族杂环胺是5或6个碳原子的杂环化合物。
11.如权利要求7所述的燃料箱,其中络合物的有机硼烷化合物具有选自C1-10的烷基或苯基的三个配位体,胺化合物选自1,6二氨基己烷、二乙胺、二丁胺、二乙烯三胺、二丙烯二胺、1,3丙烯二胺和1,2丙烯二胺。
12.如权利要求7所述的燃料箱,其中络合物的有机硼烷化合物具有与硼原子相连的三个配位体且选自C1-10的烷基或苯基,胺化合物是烷醇胺或二胺,二胺中的第一胺基团为伯胺或仲胺而第二胺基团为伯胺。
13.如权利要求7所述的燃料箱,其中络合物的胺化合物为聚氧化烯多胺和多胺,该多胺是二伯胺和具有与伯胺反应的至少两个基团的化合物的反应产物。
14.如权利要求1所述的燃料箱,其中的两个或多个部分合瓣形状。
15.如权利要求14所述的燃料箱,其中的合瓣是由热塑性材料制成,且是利用挤出吹塑成型、注射成型、热固或挤压成型制造的。
16.一种金属燃料箱,包括用粘合剂粘接在一起的两个或多个部分。
17.如权利要求16所述的燃料箱,其中的燃料箱由不锈钢、预涂覆的低碳钢、或后涂覆的低碳钢、铝、铜、电镀锌、镍或镀镍钢制成。
18.如权利要求16所述的燃料箱,其中的粘合剂包括聚氨基甲酸酯基、环氧基、聚酰亚胺基、酚/间苯二酚基、或丙烯酸酯基粘合剂。
19.如权利要求16所述的燃料箱,其中的两个或多个部分是合瓣形的。
20.如权利要求19所述的燃料箱,其中的合瓣是由钢制成且通过模锻或液压成形制成。
21.一种燃料箱装置,包括燃料箱和利用粘合剂连接在燃料箱上的燃料箱零件。
22.如权利要求21所述的燃料箱装置,其中的燃料箱零件是溢油接管、排油阀、箱口盖、供油管线、油泵、供油开关阀、油位表、卡箍、凸轮锁或送油器、翻转阀、隔热器。
23.如权利要求21所述的燃料箱装置,其中的燃料箱和燃料箱零件是由热塑性或热固性聚合物或钢制成。
24.如权利要求23所述的燃料箱装置,其中的钢为不锈钢、预涂覆的低碳钢、或后涂覆的低碳钢,热塑性或热固性聚合物为聚甲醛、尼龙、聚乙烯、聚对苯二甲酸乙二酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚偏1,1-二氯乙烯、乙烯乙烯醇或聚丙烯。
25.如权利要求23所述的燃料箱装置,其中的燃料箱是复合挤出吹塑成型的,而将燃料箱零件连接在燃料箱的外表面或内表面。
26.如权利要求21所述的燃料箱装置,进一步包括施加在燃料箱和燃料箱零件之间的连接处的初级密封和在初级密封周围的重复密封。
27.如权利要求21所述的燃料箱装置,其中的燃料箱和燃料箱零件涂覆有汽相等离子型涂层。
28.如权利要求27所述的燃料箱装置,其中的等离子涂层施加在燃料箱的内表面或外表面上。
29.一种燃料箱装置,包括一个具有壁的塑料燃料箱,该壁有外表面和内表面,一个单层或多层壁的热塑性或金属零件,该零件具有第一开口端和第二开口端,第一开口端通过箱壁上的一个开口向外延伸,而第二开口端向内延伸进入燃料箱直到它与燃料箱壁的开口边缘接触,并由粘合剂使它们粘接在一起。
30.一种燃料箱装置,包括(1)具有壁的塑料燃料箱,该壁上有向外延伸的圆柱状开口,并包括一个多层结构,该多层结构具有低能量表面材料的外层和内层以及它们之间的燃料阻挡层,和(2)沿着燃料箱壁开口周边利用粘合剂粘接或连接到燃料箱壁上的塑料零件,该粘合剂具有足够的结构强度、燃料阻挡、密封和蒸汽散发的性能,该塑料零件包括一个多层结构,该结构具有热塑性的内层和外层以及它们之间的燃料阻挡层,该粘合剂接触塑料零件和塑料燃料箱的阻挡层并跨越燃料箱的阻挡层和塑料零件之间的间隙,从而形成对从燃料箱和塑料零件间的接口处燃料蒸汽排放的连续的阻挡。
31.一种制备燃料箱装置的方法,包括提供一个燃料箱,利用粘合剂将燃料箱零件粘接在燃料箱的内表面或外表面上。
32.如权利要求31所述的方法,其中使用电晕、硅烷、等离子、火焰、底层涂料、涂覆、或由溶剂、水或肥皂水的清洗而对燃料箱和燃料箱零件进行预处理以提供足够的粘接。
33.如权利要求31所述的方法,其中对燃料箱和燃料箱零件表面用砂纸打磨、喷砂处理、或研磨以提供足够的粘接。
34.一种将具有表面的塑料燃料箱零件连接在塑料燃料箱表面的方法,包括用权利要求1所述的粘合剂涂覆在一个或两个表面上,将两个被涂覆的表面挤压在一起形成连接,使粘合剂固化而将两个表面粘接在一起。
35.如权利要求34所述的方法,其中通过设计将连接处的破坏方式转变为剪切以增加强度。
36.如权利要求34所述的方法,其中将连接处设计成弯曲的路线以使燃料蒸汽的散发减少到最低。
37.一种将燃料箱零件粘接在燃料箱上的方法,包括(1)提供一个具有壁的塑料燃料箱,该壁有外表面和内表面,壁上有穿过该壁的开口,和一个单层或多层壁的零件,该零件有第一开口端和第二开口端,第二开口端装备了连接元件或压配合,(2)将粘合剂施加在燃料箱壁开口边缘或燃料箱零件的连接元件上,和(3)推动塑料零件的第二开口端穿过燃料箱壁的开口进入到燃料箱内,直到与燃料箱壁开口的边缘对齐,用粘合剂将它们粘接在一起。
38.如权利要求37所述的方法,其中连接元件是夹子、卡子或螺帽和螺钉。
全文摘要
一种燃料箱,包括用粘合剂粘接在一起的两个或多个部分,该粘合剂能粘接低能量表面材料并具有燃料阻挡性能。
文档编号B29C65/48GK1556759SQ02816216
公开日2004年12月22日 申请日期2002年8月21日 优先权日2001年8月23日
发明者R·拉马纳坦, R 拉马纳坦, G·J·科尔恰克, 科尔恰克, D·M·考特尔, 考特尔, M·C·康奈尔, 康奈尔, A·F·考利, 考利, T·A·赖特三世, 赖特三世, M·A·麦克梅肯, 麦克梅肯, K·J·里策马, 里策马, S·B·斯沃茨米勒, 斯沃茨米勒 申请人:陶氏环球技术公司