液体检测压电装置、液体容器及安装模块体的利记博彩app

文档序号:4346570阅读:222来源:国知局
专利名称:液体检测压电装置、液体容器及安装模块体的利记博彩app
技术领域
本发明涉及具有压电装置的液体容器,压电装置通过检测声阻抗变化,其中特别是检测共振频率的变化,来检测容纳在液体容器内的液体的消耗状态。更详细地说,本发明涉及设置在喷墨打印机上适用的墨盒上的/用于检测墨盒内墨的消耗状态的压电装置及其安装模块体,该喷墨打印机是这样进行印刷的,即由压力发生装置使压力发生室内的墨与印刷数据相对应地加压,从喷嘴口排出墨而实现印刷的。
下面,举例说明作为适合于本发明的液体容器的安装于喷墨打印机上的墨盒。通常,喷墨打印机包括装载喷墨式打印头的滑架和容纳经流路向打印头供给的墨的墨箱,并可作连续印刷作业;上述喷墨打印头具有对压力发生室加压的压力发生器和使增压后的墨从喷嘴开口以墨滴状流出的喷嘴开口。一般的墨盒构造是在墨被消耗掉时,为便于用户简单更换而呈可装拆的盒状结构。
目前,对墨盒内墨消耗的管理方法有以下两种一是用软件对打印头上墨滴喷射次数和打印头的维修而吸收的墨量累加计算,通过计算对墨消耗进行管理;其二是通过在墨盒上安装直接检测液面用的两根电极,检测墨实际消耗到规定量的时间的方法。
然而,利用软件来累计墨滴流出次数和吸收墨量,以计算的方式管理墨消耗的方法存在的问题是由于使用环境的不同,如使用室内大气的温度和湿度的高低,墨盒开封后待用时间的长短,用户方使用频率的不同等,墨盒内压力和墨粘度发生了变化,理论上计算出的墨消耗量和实际消耗量之间产生不可忽视的误差。而且,另一个问题是同一个墨盒取下一次,再安装时,累加的墨滴数一旦调零,就很难知道实际墨的残量。
另一方面,用电极调节墨消耗时间的方法进行管理,因为能够检测出墨的实际消耗,所以控制墨残量的可靠性很高。但是,由此而导致的问题是为了检测出墨液面,墨必须是导电的,于是就限定了可用墨的种类,且电极和墨盒间的液体密封构造太复杂。此外,还存在的问题是导电材料通常使用导电性好,耐腐蚀性高的贵重金属,因此,墨盒制造成本高。此外,因为必须把两根电极分别安装在墨盒的不同部位上,造成制造步骤繁多,结果也是导致制造成本的增加。
鉴于上述问题,本发明目的在于提供一种能够正确检测出液体的消耗状态,而且不需要复杂的密封构造的液体检测用压电装置。
本发明目的是提供一种利用液体检测用压电装置,能够正确检测墨消耗状态,而且不需要复杂密封构造的墨盒。
本发明目的是提供一种能够正确检测液体消耗状态的检测装置。
本发明目的是提供一种能够正确检测墨消耗状态,而且不需要复杂密封构造的液体检测用安装模块体。
本发明目的是提供一种能够正确检测墨消耗状态,而且不需要复杂密封构造的液体容器。
根据本发明的一个方面,提供了一个压电装置,固定在液体容器上,用于检测液体容器内所容纳的液体的消耗状态,包括一个通过使压电元件变形而产生振动的振动部,其是以其自身中心对称的振动部。
此外,该压电装置的振动部基本为圆形。且,压电装置包括一个压电层;压电层上表面设有上部电极;压电层下表面设有下部电极;和一个振动板,振动板具有与下部电极接触的第一表面和第二表面,第二表面的局部与液体容器内的液体接触,其中,至少部分压电层,下部电极和振动板构成振动部。此外,优选该压电层的每个主要部分都分别与振动部是一致的同心圆。
此外,优选该压电层有上表面和下表面的底板,其上表面接触振动板的下表面,其下表面接触容纳在液体容器中的液体容纳的液体。优选该空腔是和振动部大体一致的同心圆。此外,振动板的变形是由于其残余的振动大于底板的残留振动所致的。振动部的振动边缘位于空腔的外表面附近。优选该压电装置还包括安装部件,该安装部件有一与振动板的下表面接触的上表面和面对液体容器内部下表面的下表面,安装部件具有与振动部的中心对应的开口。此外,优选将液体容器安装在压电装置之上。
根据本发明的另一方面,模块优选包括压电装置;并且一个安装结构与压电装置形成一体并用于将液体检测装置安装到液体容器上。
该安装结构包括一个向液体容器内部突出的凸部,并且振动部的中心可以被设计在凸部的中心线上。此外,该凸部可以是圆形的。它还可以包括一个为压电装置的上部电极和下部电极提供驱动信号的终端。此外,优选液体容器安装在模块之上。此外,液体容器也可以是为喷墨打印机储备墨的墨盒。
根据本发明的另一方面,提供一个安装在液体容器上的压电装置,用于检测液体容器中所包含的液体的消耗状态,包括一个产生振动的振动部,该振动部包括一个表面接触液体容器中的液体的振动板;振动板的另一个表面装置了下部电极;一个压电层,该压电层设置在下部电极上,通过压电环境中产生的振荡来使振动板振动;一个装置在压电层上的上部电极,其中,振动部得以形成,以至于压电层覆盖了下部电极,上部电极覆盖了下部电极,并且压电层要从上部电极中伸出。
此外,压电装置还包括有上表面和下表面的底板,其上表面接触振动板的下表面,其下表面接触容纳在液体容器内的液体,且底板包括一个空腔,该空腔接触振动板的振动部分内的液体,此外,优选该空腔的面积大于下部电极的面积。由于残留振动使得振动板的柔顺性大于底板。产生压电效应的压电层的面积基本上与下部电极的面积相同。上部电极,压电层和下部电极各自包含的主要部分是比较可取的长方形。上部电极,压电层和下部电极各自包含的主要部分可以是圆形的。空腔基本上为圆形,并且其半径与其深度之比大于3π/8。压电装置根据在振动部附近的声阻抗的变化检测液体容器中的消耗状态。在压电装置中,由于压电层的振动引起的残留振动产生了反向电动势,而且,液体容器中的液体可以通过阻抗的变化来检测。此外,将液体容器安装在压电装置上是比较合理的。
根据本发明的另外一个方面,提供一个模块,该模块安装在液体容器之上,是用来检测液体容器中的液体的消耗状态的,包括一个通过振动后的残余的振动来产生反向电动势来检测液体消耗状态的压电装置;与压电装置形成一体的安装结构,其中压电装置包括一个振动板,其一个表面与液体容器中的液体接触;而另一个表面上安装着一个下部电极;下部电极上安装着一个压电层;压电层上安装着上部电极,其中优选压电层安装的可以覆盖下部电极,上部电极覆盖着下部电极,并且压电层要伸出上部电极。
此外,安装结构使得上表面与振动的下表面侧相接触,而该振动与液体接触,下表面有一个与液体容器中的液体接触的安装板,而该安装板在位于振动板的振动的位置上有一个能接触到液体的空腔。此外,优选空腔的面积大于下部电极的面积是比较可行的。合理的是该空腔基本上是圆形的,而且其半径与其自身的深度比要大于3π/8。模块的安装结构在其中心可以有一个开口,而压电装置可以安装在该开口内。此外,开口的面积应大于压电层的产生压电效应的部分。此外,压电装置可以处于分离的状态。此外,优选在液体容器的内部可以安置上模块。
在优选的实施例中,提供了一个容纳液体的液体容器,一个液体检测装置安装在液体容器上,一个用于检测液体容器中的液体的消耗状态的安装模块。液体检测装置包括一个压电元件,而且该压电元件根据电能量与振动能量之间的转化来输出与液体消耗状态一致的信号。压电元件安装在底板上。尤其是,底板上有一个开放的空腔。该开放的空腔处于压电元件相对的位置,可以与液体容器的内部相通。优选该开放的空腔处于与墨容器的内部直接相对的位置,可以与墨容器的内部相通。
当液体消耗状态还没有变化的时候,开口空腔的内部和外部都充满了液体。另一方面,当液体消耗开始进行,液体液面低于暴露的开口空腔。然后,大约在开口空腔的内部保留固定量的液体。利用压电元件对这两种状态输出的不同的信号的,就可以适当的检测液体消耗状态了。
根据本发明,其实施例如此设计可以避免由于设置空腔产生的起伏的液体波动而导致的检测错误。
此外,根据本发明,可以通过提供空腔来减少在压电元件和液体当中设置的部件的数量,或者可将部件的厚度减少,这样液体的消耗状态可以被进一步可靠地检测到。
此外,根据本发明,由于局部提供了开口空腔,可以利用其周围底板来知道适当的液体密封状态。因此,就可以避免将压电元件暴露在液体当中。这对于具有传导性的液体例如墨将更为有效。
优选利用压电元件,根据与液体消耗状态一致的声阻抗的变化来检测液体的消耗状态。压电元件输出信号来显示在所提供的振动之后残余的振动。压电元件的残留振动是根据周围液体环境而变化的。例如,残留振动在大量液体的环境和少量液体的环境中是不同的。这是根据与液体消耗状态一致的声阻抗的变化情况。这样,就可以通过利用与液体消耗状态一致的残留振动的变化的事实来检测液体消耗状态。
应注意,在压电元件附近的一定量的液体影响残留振动。根据本发明,通过开口空腔,可以减少设置于压电元件和液体之间的相当数量的中间部件,或者可以减少所述中间部件的厚度。这样,影响残留振动的一定量的液体接近或与压电元件相接触。因此,与液体消耗状态相关的残留振动的变化会变得更清楚以使液体消耗状态可以被进一步可靠地检测到。
此外,压电元件不但通过开口空腔产生弹性波,而且输出一个与通过开口空腔反射回的反射波相一致的信号。同样,在此情况下,由于振动在压电元件和由开口空腔提供的液体之间成功地转移,检测能力将得到提高。压电元件在检测液体消耗状态过程中起的作用可以由液体容器的规格和所要求的尺寸的精确度决定。
根据本发明,液体检测装置可以产生一个检测信号,当液体被容纳于处于预先确定了的作为检测对象的液体消耗状态的开口空腔内部时,该信号用来显示与开口空腔内部液体相一致的残留振动状况。
开口空腔的形状适用于容纳预先确定了液体状况的液体。开口空腔的形状也适用于容纳预先确定了液体消耗状态的作为检测对象的液体。
开口空腔可以穿过底板。在压电元件与底板之间有一中间部件。该中间部件对开口空腔加以密封,并与压电元件一起振动。
更优选的,压电元件包括一个置于底板上的下部电极,一个置于下部电极上的压电层,以及一个置于压电层上的上部电极。位于压电元件一侧的开口空腔的开口区域被设置为比压电层和下部电极的交迭部分处的开口区域大得多。
更优选的,空腔的深度被设置为小于空腔开口最狭处的宽度。空腔的深度小于空腔最狭处宽度的1/3是更可取的。如果空腔为圆形,开口最狭处宽度将是一个开口度(开口直径)。
更优选的,开口空腔的形状关于压电元件中心是基本对称的。开口空腔基本上是一个圆形。
更优选的,容器内部的开口空腔的开口区域被设置为比压电元件面的开口区域大得多。压电元件面的开口度比容器内部的开口度大得多。以此方式设定,开口空腔呈放射状覆盖着容器内部。开口空腔的外周表面可为锥形。开口空腔的外周表面可为台阶状。
一个连通槽用于连通底板处的开口空腔。所述位于底板上的连通槽由面对容器内部的部分提供。该连通槽朝着供液孔的方向,通过所述供液孔,液体容器可向其自身外部供液。
液体检测装置可与为安装液体容器的安装结构一体地形成。通过液体检测装置和安装结构的一体成形形成一个模块。
同样,本发明的另一个实施例是一个装备了上述液体检测装置的液体容器。所述液体容器可作为一个喷墨打印机储备墨的墨盒。
同样,本发明的另一个实施例是一个用于检测液体的模块。所述模块包括一个压电装置和一个安装结构。所述压电装置用于检测液体容器中容纳的液体的消耗状态。所述模块与压电装置是一体的,所述压电装置被安装于液体容器上。在安装结构中特别提供了一个开口空腔。
同样,本发明的另一个实施例是一个容纳液体的液体容器。尽管典型的液体容器是墨盒,但本发明不限于此。装有压电装置的液体容器用于检测容纳在液体容器中的液体的消耗状态。
开口空腔可以穿过容器壁。压电装置和容器壁之间装有一个中间部件。所述中间部件将开口空腔密封,并与压电装置一起振动。一个形成于容器壁内表面的凹部可以作为开口空腔。
一个与开口空腔相连接的连通槽可被提供以使其对着容器内部。该连通槽可以朝着供液孔的方向设置,通过所述供液孔,液体容器可向其自身外部供液。
所述压电装置可以紧密嵌合的方式插入一个由液体容器提供的开口中。所述开口可成为一个孔,通过该孔压电装置穿透容器壁设置的位置薄的部分形成。
开口空腔可由容器内部的一个液体吸收部件的附近提供。所述液体吸收部件可以由多孔材料部件组成。
另一方面,容纳有液体的液体吸收部件可在开口空腔内部提供。所述液体吸收部件可以由多孔材料部件组成。
压电装置包括一个压电元件和一个其上带有压电元件的底板,开口空腔形成于该底板上。
压电装置可以安装模块的形式与安装结构一体地形成。所述安装结构是一个将压电装置安装到液体容器上的结构。开口空腔可被设置在液体容器内部的正面,该液体容器位于安装模块中。
一个安装于喷墨打印机中的墨箱可作为适当的液体容器。墨箱设置于安装打印头的滑架上。墨箱设置于喷墨打印机的固定部分。墨箱被设置于打印头附近并与可更换的墨盒相连通。墨箱包括将盒子内部分为多个腔室的隔离部件,以及分别在这些腔室中设置的多个压电装置。
下面结合附图对本发明进行详细说明。


图1示出单色,例如黑墨用的墨盒的一个实施例。
图2示出容纳多种墨的墨盒的一个实施例。
图3示出适用图1和图2所示墨盒的喷墨打印机一个实施例。
图4示出副墨盒单元33的详细剖面图。
图5(A)~图5(E)示出弹性波发生器3,15,16及17的制造方法。
图6示出图5所示的弹性波发生器3另一个实施例。
图7示出本发明墨盒的另一个实施例。
图8示出本发明墨盒的另一个实施例。
图9示出本发明墨盒的另一个实施例。
图10示出本发明墨盒的另一个实施例。
图11示出本发明墨盒的另一个实施例。
图12(A)和图12(B)示出图11所示的墨盒的另一个实施例。
图13(A)和图13(B)示出本发明墨盒的另一个实施例。
图14(A)~图14(C)示出开口1c的另一个实施例的平面图。
图15(A)和图15(B)示出本发明喷墨打印机实施例的剖面图。
图16(A)和图16(B)示出适合于图15(A)和15(B)所示打印装置的墨盒的实施例。
图17示出本发明墨盒272的其它实施例。
图18示出本发明墨盒272及喷墨打印机的又一实施例。
图19示出图16所示的墨盒272的又一实施例。
图20(A)~图20(C)示出驱动器106的详细构造。
图21(A)~图21(F)示出驱动器106周边及其等价电路。
图22(A)和图22(B)示出墨密度和由驱动器106检测出的墨共振频率的关系。
图23(A)和图23(B)示出驱动器106的反向电动势波形。
图24示出驱动器106另一实施例。
图25示出图24所示的驱动器106的局部剖面图。
图26示出图24所示的驱动器106整体剖面图。
图27示出图24所示的驱动器106的制造方法。
图28(A)~图28(C)示出本发明墨盒的又一实施例。
图29(A)~图29(C)示出通孔1c其它实施例。
图30示出驱动器660另一个实施例。
图31示出驱动器670另一个实施例。
图32是表示模块100的透视图。
图33是表示图32所示的模块100构成的分解图。
图34示出模块100另一实施例。
图35是示出图34所示的模块100构成的分解图。
图36示出模块100另一个实施例。
图37示出把图32所示的模块100安装在墨容器上的剖面图。
图38(A)和图38(B)示出模块100又一个实施例。
图39(A)~图39(C)示出模块100又一个实施例。
图40示出使用图20及图21所示的驱动器106的墨盒及喷墨打印机实施例。
图41示出喷墨打印机详细构造。
图42(A)和图42(B)示出图40所示的墨盒180的又一个实施例。
图43(A)~图43(C)示出墨盒180的又一个实施例。
图44(A)~图44(C)示出墨盒180的又一个实施例。
图45(A)~图45(D)示出墨盒180的又一个实施例。
图46(A)~图46(C)示出图45(C)所示的墨盒180又一个实施例。
图47(A)~图47(D)示出使用模块100的墨盒的又一个实施例。
图48示出由基材凹部构成的开口空腔的一个实施例。
图49示出由设置在墨盒壁部上的凹部构成的开口空腔的一个实施例。
图50(A)和图50(B)示出通过将开口空腔制成锥形及台阶形而得到的有益方面的示意图。
图51示出在空腔周围开设合适连通槽的一个实施例。
图52示出在空腔周围开设合适连通槽的一个实施例。
图53示出将模块体嵌入墨盒上开口内结构的实施例。
图54(A)和图54(B)示出在吸收体附件设置空腔构成的实例。
图55示出将吸收体放置在空腔内构成实例。
图56示出突破容器壁的薄壁部分地安装压电装置的构成图。
图57示出将液体吸收体放置在空腔内构成实例。
图58示出在固定型墨盒上应用本发明时的实施例。
下面,通过实施例说明本发明,但下面的实施例并不限于本发明保护的范围,另外,实施例中说明过的特征的全部组合对于本发明的解决手段是必须的,因此不作限定。
本发明的基本构思是利用振动现象,检测液体容器内的液体状况,包括液体容器内有无液体,液体量,液体的液位,液体种类,液体组份等。利用具体振动现象来检测液体容器内的液体状况现有多种方法。例如,弹性波发生器对液体容器内部发出弹性波,并接受由液面或相对的壁面反射的反射波,来检测液体容器内的媒体及其状况的变化的方法。与之不同的还有根据振动物体的振动特性检测声阻抗变化的方法。对于利用声阻抗变化的方法,具有通过使带压电元件的压电装置或者驱动器的振动部振动,之后,测定由振动部上残余的残留振动所产生的反向电动势,以检测共振频率或反向电动势波形的振幅达到检测声阻抗变化之目的方法和利用测定机,例如传送电路等的阻抗(impedence)测定器测定液体的阻抗特性或者导纳特性,并测定电流值和电压值变化,或者,使液体振动时的电流值或电压值频率发生的变化的方法。后面将对弹性波发生器及压电装置或者驱动器的动作原理作详细描述。
在本实施例中,本发明适用于检测墨容器内墨消耗状态的技术。用压电元件检测墨消耗状态。压电元件利用电能和振动能之间的变换输出与墨消耗状态对应的信号。
检测原理之一是利用声阻抗。最好,根据压电元件的输出信号得出压电元件发生振动后的残留振动状态。残留振动随着周围墨量的变化而变化。这是以与墨消耗状态对应的声阻抗的变化为基础的。残留振动状态随墨消耗状态而变化,利用该变化来检测消耗状态。
根据其它检测原理,压电元件通过开口空腔产生弹性波,同时又通过开口空腔接受反射波,并输出与反射波对应的信号。这样反射波随墨消耗状态的变化被检测出。如何使压电元件发挥功能来检测墨消耗状态,是根据墨盒的种类和要求的测量精度而确定的。
压电元件设置在检测目标规定的墨消耗状态的液面位置上。因此,可检测墨是否通过液面。
压电元件形成在基材上。在本实施例中,特别是开口空腔设置在基材上。开口空腔是这样设置的,即在与压电元件相对的位置朝向墨盒的内部,并与墨盒内部连通。在另一个实施例中,压电装置和安装结构体构成安装模块。特别是在安装结构体上设置开口空腔。开口空腔按如下方式配置,即在装着模块体的状态下,配置在从压电装置朝向墨容器内部的位置上,且与容器内部相通。开口空腔向着压电装置,特别向着压电装置的振动部分。此外,在其它的实施例中,开口空腔设在墨容器上。开口空腔与容器内部相通地形成在与压电装置相对的位置上。开口空腔设置在从压电装置朝向容器内部的位置上。开口空腔对着压电装置,特别是对着其振动部分。
通过设置这样的开口空腔可得到以下的效果。在还未开始墨消耗的状态下,墨液面较高,因而,开口空腔的里外充满了墨。另一方面随着墨的消耗,液面下降,开口空腔露出。此时,在开口空腔中基本上只残存了少量墨。由于在这两个状态下,声阻抗和压电装置的状态不同,因此压电元件的输出信号不同,利用这种现象,就可准确地检测墨消耗状态。
最好,预先记录空腔内保留了少量墨时的检测特性。或者,也可以预先记录墨位于空腔内外时的检测特性。不言而喻,也可同时把握两种状态的检测特性。
根据本实施例,如后所述,由于设置了空腔,可以避免出现因墨波浪引起的误检测。
根据本实施例,由于设置了开口空腔,减少了设置在压电元件和墨之间的部件,或者使部件厚度变薄,从而,能更可靠地检测墨消耗状态。
例如,利用残留振动的检测原理,则对残留振动造成实质性影响的是压电元件附近的有限量的墨。这些限量墨因设置了开口空腔而靠近压电元件或者与其接触。因此,与墨消耗相对应的残留振动的变化更加清晰,所以墨消耗状态的检测更为可靠。
利用弹性波和反射波时,也因设置了开口空腔,在压电元件和墨之间的振动传递良好,可提高检测能力。
根据本实施例,由于在局部设置了空腔的底板,因此,利用该底板的形状就能够对墨进行密封。因此,能使压电元件免受墨影响,可有效防止导电墨对压电元件的绝缘造成损害。
下面,参照附图具体地说明本实施例。首先,说明利用压电元件以振动为基础,检测墨消耗的基本技术。结合说明,阐述检测技术的各种应用。在对这些进行说明时,说明本实施例的带特征的空腔的检测用装置及其它变形。在展开这些说明中,说明本实施例的带特征空腔的墨盒及其变形。图28(A)~图28(C)示出带空腔墨盒的代表例。另外,作为液体检测用装置的一个实例,示出了驱动器(典型的是图20(A)~图20(C),参照标号106)及弹性波发生器(典型的是图1,参照标号3)。但是,这些不过是液体检测装置的一个实例。例如,液体检测用装置也可是在驱动器上增加其它的部件的构成,另外也可以是从驱动器上拆下一些部件的构成。
图1是适用本发明的单色,例如黑墨用的墨盒的一个实施例的剖面图。关于图1的墨盒,在上述方法中、是以接受弹性波的反射波,检测液体容器内的液面的位置和有无液体的方法为基础的。用弹性波发生器3作为发生或接收弹性波的装置。在盛墨的容器1上设置墨供给口2,该口2与打印装置的供墨针以密封方式接合。弹性波发生器3这样安装在容器1的底面1a的外侧的,即该弹性波发生器3可通过容器将弹性波传递给内部的墨。在墨K基本被消耗贻尽的阶段,即在墨接近枯竭时,弹性波的传递应该是从液体变成气体,因此,弹性波发生器3被设置在比供墨口2稍高的上方部位。另外,也可以分别地设置弹性波接收装置,而将弹性波发生器3单独作为弹性波发生装置。
供墨口2上设置垫圈4和阀体6。如图3所示,垫圈4与连通打印头31的供墨针32以液密方式紧闭地嵌合。阀体6受弹簧5的长期作用与垫圈4保持接触。当插入供墨针32时,阀体6受供墨针32的推压,打开墨通道,容器1内的墨通过供墨口2及供墨针32流向打印头31。在容器1的上壁上部安装着半导体存储机构7,该存储机构7存储有关墨盒内的墨的信息。
图2示出容纳多种墨的墨盒的一个实施例的从里侧看的立体图。容器8由隔板分成三个墨室9,10及11。在各墨室上分别形成供墨口12,13及14。在各墨室9,10,11的底面8a上分别安装了弹性波发生器15,16及17,这些弹性波发生器能够通过容器向容纳在各墨室内的墨传递弹性波。
图3是示出适用于图1及图2所示的墨盒上的喷墨打印机主要部分的实施例的剖面图。可沿打印用纸宽度方向作往复运动的滑架30具备副墨盒单元33,打印头31被设置在副墨盒单元33的下面。另外,供墨针32设置在副墨盒单元33的墨盒装载面侧上。
图4详细示出副墨盒单元33的剖面图。副墨盒单元33具有供墨针32,墨室34,膜阀36及过滤网37。从墨盒通过供墨针32供给的墨容纳在墨室34内。膜阀36根据墨室34和墨供给路35之间的压力差而开关。墨供给路35与打印头31相连,墨被供给到打印头31。
如图3所示,当把副墨盒单元33的供墨针32插入容器1的供墨口2内时,阀体6抵抗弹簧5后退,形成墨通路,容器1内的墨流入墨室34内。在墨室34内充满墨时,在打印头31的喷嘴开口处产生负压,墨就充填到打印头31内,之后,执行打印动作。
通过记录动作而由打印头31消耗墨时,由于膜阀36下流侧的压力下降,膜阀36脱离阀体38而打开阀。当膜阀36打开,墨室34内的墨通过墨通路35流向打印头31。随着墨流入打印头31,容器1内的墨经供墨针32流入副墨盒单元33内。
在打印装置的动作期间,以预先设定的检测时间,例如以一定周期,向弹性波发生器3提供驱动信号。由该弹性波发生器3产生的弹性波在容器1的底面1a传送给墨,并在墨内传播。
通过将弹性波发生器3紧贴在容器1上,使该墨盒自身具备了残墨量检测功能。根据本发明,由于在容器1成形时不需要埋入检测液面用的电极,因此,注塑成形过程较为简单.且不存在从埋电极的区域出现漏液的现象,从而,提高了墨盒的可靠性。
图5(A)~图5(E)示出弹性波发生器3,15,16,17的制造方法。用可烧成的陶瓷材料形成固定底板20。首先,如图5(A)所示,在固定底板20的表面上形成一个电极的导电材料层21。其次,如图5(B)所示,在导电材料层21的表面上重叠压电材料的新浮板料22。接着,如图5(C)所示,通过冲压将新浮板料22形成规定形状的振动子,待自然干燥后,烧成温度,例如1200℃进行烧成。然后,如图5(D)所示,在新浮板料22的表面上形成另一个电极的导电材料层23,可将其作弹性振动。最后,如图5(E)所示,按各单元切断固定底板20,用粘接剂等将固定底板20固定到容器1的规定表面上,就可把弹性波发生器3固定在容器1的规定表面上,从而完成了带残量检测功能的墨盒。
图6示出了图5所示的弹性波发生器3的其它实施例。在图5的实施例中,将导电材料层21作为连接电极。另一方面,而在如图6所示的实施例中,在由新浮板料22构成的压电材料层的表面上方的位置处通过焊锡等手段形成连接端子21a和23a。利用连接端子21a及23a,就可将弹性波发生器3直接安装到电路底板上,而不需要引导线。
然而,弹性波是一种能够在气体,液体及固体类的媒体中传播的波。因此,随着媒体的变化,弹性波的波长,振幅,相位,振动频率,传播方向及传播速度等也发生变化。另一方面,弹性波的反射波也随媒体的变化,其波的状态和特性也不同。因此,通过利用随着弹性波传播的媒体的变化而变化的反射波,就能够知道该媒体的状态。利用该方法检测液体容器内的液体状态时,例如,使用弹性波接送机。下面,以图1至图3的形式为例进行说明。接送机先向媒体,例如液体或液体容器发送弹性波,该弹性波在媒体中传播,到达液体的表面。因为在液体表面具有液体和气体的边界,所以反射波返回到接送机。接送机接受反射波,并根据该反射波的往来时间和送信机发出的弹性波和液体表面反射的反射波的振幅的衰减率等,能够测定送信机或接收机和液体的表面之间的距离。利用该信号就可检测出液体容器内的液体状态。弹性波发生器3可在利用弹性波传播的媒体变化而产生的反射波的方法中单独作为接送机,也可分别安装专用的接收机。
如上所述,由弹性波发生器3发出的在墨液中传播的弹性波由于墨液的密度和液位高度,在墨液表面产生的反射波返回到弹性波发生器3的到达时间取决于发生变化。因此,在墨组份一定的情况下,在墨液表面产生的反射波的到达时间取决于墨量。因此,弹性波发生器3产生弹性波之后,通过检测来自墨表面的反射波到达弹性波发生器3的时间,就可检测出墨量。另外,由于使墨中所含的粒子振动,在使用颜料为着色剂的颜料系的墨情况下,弹性波能够防止颜料等的沉淀。
由于把弹性波发生器3设置在容器1上,当墨盒中的墨减少到接近墨枯竭前,在弹性波发生器3不能接受到反射波时,可判断出墨接近用尽,可提醒更换墨盒。
图7示出本发明的墨盒的另外实施例。在容器1的侧壁上沿垂直方向间隔设置多个弹性波发生器41-44。如图7所示的墨盒,根据弹性波发生器41-44的各位置处是否存在墨,能够检测出各弹性波发生器41-44的安装位置的高度处是否有墨。例如,假设墨的液位处于弹性波发生器44和43之间的位置时,弹性波发生器44检测出无墨,而弹性波发生器41,42及43分别检测出有墨,可清楚地知道墨的液位处于弹性波发生器44和43之间的位置上。因此,通过设置多个弹性波发生器41-44,就能分段检测墨残量。
图8及图9分别示出本发明的墨盒的又一个实施例。在图8所示的实施例中,底面1a向垂直方向倾斜,在该倾斜的底面1a上沿其垂直方向装着弹性波发生器65。另外,在图9所示的实施例中,把弹性波发生器66垂直安装在侧壁1b的底面附近。
根据图8及图9的实施例,弹性波发生器65及66的一部分从液面露出时,弹性波发生器65产生的弹性波的反射波的到达时间及声阻抗对应于液面变化(Δh1,Δh2)连续地变化。因此,通过检测弹性波的反射波的到达时间或声阻抗的变化的程度,就能够准确地检测从墨残余量的墨接近枯竭到墨用尽的过程。
在上述实施例中,以实例说明了将墨直接容纳在液体容器中的形式的墨盒。作为墨盒的其它实施形式,还可以在容器1内装填多孔质弹性体,用多孔质弹性体含浸液体墨,构成多孔质弹性体墨盒,并可将上述弹性波发生器装在这样的墨盒上。另外,在上述实施例中,通过使用弹性振动型压电振动子,就可使墨盒小型化,也可使用纵振动型的压电振动子。此外,在上述实施例中,由同一弹性波发生器发送,接受弹性波。作为其它的实施例,使用发送用与接受用不同的弹性波发生器,也可检测残余墨量。
图10示出本发明墨盒的一个实施例。在上倾的底面1a垂直方向间隔地将多个弹性波发生器65a,65b,65c设置在容器1上。根据本实施例,弹性波发生器65a,65b,65c各自的位置处是否存在墨,在各弹性波发生器65a,65b,65c的安装位置处的、弹性波向各弹性波发生器65a,65b,65c反射的反射波的到达时间不同。因此,通过扫描各弹性波发生器65a,65b,65c,检测弹性波发生器65a,65b,65c处的弹性波的反射波的到达时间,就能够检测出各弹性波发生器65a,65b,65c的安装位置处是否有墨。因此,能够分阶段地检测墨残量。例如,墨液面处于弹性波发生器65b和弹性波发生器65c之间的位置时,弹性波发生器65c检测出无墨,而弹性波发生器65b,65a检测出有墨。通过综合评价这些结果,就可清楚墨液面位于弹性波发生器65b和弹性波发生器65c之间。
图11示出本发明的墨盒的其它实施例。为了提高来自液面的反射波的强度,图11的墨盒把浮板67安装在浮子68上来覆盖液面。浮板67是用声阻抗高,且具耐墨性材料,例如陶瓷板制成。
图12(A)和图12(B)示出图11所示的墨盒的其它实施例。图12(A)和图12(B)的墨盒与图11的墨盒一样,为提高来自液面的反射波的强度,把浮板67安装在浮子68上来覆盖墨液面。图12(A)是将弹性波发生器65沿垂直方向固定在上倾的底面1a上。墨残量变少,弹性波发生器65从液面处露出时,由于弹性波发生器65发出的弹性波的反射波到达弹性波发生器65的时间发生变化,因此能够检测出弹性波发生器65沿垂直方向的安装位置高度处有无墨。由于弹性波发生器65安装在上倾的底面1a上,因此即使弹性波发生器65检测出无墨之后,由于容器内多少还残余少许墨,因此,能够检测出墨接近用尽时的墨残余量。
图12(B)是沿垂直方向按上下间隔把多个弹性波发生器65a,65b,65c设置在容器1的上倾的底面1a上。根据图12(B)的实施例,根据弹性波发生器65a,65b,65c各自的位置处是否存在墨,在各弹性波发生器65a,65b,65c的安装位置处的、弹性波向各弹性波发生器65a,65b,65c反射的反射波的到=达时间不同。因此,通过扫描各弹性波发生器65a,65b,65c,检测弹性波发生器65a,65b,65c处的弹性波的反射波的到达时间,就能够检测出各弹性波发生器65a,65b,65c的安装位置处是否有墨。因此,能够分阶段地检测墨残量。例如,假设墨液面处于弹性波发生器65b和弹性波发生器65c之间某点时,弹性波发生器65c检测出无墨,而弹性波发生器65b,65a检测出有墨。通过综合评价这些结果,就可清楚墨液面位于弹性波发生器65b和弹性波发生器65c之间。
图13(A)和图13(B)示出本发明的墨盒的又一个实施例。图13(A)所示的墨盒在容器1的内部上设置的开口1c上配置吸墨体74,吸墨体74至少部分对着开口1c。弹性波发生器70对着地开口1c固定在容器1的底面1a上。图13(B)所示的墨盒是把吸墨体75对着槽1h配置,该槽1h与开口1c连通。
根据图13(A)和图13(B)所示的实施例,当容器1内墨消耗掉后,吸墨体74及75从墨中露出,吸墨体74及75的墨靠自重流出,向打印头31提供墨。当墨用尽时,吸墨体74及75由于吸收开口1c内残存的墨,墨从开口1c的凹部被完全排出。因此,在墨用尽时,由于弹性波发生器70发生的弹性波的反射波的状态发生变化,因此能够更加可靠地检测出墨用毕状态。
图14(A)~图14(C)示出开口1c的又一实施例。如图14(A)至图14(C)所示,开口1c的形状只要是弹性波发生器可安装的形状即可。
图15(A)和图15(B)示出本发明的喷墨打印机的其它实施例的剖视面。图15(A)仅示出喷墨打印机的断面。图15(B)示出在喷墨打印机上安装着墨盒272时的断面。在喷墨记录用纸的宽度方向作往复运动的滑架250的下面有打印头252。滑架250在打印头252上面具备副墨盒256。副墨盒256具有与图6所示的副墨盒33同样的构成。副墨盒单元256在墨盒272的装载面侧上具有供墨针254。滑架250在装载墨盒272的区域内具有一个凸部258,该凸部258对着墨盒272的底部。凸部258具有压电振动子等的弹性波发生器260。
图16(A)和图16(B)示出图15(A)和图15(B)所示的打印装置上适用的墨盒的实施例。图16(A)示出单色,例如黑色用的墨盒的实施例。本实施例的墨盒272具有容纳墨的容器和与打印装置的供墨针254以密封形式接合的供墨口276。容器274在底面274a上有与凸部258嵌合的凹部278。凹部278容纳超音波传递材料,例如凝胶材料。
供墨口276具有垫圈282,阀体286及弹簧284。垫圈282与供墨针254液密封接合。阀体286受弹簧284长期作用紧顶着垫圈282。当把供墨针254插入供墨口276内时,阀体286受供墨针254推压,打开墨通路。在容器274的上部安装着半导体存储机构288,该存储机构288存储有关墨盒的墨等的信息。
图16(B)示出容纳多种墨的墨盒的实施例。容器290被隔板分隔成多个区域,即三个墨室292,294,296。各墨室292,294,296均有供墨口298,300及302。在容器290的底面290a上对着各墨室292,294,296的区域上设置筒状凹部310,312,314,用于传递弹性波发生器260发生的弹性波的凝胶体304,306,308容纳在上述的凹部内。
如图15(B)所示,当把副墨盒单元256的供墨针254插入墨盒272的供墨口276内时,阀体286抵抗弹簧284后退,形成墨通路,墨盒272内的墨流入墨室262内。在墨充填到墨室262内时,在打印头252的喷嘴开口处产生负压,墨就充填到打印头252内,之后,执行记录动作。当通过记录动作而由打印头252消耗墨时,由于膜阀266下流侧的压力下降,膜阀266脱离阀体270而打开阀。因膜阀266打开,墨室262内的墨通过通路35流向打印头252。随着墨流入打印头252,墨盒272内的墨流入副墨盒单元256内。
在打印装置的动作期间,以预先设定的检测时间,例如以一定周期,向弹性波发生器260提供驱动信号。由该弹性波发生器260产生的弹性波从凸部258处射出,传递给墨盒272的底面274a的凝胶体280,并被传递到墨盒272内的墨。在图15(A)和图15(B)中,虽然将弹性波发生器260设置在滑架250上,不过也可把弹性波发生器260设置在副墨盒256内。
由于弹性波发生器260发出的弹性波在墨液中传播,根据墨液的密度和液位高度,在墨液表面产生的反射波返回到弹性波发生器260的到达时间发生变化。因此,在墨组份一定的情况下,在墨液表面产生的反射波的到达时间只受墨量的影响。因此,通过检测弹性波发生器260激励后从墨液表面反射的反射波到达弹性波发生器260的时间,就可检测出墨盒内的墨量。另外,由于弹性波发生器260所产生的弹性波使墨中所含的粒子振动,因此,能够防止颜料等的沉淀。
因印刷操作或维护操作,在墨盒内的墨减少到接近墨枯竭前,弹性波发生器260发出弹性波后接受不到来自墨液面的反射波时,可判断出墨已接近用尽,并提醒更换墨盒。而当墨盒272没有按规定装在滑架250上时,弹性波发生器260产生的弹性波的形状发生极端变化。利用这种变化,在检测出弹性波极端变化时,发出报警信号,还能提醒用户检查墨盒272。
弹性波发生器260发出的弹性波的反射波返回到弹性波发生器260的时间受容器274内的墨的密度影响。墨种类不同,其密度也不相同,因此将与墨盒容纳的墨种类有关的数据存储在半导体存储机构288内,通过执行与之对应的检测程序,就能够更正确地检测墨残余量。
图17示出本发明的墨盒272的另外实施例。图17示出的墨盒272的底面274a为沿垂直方向向上倾斜的斜面。
图17的墨盒272内墨残余量变少,弹性波发生器260的弹性波的发射区域的局部露出墨液面时,弹性波发生器260发出的弹性波的反射波返回到弹性波发生器260的时间对应于墨液面的变化Δh1连续地变化。Δh1示出凝胶体280的两端处的底面274a的高度差。因此,通过检测反射波到达弹性波发生器260的时间,就能够准确地检测出从墨接近用尽的状态至墨用尽状态的过程。
图18示出本发明墨盒272及喷墨打印机的另一个实施例。图18的喷墨打印机在墨盒272的供墨口276侧的侧面274b上具有凸部258’。凸部258’包含弹性波发生器260’。为了与凸部258结合,在墨盒272的侧面274b上设置凝胶体280’。根据图18的墨盒272,墨量变少,弹性波发生器260’的弹性波的发射区域的局部露出液面时,弹性波发生器260’发出的弹性波的反射波返回到弹性波发生器260’的时间及声阻抗对应于液面的变化Δh2连续地变化。Δh2表示凝胶体280’的上端和下端的高度差。因此,通过检测反射波返回到弹性波发生器260’的时间或声阻抗的变化程度,就能够更准确地检测从墨接近用尽状态到墨用尽的过程。
在上述实施例中,举例说明了将墨直接容纳在墨盒容器274内形式的墨盒。作为墨盒的其它实施例,还可以在容器274内装填多孔质弹性体,用多孔质弹性体含浸液体墨,构成多孔质弹性体墨盒,也可在该墨盒上应用上述弹性波发生器260。另外,在上述实施例中,在以液面反射的反射波为基础,检测墨残量时,利用相同弹性波发生器260及260’输送及接受弹性波。本发明不限于这些实施,例如,作为其它的实施例,也可以使用不同的弹性波发生器260分别作为弹性波的发送和接受用以检测墨残量。
图19示出图16所示的墨盒272的其它实施例。墨盒272因将浮板316安装在浮子318上,覆盖了墨液面,从而提高了墨液面的反射波强度。浮板316最好用声阻抗高,且具耐墨性材料,例如陶瓷板制成。
图20(A)~图20(C)及图21(A)~图21(F)示出本发明为压电装置一个实施例的驱动器106的详细构造及等效电路。此处所称的驱动器在至少检测声阻抗变化,来检测液体容器内的液体的消耗状态的方法中应用。特别是,用在这样的方法中,该方法是利用残留振动检测共振频率,至少检测声阻抗的变化来检测液体容器内的液体的消耗状态。图20(A)是驱动器106的放大平面图。图20(B)示出驱动器106的B-B剖面图。图20(C)示出驱动器106的C-C剖面图。此外,图21(A)及图21(B)示出驱动器106的等效电路,图21(C)及图21(D)示出在各墨盒内装满墨时的包含驱动器106的周围情况及其等效电路,图21(E)及图21(F)示出各墨盒内无墨时的包含驱动器106的周围情况及其等效电路。
驱动器106包括底板178,振动板176,压电层160,上部电极164及下部电极166,上部电极端子168,下部电极端子170,辅助电极172;底板178在其大约中心位置具有圆形开口161;振动板176配备在底板178的一侧面上(以下,称作表面),用于覆盖开口161;压电层160配置在振动板176的表面侧上;从两侧夹住压电层160的与上部电极电连接的与下部电极166电连接的被配置在上部电极164及上部电极端子168之间的,且将两者电连接的。每个压电层160,上部电极164及下部电极166主要部分为圆形。压电层160,上部电极164及下部电极166的各圆形部分形成压电元件。
振动板176形成在底板178的表面上,覆盖了开口161。振动板176的面朝开口161的部分和底板178的表面的开口161形成空腔162。至于底板178的压电元件这样来构成,其相反侧的面(以下称为里面)朝对液体容器侧,空腔162与液体相接触。为了确保空腔内162即使流入液体,这些液体不会在底板178的表面侧泄漏,振动板176相对于底板178应密闭地安装。
下部电极166位于振动板176的表面,即与液体容器相对侧的表面上,下部电极166的主要部分即,圆形部分的中心与开口161的中心应基本安装得一致。下部电极166的圆形部分的面积设定成比开口161的面积小。另一方面,在下部电极166的表面侧上如下地形成压电层160,即压电层160的圆形部分的中心和开口161的中心基本一致。压电层160的圆形部分的面积要比开口161的面积小,且要比下部电极166的圆形部分的面积大。
在压电层160的表面侧上如下地形成上部电极164,即,该上部电极164的为主要部分的圆形部分的中心与开口161的中心基本一致。上部电极164的圆形部分的面积要比开口161及压电层160的圆形部分的面积小,但要比下部电极166的圆形部分的面积大。
因此,压电层160主要部分是由上部电极164的主要部分和下部电极的主要部分分别从表面侧和里面侧夹位,从而能够有效地使压电层160变形驱动。压电层160,上部电极164及下部电极166各主要部分,即圆形部分形成驱动器106上的压电元件。如上所述,压电元件与振动板接触。另外,在上部电极164的圆形部分,压电层160的圆形部分,下部电极的圆形部分及开口161中,面积最大的是开口161,而且,根据该构造,振动板中实际发生振动的振动区域由开口161决定。由于上部电极164的圆形部分,压电层160的圆形部分及下部电极的圆形部分的面积比开口小,因此,振动板176更容易振动。此外,在与压电层160电连接的下部电极166的圆形部分及上部电极164的圆形部分中,下部电极166的圆形部分小。因此,下部电极166的圆形部分决定了压电层160中产生压电效果的部分。
压电层160,上部电极164和下部电极166的圆形部分的中心形成压电元件,基本与开口161的中心一致。且圆形开口161的中心,决定振动板176的振动部,在驱动器106的大约中心上。因此,驱动器106的振动部的中心与驱动器106的中心一致。由于压电元件和振动板的振动部具有圆形形状,驱动器106的振动部与驱动器106的中心是对称的。
由于振动部与驱动器106的中心对称,避免了不对称结构,就会发生不必要的振动激励。因此,检测共振频率的准确性就增加了。并且,由于振动部与驱动器106的中心对称,驱动器106易于制造。每个压电元件形状的不匀性就会降低。因此,每个压电元件174的共振频率的不匀性降低。另外,由于振动部为相同形状,振动部很难影响在弯曲程序中固定的不匀性,即振动部均匀地弯向液体容器。因此,驱动器106易于组装到液体容器上。
另外,振动板176的振动部为圆形,下部共振模,例如初级共振模控制压电层160的残留振动的共振模,在共振模上就会出现单峰。因此,峰与噪音可清楚地进行区分,可清楚检测共振频率。并且,反向电动势振幅的区别和共振频率振幅的区别,检测共振频率的准确性通过增加圆形振动板176的振动部的区域而增强,取决于液体容器内存在的液体是否增加。
振动板176的振动产生的移位大于底板178振动产生的移位。驱动器106由具有很小柔顺性的底板178,即其在振动时不会发生移位。和具有很大柔顺性的振动板176,即其在振动时易于发生移位构成的。通过这种两层结构,驱动器106可通过底板178与液体容器牢固连接,同时,通过振动的振动板176的移位增强。因此,反向电动势振幅的区别和共振频率振幅的区别取决于液体容器内存在的液体是否增加。因而检测共振频率的准确性增加。由于振动板176的柔顺性大,对于振动的关注降低,检测共振频率的准确性增加。驱动器106的振动结位于腔162的周边,即开口161的周边。
上部电极端子168按照通过辅助电极172,与上部电极164电气连通的方式,形成于振动板176的外面侧。下部电极端子170按照与下部电极166电气连通的方式,形成于振动板176的外面侧。由于上部电极164形成于压电层160的外面侧,这样在与上部电极端子168连接的途中,必须要形成等于压电层160的厚度和下部电极166的厚度的总和的台阶。仅仅通过上部电极164,难于形成该台阶,即使在可形成该台阶的情况下,上部电极164与上部电极端子168之间的连接仍是较弱的,具有切断的危险。于是,将辅助电极172用作辅助部件,将上部电极164与上部电极端子168连接。通过采用上述方式,形成压电层160以及上部电极164均支承于辅助电极172上的结构,从而可获得所需的机械强度,另外可确实将上部电极164与上部电极端子168牢固连接。
此外,压电元件与振动板176中的,与压电元件面对的振动区域为在驱动器106中实际上产生振动的振动部。另外,包含于驱动器106中的部件最好通过相互烧制的方式,形成一体。通过整体形成驱动器106,便容易对驱动器106进行操作。还有,通过提高底板178的强度,振动特性增加。即,通过提高底板178的强度,仅仅驱动器106中的振动部产生振动,驱动器106中的振动部以外的部分不产生振动。此外,为了使驱动器106中的振动部以外的部分不产生振动,与提高底板178的强度的情况相对,可使形成的驱动器106厚度和尺寸尽可能小,减小振动板176的厚度。
作为压电层160的材料,最好采用锆酸钛酸铅(PZT),锆酸钛酸铅镧(PLZT),或使用不含铅的无铅压电膜,作为底板178的材料,最好采用氧化锆或氧化铝。还有,最好振动板176采用与底板178相同的材料。上部电极164,下部电极166,上部电极端子168和下部电极端子170可采用具有导电性的金属,比如,金,银,铜,金铂合金,铝,镍等金属。
按照上述方式构成的驱动器106可用于接纳液体的容器。比如,可安装于喷墨打印机中所采用的墨盒,墨箱,或接纳有用于清洗打印头的清洗液的容器等中。
图20(A)~图20(C)和图21(A)~图21(F)所示的驱动器106按照下述方式安装,该方式为在液体容器中的规定部位,使腔162与液体容器内的液体相接触。在液体容器中盛有足够的液体情况下,腔162内部和其外侧充满液体。另一方面,如果液体容器中的液体消耗,其液面降低到驱动器的安装位置以下的标高,则处于下述状态,即腔162内部没有液体,或仅仅在腔162内部残余有液体,在其外侧存在有气体。驱动器106检测该状态的变化造成的,至少声阻抗的差值。由此,驱动器106可对液体容器中是否盛有足够的液体,或是否消耗了一定量以上的液体的情况进行检测。此外,驱动器106还可查明液体容器内的液体的种类。
下面对采用驱动器的液面检测原理进行描述。
为了检测媒体的声阻抗的变化,测定媒体的阻抗特性或导纳特性。在测定阻抗特性或导纳特性情况下,可采用比如,传送电路。该传送电路通过对媒体施加一定电压,改变频率,测定流过媒体的电流。或,传送电路通过向媒体供给一定的电流,改变频率,测定施加于媒体上的电压。通过传送电路测定的电流值或电压值的变化表示声阻抗的变化。此外,电流值或电压值为最大或最小的频率fm的变化也表示声阻抗的变化。
与上述的方法不同,驱动器可仅仅通过共振频率的变化,检测液体的声阻抗的变化。在作为利用液体的声阻抗的变化的方法,采用在驱动器中的振动部振动后,通过测定振动部中残存的残留振动而造成的反向电动势,检测共振频率的方法,可采用压电元件。压电元件为通过在驱动器中的振动部残存的残留振动,传送反向电动势的元件,该反向电动势的值随驱动器中的振动部的振幅而变化。于是,驱动器中的振动部的振幅越大,越容易检测。此外,反向电动势的值发生变化的周期随驱动器中的振动部的残留振动的频率而变化。于是,驱动器中的振动部的频率与反向电动势的频率相对应。在这里,共振频率指驱动器中的振动部,与和该振动部相接触的媒体之间处于共振状态的频率。
为了获得共振频率fs,对通过振动部和媒体处于共振状态时的反向电动势的测定而获得的波形进行傅里叶变换。由于驱动器的振动不仅伴随有单向的变形,而且伴随有挠曲,伸长等各种变形,这样其具有包含共振频率fs的各种频率。于是,通过对压电元件与媒体处于共振状态时的反向电动势的波形进行傅立叶变换,指定最主要的频率成分,判断共振频率fs。
频率fm指媒体的导纳值为最大或阻抗值为最小时的频率。如果为共振频率fs,则由于媒体的介电损耗或机械损失等,频率fm相对共振频率fs,产生微小的误差。但是,由于从实测的频率fm推导出共振频率fs是较费时间的,一般以频率fm代替共振频率。这里,通过将驱动器106的输出输入到传送电路中,该驱动器106便可至少检测声阻抗。
经实验证明,通过下述方法指定的共振频率之间基本上没有差别,该方法指通过测定媒体的阻抗特性或导纳特性,测定频率fm的方法,以及通过测定驱动器中的振动部的残留振动而造成的反向电动势,测定共振频率fs的方法。
驱动器106中的振动区域指构成振动板176中的,由开口161确定的腔162的部分。在液体容器的内部填充足够量的液体时,液体充满于腔162内部,振动区域与液体容器内的液体相接触。在液体容器内部,没有足够量的液体时,振动区域与残余于液体容器内部的腔中的液体相接触,或不与液体相接触,与气体或真空相接触。
在本发明的驱动器106中设置有腔162,由此,该腔可按照液体容器内的液体残余于驱动器106中的振动区域中的方式设置。其理由如下。
由于驱动器106在液体容器中的安装位置或安装角度,会产生下述情况,即尽管液体容器内的液体的液面位于驱动器的安装位置的下方,液体却附着于驱动器中的振动区域。在驱动器仅仅通过振动区域的液体的有无情况,来检测液体的有无时,附着于驱动器中的振动区域的液体妨碍正确地检测液体的有无情况。例如,在液面位于驱动器的安装位置的下方的状态时,如果随墨盒的往复移动等,液体容器产生晃动,液体产生波动,液滴附着于振动区域,则驱动器会误判定为在液体容器内部,液体有足够量。按照上述方式,通过采用具有腔的驱动器,便可防止误动作。
另外,如图21(E)所示,下述情况形成液体的有无的极限值,指液体容器内没有液体,在驱动器106中的腔162中残余有液体容器内的液体。即,在腔162的周边没有液体,腔内的液体少于该极限值,判定为没有墨,如果在腔162的周边具有液体,液体大于上述极限值情况下,判定为具有墨。比如,在将驱动器106安装于液体容器的侧壁上,判定液体容器内的液体位于驱动器的安装位置下方是没有墨的,另外判定液体容器内的液体位于驱动器的安装位置上方情况下是有墨的。通过按照上述方式设定极限值,即使在腔内的墨干燥,没有墨的情况下,仍判定为没有墨,在腔内的墨没有时,即使在因腔晃动等原因,墨再次附着于腔上的情况下,由于未超过极限值,从而仍可判定为没有墨。
下面,参照图20(A)~图20(C)和图21(A)~图21(F),对根据通过反向电动势的测定得出的,媒体与驱动器106中的振动部的共振频率,检测液体容器内的液体状态的动作和原理进行描述。通过上部电极端子168和下部电极端子170,分别对上部电极164和下部电极166施加电压。在压电层160中的,由上部电极164和下部电极166夹持的部分,产生电场。由于该电场的作用,压电层160发生变形。由于压电层160发生变形,振动板176中的振动区域以挠曲的方式振动。在压电层160发生变形之后,不久以挠曲方式的振动便残存于驱动器106中的振动部中。
残留振动指驱动器106中的振动部与媒体的自由振动。于是,通过使施加于压电层160上的电压变为脉冲波形或矩形波,这样在施加电压之后,可以很容易地使振动部与媒体处于共振状态。由于残留振动由驱动器106中的振动部产生,这样还使压电层160产生变形。因此,压电层160产生反向电动势。该反向电动势通过上部电极164,下部电极166,上部电极端子168和下部电极端子170检测。由于可通过所检测出的反向电动势,指定共振频率,这样可对液体容器内的液体消耗状态进行检测。
通常,共振频率fs表示为fs=1/(2×π×(M×C振动部)1/2(1)其中,M表示振动部的阻抗M振动部与附加阻抗M’的总和。C振动部表示振动部的顺量。
图20(C)为本实施例中的,腔中没有残余墨时的驱动器106的剖面图。图21(A)和图21(B)表示腔中没有残余墨时的驱动器106中的振动部与腔162的等效电路。
M振动部表示将振动部的厚度与振动部的密度的乘积值除以振动部的面积得出的值,更具体地说,如图21(A)所示,M振动部表示为M振动部=M压电层+M电极1+M电极2+M振动板(2)其中,M压电层表示将振动部中的压电层160的厚度与压电层160的密度的乘积值除以压电层160的面积得出的值。M电极1表示将振动部中的上部电极164的厚度与上部电极164的密度的乘积值除以上部电极164的面积得出的值。M电极2表示将振动部中的下部电极166的厚度与下部电极166的密度的乘积值除以下部电极166的面积得出的值。M振动板表示将振动部中的振动板176的厚度与振动板176的密度的乘积值除以振动板176的面积得出的值。但是,按照Mact可根据作为振动部的整体的厚度,密度和面积计算出的方式,在本实施例中,最好压电层160,上部电极164,下部电极166和振动板176中的振动区域中的相应面积中的,具有上述的大小关系的值的相互面积差是极小的。此外,在本实施例中,最好在压电层160,上部电极164和下部电极166中,作为它们的主要部分的圆形部分以外的部分相对上述主要部分来说,是很微小的而忽略不计。于是,在驱动器106中,M振动部为上部电极164,下部电极166,压电层160和振动板176中的振动区域的相应声质量的总和。另外,顺量C振动部指由上部电极164,下部电极166,压电层160和振动板176中的振动区域形成的部分的顺量。
此外,图21(A),图21(B),图21(D),图21(F)表示驱动器106中的振动部与腔162的等效电路,但是在这些等效电路中,C振动部表示驱动器106中的振动部的顺量。C压电层,C电极1,C电极2和C振动板分别表示振动部中的压电层160,上部电极164,下部电极166和振动板176的顺量。C振动部由下面的公式3表示。
1/C振动部=(1/C压电层)+(1/C电极1)+(1/C电极2)+(1/C振动板) (3)上述公式2和3还可按照图21(A),图21(B)所示的方式表示。
顺量C振动板表示通过对振动部的单位面积施加压力时的变形,可接纳媒体的体积。换言之,顺量C振动板还表示变形的容易程度。
图21(C)为下述驱动器106的剖面图,该场合指液体容器中填充有足够的液体,在驱动器106的振动区域的周边处充满液体。图21(C)中的M’最大值表示下述场合的附加声质量的最大值,指液体容器中填充有足够的液体,在驱动器106的振动区域的周边处充满液体。该M’最大值表示为
M’最大值=(π×ρ/(2×k3)×(2×(2×k×a)3/(3×π))/(π×a2)2(4)其中,a表示振动部的半径,ρ表示媒体的密度,k表示波数。
此外,公式4在驱动器106中的振动区域为半径a的圆形情况下成立。附加声质量M’为表示通过位于振动部附近的媒体的作用,振动部的质量看上去增加的量。
根据公式4可知,M’最大值随振动部的半径a,媒体的密度ρ而增加。
波数k表示为k=2×π×f振动部/c(5)其中,f振动部表示未接触到液体时的振动部的共振频率。c表示在媒体中传播的声音的速度。
图21(D)表示图21(C)的驱动器106中的振动部和腔162的等效电路,指液体容器中盛有足够的液体,在驱动器106中的振动区域的周边处充满有液体。
图21(E)表示下述驱动器106的剖面图,当液体容器中的液体消耗时,在驱动器106中的振动区域的周边处没有液体,在驱动器106中的腔162内部残余有液体。公式4表示,在液体容器中盛满液体情况下,根据墨的密度ρ等而确定的最大的声质量M’最大值。另一方面,在液体容器中的液体消耗,在腔162内部残余有液体,同时位于驱动器106中的振动区域的周边处的液体处变为气体或真空,上述M’表示为M’=ρ×t/S(6)其中t表示振动的媒体的厚度。S表示驱动器106中的振动区域的面积。如果该振动区域为半径a的圆形,S=π×a2。于是,附加声质量M’,按照公式4计算,指液体容器中盛有足够的液体,在驱动器106中的振动区域的周边处充满液体。附加声质量M’按照公式6计算,当液体消耗,在驱动器106振动区域的周边没有液体存在,在腔162内部残余有液体。
如图21(E)所示,附加声质量M’适合定为M’cav,当液体容器中的液体消耗时,在驱动器106中的振动区域的周边处没有液体,在驱动器106中的腔162内部残余有液体,其与驱动器106中的振动区域的周边处充满液体时的附加声质量M’最大值不同。
图21(F)表示图21(E)的驱动器106中的振动部和腔162的等效电路,当液体容器中的液体消耗时,在驱动器106中的振动区域的周边处没有液体,在驱动器106中的腔162内部残余有液体。
与媒体的状态有关的参数在公式6中,指媒体的密度ρ和媒体的厚度t。在液体容器中盛有足够的液体时,液体与驱动器106中的振动部相接触,在液体容器中未盛有足够的液体时,液体残余于腔的内部,或气体或真空与驱动器106中的振动部相接触。如果驱动器106的周边的液体消耗时,从图21(C)的M’最大值变为图21(E)的M’cav的过程中的附加声质量为M’var,则由于媒体的厚度t随液体容器内部的液体的接纳状态而发生变化,这样附加声质量M’var变化,共振频率也变化。于是,通过指定共振频率fs,可液体容器内部的液体的有无情况进行检测。因此,通过具体的共振频率可检测液体容器内液体的存在。按照图21(E)所示的方式,t=d,如果采用公式6表示M’cav,将腔的深度d代入公式6中的t,则M’cav表示为M’cav=ρ×d/S (7)另外,即使在媒体为种类相互不同的液体的情况下,由于成分的不同,其相应的密度ρ不同,这样附加声质量M’发生变化,共振频率也变化。于是,通过指定共振频率fs,便可检测液体的种类。此外,在仅仅墨或空气中的任何一个与驱动器106中的振动部相接触,而不混合的情况下,同样可通过公式4进行计算,检测M’的变化值。
图22(A)为表示墨盒内的墨量,与墨和振动部的共振频率fs之间的关系的曲线图。对作为液体的一个实施例的墨进行描述。纵轴表示共振频率fs,横轴表示墨量。当墨的成分一定时,随着墨残余量的降低,共振频率上升。
在墨容器中盛有足够的墨,在驱动器106中的振动区域的周边处充满墨时,其最大的附加声质量M’最大值为由公式4表示的值。在墨消耗时,腔162内残余有液体,同时在驱动器106中的振动区域的周边没有充满墨时,附加声质量M’var根据媒体的厚度t,通过公式6计算出。由于公式6中的t为与振动相关的媒体的厚度,这样通过使驱动器106中的腔162的d(参照图20(B))减小,即,使底板178的厚度减小到足够小,这样还可检测到墨慢慢消耗的过程(参照图21(C))。t墨为振动的墨的厚度,t墨-最大值为附加声质量M’最大值中的t墨。例如,在墨盒的底面,驱动器106相对墨的液面基本上水平设置。如果墨消耗,墨的液面从驱动器106,到达t墨-最大值的高度以下,则根据公式6,M’最大值慢慢地变化,根据公式1,共振频率fs慢慢地变化。于是,只要墨的液面在t的范围内,驱动器106便可慢慢地检测墨的消耗状态。
此外,通过使驱动器106中的振动区域的尺寸或长度增加,并且将其沿纵向设置,则随着墨的消耗造成的液面的位置,公式6中的S发生变化。于是,驱动器106还可检测墨慢慢消耗的过程。例如,在墨盒的侧壁上,驱动器106基本上与墨的液面相垂直地设置。如果墨消耗,墨的液面到达驱动器106中的振动区域,由于随着液位的降低,附加声质量M’减少,则根据公式(1),共振频率fs逐渐增加。于是,只要墨的液面在腔162的直径2a(图21(C))的范围内,驱动器106便可慢慢地检测墨的消耗状态。
图22(A)中的曲线X表示接纳墨箱内的墨的量,与墨和振动部的共振频率fs之间的关系,指驱动器106中的腔162足够浅情况下,或驱动器106中的振动区域足够大或长。可理解,不但墨箱内的墨的量减少,而且墨和振动部的共振频率fs慢慢地变化的状态,更具体地说,指可检测墨慢慢地消耗的过程,以及在驱动器106中的振动区域的周边处,其密度相互是不同的液体与气体均存在,并且受到振动。随着上述墨的逐渐消耗,在驱动器106中的振动区域的周边处受到振动的媒体中,液体减少,而气体增加。例如,在驱动器106相对墨的液面水平设置时,当t墨小于t墨-最大值时,受到驱动器106的振动的媒体同时包括墨和气体。于是,如果驱动器106中的振动区域的面积为S,通过气体附加声质量表示小于公式4中的M’最大值的状态,则下述公式成立,该公式为M’=M’空气+M’墨=ρ空气×t空气/S+ρ墨×t墨/S (8)其中,M’空气表示空气的声质量,M’墨表示墨的声质量。ρ空气表示空气的密度,ρ墨表示墨的密度。t空气表示受振动的空气的厚度,t墨表示受振动的墨的厚度。随着在受驱动器106中的振动区域周边处的振动的媒体中的墨的减少,气体的增加,在驱动器106相对墨的液面基本上水平设置,t空气和t墨变化。由此,M’var慢慢地减少,共振频率慢慢地增加。于是,可检测残余于墨箱内的墨的量或墨的消耗量。此外,在公式7中仅仅有液体的密度一项的原因在于假定相对液体的密度,空气的密度小到可忽略不计的程度。
在驱动器106基本上沿与液体的液面相垂直的方向设置时,将其视为驱动器106中的振动区域中的,受驱动器106的振动的媒体仅仅为墨的区域,以及受驱动器106的振动的媒体仅仅为气体的区域的并联的等效电路(图中未示出)。如果受驱动器106的振动的媒体仅仅为墨的区域的面积为S空气,受驱动器106的振动的媒体仅仅为气体的区域的面积为S墨,则下述公式成立,该公式为1/M’=1/M’空气+1/M’墨=S空气/(ρ空气×t空气)+S墨/(ρ墨×t墨) (9)还有,公式9适合用于在驱动器106的腔中没有墨。对于在驱动器106中的腔中有墨时,可通过公式7,公式8和公式9计算。
在底板178的厚度较厚,即腔162的深度d较深,d比较接近媒体的厚度t墨-最大值情况下,或在采用与液体容器的高度相比较,振动区域很小的驱动器106情况下,实际上相对检测墨慢慢地减少的过程的情况,可检测墨的液面是位于驱动器的安装位置的上方位置,还是下方位置。换言之,检测驱动器的振动区域内墨的有无。例如,图22(A)的曲线Y表示较小的圆形的振动区域情况下的墨箱内的墨的量,与墨和振动部的共振频率fs之间的关系。墨箱内的墨的液面在通过驱动器的安装位置的前后的墨量Q之间,墨和振动部的共振频率fs呈现急剧变化的状态。由此,可检测在墨箱内部,是否残余有超过规定量的墨。
利用驱动器106检测液体是否存在的方法要比通过软件计算墨消耗量的方法精确的多,因为驱动器106通过与液体直接接触而检测墨的存在。并且,通过导电性使用电极检测墨的存在,受到液体容器安装位置和墨的类型的影响,但是利用驱动器106检测液体存在的方法不受液体容器安装位置和墨的类型的影响。且由于液本的存在的振荡和检测可通过半日个驱动器106完成。相对而言于使用单个传感器对液体存在进行检测和振荡,安装在液体容器上的传感器的数目减少。因此,液体容器可以低价制造。另外,通过将压电层160的振动频率设定为超出音频,在驱动器106的运转中其所产生的声音减少。
图22(B)表示图22(A)中的曲线Y的墨的密度,与墨和振动部的共振频率fs之间的关系。作为液体,以墨作为实例。如图22(B)所示,如果墨的密度增加,由于附加声质量增加,共振频率fs减小。即,共振频率fs随墨的种类而不同。于是,通过测定共振频率fs,在再次填充墨时,可确认是否没有混入密度不同的墨。
因此,驱动器106可识别接纳其种类相互是不同的墨的墨箱。
下面进行详细描述,可正确地检测液体状态的条件,该场合指按照即使在液体容器内的液体用完的情况下,在腔162内部仍残余有墨的方式,设定腔的尺寸与形状。如果驱动器106可在液体充满腔162内部情况下,检测液体的状态,则即使在液体未充满腔162的内部的情况下,仍可检测液体的状态。
共振频率fs为声质量M的函数。声质量M为振动部的声质量M振动部与附加声质量M’的总和。附加声质量M’与液体的状态有关。附加声质量M’指表示由于振动部附近处的媒体的作用,振动部的质量看上去增加的量。即,指由于振动部的振动,看上去所吸收的媒体而造成的振动部的质量的增加的量。
于是,在M’cav大于公式4中的M’最大值情况下,看上去所吸收的媒体全部为残余于腔162内部的液体。由此,与在液体容器内部盛满液体的状态相同。由于M’没有发生变化,这样共振频率fs也不发生变化。因此,驱动器106不能够检测液体容器内的液体的状态。
另一方面,在M’cav小于公式4中的M’最大值情况下,看上去所吸收的媒体为残余于腔162内部的液体,以及液体容器内的气体或真空。由于此时,与在液体容器内部盛满液体的状态不同,M’发生变化,这样共振频率fs发生改变。于是,驱动器106可检测液体容器内的液体的状态。
即,在液体容器内的液体用完的状态,在驱动器106中的腔162的内部残余有液体情况下,驱动器106可准确地检测液体的状态的条件指M’cav小于M’最大值。还有,驱动器106可准确地检测液体的状态的条件M’最大值>M’cav与腔162的形状无关。
M’cav指其容积基本上等于腔162的容积的液体的质量。因此,根据M’最大值>M’cav这个不等式,驱动器106可准确地检测液体的状态的条件可表示为腔162的容积的条件。例如,如果圆形的腔162的开口161的半径由a表示,另外腔162的深度由d表示,则下述公式成立,该公式为M’最大值>ρ×d/πa2(10)如果展开公式10,则要求下述条件,该条件为a/d>3×π/8 (11)此外,只要在腔162的形状为圆形情况下,公式10,公式11便成立。如果采用非圆形情况下的M’最大值的公式,以公式10中的πa2代替其面积进行计算,则导出腔的宽度和长度等的值与深度之间的关系。
因此,如果采用下述驱动器106,该驱动器106具有作为满足公式11的开口161的半径a和腔的深度d的腔162,则即使在液体容器内的液体为用完的状态,并且在腔162内部残余有液体的情况下,仍可检测液体的状态,不会发生误动作。
由于附加声质量还影响声阻抗特性,这样测定因残留振动而在驱动器106中产生的反向电动势的方法也可至少检测声阻抗的变化。
此外,按照本实施例,测定在驱动器106产生振动,由于此后的残留振动而在驱动器106中产生的反向电动势。但是,下述情况不是必须的,该情况指由于驱动器106中的振动部因驱动电压造成的自振,对液体进行振动。即,由于振动部即使在本身不振荡的情况下,仍与和其相接触的范围内的液体一起振动,这样压电层160以挠曲方式发生变形。该残留振动使压电层160产生反向电动势,将该反向电动势传递给上部电极164和下部电极166。也可利用此现象,检测液体的状态。比如,在喷墨打印机中,也可利用下述驱动器中的振动部的周围的振动,检测墨箱或其内部的墨的状态,该驱动器中的振动部周围的振动是由于打印时的打印头的滑移而在滑架上作往复移动造成的振动产生的。
图23(A)和图23(B)表示使驱动器106振动后的,驱动器106中的残留振动的波形与残留振动的测定方法。可通过驱动器106振荡后的残留振动的频率变化,或振幅变化,检测墨液位相对墨盒内的驱动器106的安装位置标高的变化。在图23(A)和图23(B)中,纵轴表示驱动器106的残留振动所产生的反向电动势的电压,横轴表示时间。由于驱动器106的残留振动,如图23(A)和图23(B)所示,产生电压的模拟信号的波形。接着,将该模拟变换为与信号的频率相对应的数字化的数值。
在图23(A)和图23(B)所示的实例中,通过测定模拟信号中的第4~8次脉冲之间的4个脉冲所发生的时间,对墨的有无情况进行检测。
更具体地说,在驱动器106振荡后,计算使预先设定的规定的基准电压从低电压一侧横向切换到高电压一侧的次数。数字信号在第4~8次期间较高,通过规定的时钟脉冲,测定第4~8次之间的时间。
图23(A)为墨的液面位于驱动器106的安装位置标高上方时的波形。图23(B)为在驱动器106的安装位置标高下方时的波形。如果对图23(A)和图23(B)进行比较,便知道图23(A)中的,第4~8次之间的时间比图23(B)的长。换言之,随墨的有无变化,第4~8次的时间是不同的。利用该时间的差别,可检测墨的消耗状态。从模拟波形中的第4次开始计算是因为在驱动器106的振动稳定后,开始进行测定。从第4次进行计算的情况仅仅为一个实例,也可从任意的次数开始进行计算。
检测第4~8次之间的信号,通过规定的时钟脉冲,测定第4~8次之间的时间。由此,计算共振频率。最好时钟脉冲为下述时钟脉冲,其等于用于控制安装于墨盒上的半导体存储机构等的时钟。另外,测定至第8次的时间不是必须的,也可测定到任意的次数。在图23中,虽然测定第4~8次之间的时间,但是也可按照检测频率的电路结构,检测不同次数间隔内的时间。
比如,在墨的质量稳定,波峰的振幅的变动较小情况下,为了提高检测速度,也可通过检测第4~6次之间的时间,计算共振频率。此外,在墨的质量不稳定,脉冲的振幅的变动较大情况下,为了准确地检测残留振动,也可检测第4~12次之间的时间。
还有,作为另一个实施例,还可计算规定期限内的反向电动势的电压波形的波数(图中未示出)。同样通过该方法,可计算共振频率。更具体地说,在驱动器106振荡之后,在规定期间,数字信号较高,计算使规定的基准电压从低电压一侧朝向高电压一侧横向切换的次数。通过计算该次数,可对墨的有无情况进行检测。
再有,对图23(A)和图23(B)进行比较可知道,反向电动势的波形的振幅是不同的,该场合指墨盛满于墨盒内部情况下,以及在墨盒内部没有墨情况下。于是,即使在不计算共振频率,而测定反向电动势的波形的振幅的情况下,也可检测墨盒内的墨的消耗状态。更具体地说,比如,在图23(A)中的反向电动势的波形的顶点与图23(B)中的反向电动势的波形的顶点之间,设定基准电压。在驱动器106振荡后,在规定时间,数字信号较高,反向电动势的波形横切基准电压情况下,判定没有墨。在反向电动势的波形未横切基准电压情况下,判定具有墨。
图24表示驱动器106的制造方法。多个驱动器106(在图24的实例中,具有4个)成整体形成。通过将图24所示的多个驱动器的一体成形件,在相应的驱动器106处切断,制造图25所示的驱动器106。在图24所示的成整体形成的多个驱动器106中的相应压电元件为圆形情况下,通过将一体成形件在相应的驱动器106处切断,便可制造图20所示的驱动器106。通过整体形成多个驱动器106,可同时高效率地制造多个驱动器106,搬运时的操作容易进行。
驱动器106包括薄板或振动板176,底板178,弹性波发生机构或压电元件174,端子形成部件或上部电极端子168,以及端子形成部件或下部电极端子170。压电元件174包括压电振动板或压电层160,顶电极或上部电极164,以及底电极或下部电极166。在底板178的顶面上,形成振动板176,在振动板176的顶面,形成下部电极166。在下部电极166的顶面,形成压电层160,在压电层160的顶面,形成上部电极164。
在上部电极164和下部电极166的端部,形成上部电极端子168和下部电极端子170。4个驱动器106分别经过切断,而单独使用。
图25表示压电元件为矩形的驱动器106的一部分的剖面图。
图26表示图25所示的驱动器106的整体的剖面图。在底板178中的与压电元件174相对的面上,开设有开口178a。该开口178a由振动板176盖住。振动板176由氧化铝或氧化锆等的具有电绝缘性,并且可产生弹性变形的材料形成。压电元件174按照与开口178a相对的方式,形成于振动板176上。下部电极166按照从开口178a的区域,沿一个方向,即图26中的左方延伸的方式,形成于振动板176的外面上。上部电极164按照从开口178a的区域,沿与下部电极166相反的方向,即图26中的右方延伸的方式,形成于压电层160的外面上。上部电极端子168和下部电极端子170分别形成于辅助电极172和下部电极166的顶面上。下部电极端子170与下部电极166电气连通,上部电极端子168通过辅助电极172,与上部电极164导通,从而信号在压电元件与驱动器106的外部之间传递。上部电极端子168和下部电极端子170的高度大于对应于电极和压电层的,压电元件的高度。
图27表示图24所示的驱动器106的制造方法。首先,通过冲压或激光加工等方式,在新的浮板940中开设开口940a。上述新的浮板940在烧制后,形成底板178。该新的浮板940由陶瓷等材料形成。之后,在新的浮板940的外面,叠置新的浮板941。该新的浮板941在烧制后,形成振动板176。该新的浮板941由氧化锆等的材料形成。接着,在新的浮板941的外面,通过压膜涂敷等的方式,依次形成导电层942,压电层160,导电层944。该导电层942最终形成下部电极166,该导电层944最终形成上部电极164。接着,对所形成的新的浮板940,新的浮板941,导电层942,压电层160和导电层944进行干燥,然后进行烧制。间隔部件947,948从底部提高上部电极端子168和下部电极端子170的高度,使其高于压电元件。间隔部件947,948按照涂敷与新的浮板940,941相同的材料,或在新的板材941上叠置新的浮板的方式形成。由于从通过该间隔部件947,948,使作为贵金属的上部电极端子168和下部电极端子170的材料减少的方面来说,可减小上部电极端子168和下部电极端子170的厚度,这样可以精确地对上部电极端子168和下部电极端子170进行涂敷,另外可形成稳定的高度。
如果在形成导电层942时,其与导电层944的连接部944’,与间隔部件947和948同时形成,则容易形成上部电极端子168和下部电极端子170,或可将它们牢固固定。最后,在导电层942和导电层944的端部区域,形成上部电极端子168和下部电极端子170。在形成上部电极端子168和下部电极端子170时,上部电极端子168和下部电极端子170按照与压电层160电气连接的方式形成。
图28(A)~图28(C)表示适合采用本发明的墨盒的又一个实施例。图28(A)为本实施例的墨盒的底部的剖面图。本实施例的墨盒在接纳墨的容器1的底壁上开设有开口1c。该开口1c的底部通过驱动器650盖住。形成墨存留部。
图28(B)表示图28(A)所示的驱动器650和开口1c的具体结构的剖面图。图28(C)表示图28(B)所示的驱动器650,以及开口1c的平面图。驱动器650包括振动板72,以及安装于振动板72上的压电元件73。驱动器650以如下方式固定在容器1的底面上,该方式是压电元件73借助振动板72及底板71对着开口1c。该振动板72可发生弹性变形,具有耐墨性。
因压电元件73及振动板72的残留振动所产生的反向电动势的振幅及频率依照容器1的墨量而变化。在对着驱动器650的位置上形成开口1c,在开口1c内确保了最小量的墨。因而,预先测定由开口1c内确保的墨所决定的驱动器650的振动特性,就可确实地检测容器1的墨用尽。
图29(A)~图29(C)表示开口1c的另一个实施例。在图29(A),图29(B)和图29(C)中,左侧的图分别表示在开口1c内部没有墨K的状态,右侧的图分别表示在开口1c中残余有墨K的状态。在图28(A)~图28(C)的实施例中,开口1c的侧面作为垂直的壁形成。在图29(A)中,开口1c中的侧面1d沿垂直方向倾斜,从而该开口以朝向外侧扩大的方式打开。在图29(B)中,台阶部1e和1f形成于开口1c的侧面。位于上方的台阶部1f大于位于下方的台阶部1e。在图29(C)中,开口1c具有槽1g,该槽沿容易将墨K排出的方向,即供给口2的方向延伸。
如果采用图29(A)至图29(C)所示的开口1c的形状,可减少墨存留部的墨K的量。因此,由于使通过图20(A)~图20(C)和图21(A)~图21(F)所描述的M’cav小于M’max,这样可使墨用完时的驱动器650的振动特性与在容器1中残余有可打印的量的墨情况下有很大区别,从而可更加确实地检测到墨的用完。
图30为表示驱动器的又一个实施例的透视图。该驱动器660在构成驱动器660的底板或安装板72中的开口1c的外侧,具有衬垫76。在驱动器660的外周,形成有铆接孔77。驱动器660通过铆接孔77,以铆接方式与容器1固定。
图31(A)和图31(B)表示驱动器的另一个实施例的透视图。在本实施例中,驱动器670包括凹部形成底板80和压电元件82。在凹部形成底板80的一个面上,通过刻蚀等的方式,形成有凹部81,在底板80的另一个面上安装有压电元件82。凹部形成底板80中的凹部81的底部用作振动区域。
于是,驱动器670中的振动区域由凹部81的外缘限定。另外,驱动器670与图20的实施例的驱动器106中的,底板178和振动板176成整体形成的结构类似。因此,在制造墨盒时,可减少制造工序,降低成本。驱动器670采用可埋入开设于容器1中的开口1c中的尺寸。由此,凹部81还可用作腔。也可与图31(A)的实施例的驱动器670相同,使图20(A)~图20(C)的实施例的驱动器106按照可埋入开口1c中的方式形成。
图32为表示作为带有驱动器106的组件100而成整体形成的结构的透视图。该组件100安装于墨盒的容器1的规定位置。该组件100按照下述方式构成,该方式为通过检测墨液中的至少声阻抗的变化,检测容器1内的液体的消耗状态。本实施例的组件100包括用于将驱动器106安装于容器1上的液体容器安装部101。液体容器安装部101为下述结构,在该结构中,在平面基本呈矩形状的底座102上设置有圆柱部116,该圆柱部116接纳通过驱动信号而振荡的驱动器106。由于该组件100按照下述方式构成,该方式为当安装于墨盒上时,组件100中的驱动器106不能够从外部接触到,这样可防止从外部接触到驱动器106。此外,在圆柱部116的前端侧边缘顶部形成斜面,这样在安装到形成于墨盒中的凹部上时,容易实现嵌合。
图33表示图32所示的组件100的结构的分解图。组件100包括由树脂形成的液体容器安装部101,具有板110和凹部113的压电装置安装部105。此外,组件100具有导线104a和104b,驱动器106和膜108。最好,板110由不锈钢或不锈钢合金等的难于生锈的材料形成。包含于液体容器安装部101中的圆柱部116和底座102的中心部按照可接纳导线104a和104b的方式,形成有开口部114,按照可接纳驱动器106,膜108和板110的方式,形成有凹部113。驱动器106通过膜108与板110接合,板110和驱动器106固定于液体容器安装部101上。因此,导线104a和104b,驱动器106,膜108和板110作为整体安装于液体容器安装部101上。导线104a和104b分别与驱动器106中的上部电极和下部电极电气连接,将驱动信号传递给压电层,驱动器106所检测到的共振频率的信号传递给打印机等。驱动器106根据由导线104a和104b传递来的驱动信号,暂时进行振荡。驱动器106在振荡后,进行残留振动,通过该振动,产生反向电动势。此时,通过检测反向电动势的波形的振动周期,便可检测与液体容器内的液体的消耗状态相对应的共振频率。膜108将驱动器106和板110粘接,使驱动器106处于液体密封状态。最好膜108由聚烯烃等形成,通过热熔方式粘接。通过将驱动器106和板110与膜108相对粘接,局部粘接不匀性就会降低,振动板以外的部分不会产生振动,因此,在将驱动器106粘接到板110的前后共振频率的变化很小。
板110为圆形,底座102的开口部114呈圆筒状。驱动器106和膜108呈矩形状。导线104,驱动器106,膜108和板110也可相对底座102,是拆卸的。底座102,导线104,驱动器106,膜108和板110相对组件100的中心轴对称设置。此外,底座102,驱动器106,膜108和板110的中心基本上设置于组件110的中心轴上。
底座102的开口部114的面积大于驱动器106的振动区域的面积。在板110的中心处,在与驱动器106的振动部面对的位置,形成有开口112。如图20(A)~图20(C)及21(A)~图21(F)所示,在驱动器106中形成有腔162,该开口112和腔162共同形成墨存留部。最好板110的厚度小于开口112的直径,以便减小残余墨的影响。最好比如,开口112的深度为小于其直径的1/3的值。开口112为相对组件100的中心轴,基本保持对称的纯圆形。另外,开口112的面积大于驱动器106中的腔162的开口面积。开口112的截面的外缘可为锥状,也可为台阶状。组件100按照开口112朝向容器1的内侧的方式,安装于容器1的侧部,顶部或底部。如果墨消耗,驱动器106的周边没有墨,则由于驱动器106的共振频率变化较大,从而可检测墨液的位置变化。
图34表示组件的又一个实施例的透视图。本实施例的组件400在液体容器安装部401上,形成压电装置安装部405。该液体容器安装部401在其平面基本呈方形体中的正方形的底座402上,形成圆柱状的圆柱部403。此外,压电装置安装部405包括立设于圆柱部403上的板状部件406和凹部413。驱动器106设置于设在板状部件406的侧面的凹部413中。此外,板状部件406的前端按照规定角度,形成倒角,这样在安装到开设于墨盒中的孔中时,容易实现嵌合。
图35表示图34所示的组件400的结构的分解透视图。与图32所示的组件100相同,组件400包括液体容器安装部401和压电装置安装部405。液体容器安装部401具有底座402和圆柱部403,压电装置安装部405包括板状部件406和凹部413。驱动器106与板410嵌合,从而固定于凹部413中。组件400还包括导线404a和404b,驱动器106,以及膜408。
按照本实施例,板410呈矩形状,开设于板状部件406中的开口部414呈矩形状。导线404a和404b,驱动器106,膜408和板410也可按照相对底座以可拆卸的方式构成。驱动器106,膜408和板410按照相对通过开口部414的中心,沿与开口部414的平面相垂直的方向延伸的中心轴保持对称的方式设置。此外,驱动器106,膜408和板410的中心基本上设置于开口部414中的中心轴上。
开设于板410的中心处的开口412的面积大于驱动器106中的腔162的开口面积。驱动器106中的腔162和开口412共同形成墨存留部。板410的厚度小于开口412的直径,最好该厚度为小于比如,开口412的直径的1/3的值。开口412呈相对组件400的中心轴基本保持对称的纯圆形。开口412的截面的外缘可为锥状,也可为台阶状。组件400可按照开口412设置于容器1的内部的方式,安装于容器1的底部。由于驱动器106按照沿垂直的方向延伸的方式设置于容器1的内部,这样通过改变底座402的高度,使驱动器106设置于容器1内部的高度发生改变,这样很容易改变墨用完的时刻。
图36表示组件的还一个实施例。与图32所示的组件100相同,图36中的组件500包括具有底座502和圆柱部503的液体容器安装部501。另外,组件500还包括导线504a和504b,驱动器106,膜508和板510。包含于液体容器安装部501中的底座502的中心部按照可接纳导线504a和504b的方式,形成有开口部514,按照可接纳驱动器106,膜508和板510的方式,形成有凹部513。驱动器106通过板510,固定于压电装置安装部505上。于是,导线504a和504b,驱动器106,膜508和板510作为整体安装于液体容器安装部501上。本实施例的组件500在其平面基本呈方形的正方形的底座上,形成其顶部沿垂直方向倾斜的圆柱部503。驱动器106设置于沿垂直方向倾斜设置于该圆柱部503的顶面上的凹部513中。
组件500的前端倾斜,在该倾斜面上,安装有驱动器106。于是,如果将组件500安装于容器1的底部或侧部,则驱动器106相对容器1的垂直方向倾斜。最好组件500的前端的倾斜角度针对检测的性能,在30°至60°的范围内。
组件500按照驱动器106设置于容器1的内部的方式,安装于容器1的底部或侧部。在组件500安装于容器1的侧部情况下,驱动器106按照倾斜,同时朝向容器1的顶侧,底侧或横侧的方式,安装于容器1上。在组件500安装于容器1的底部情况下,最好驱动器106按照倾斜,同时朝向容器1的墨供给口一侧的方式,安装于容器1中。
图37为图32所示的组件100安装于容器1上时的墨容器的底部附近的剖面图。组件100按照穿过容器1的侧壁的方式安装。在容器1的侧壁与组件100之间的接合面上,设置有○形环365,从而确保组件100与容器1之间实现密封。最好,组件100按照通过○形环可实现密封的方式,包括在图32中所描述的圆柱部。通过将组件100的前端插入容器1的内部,这样借助板110中的开口112,容器1内部的墨与驱动器106相接触。由于在驱动器106的振动部的周围,因液体或气体的作用,驱动器106中的残留振动的共振频率是不同的,这样可采用组件100,检测墨的消耗状态。另外,不限于组件100,还可在容器1上安装图34所示的组件400,图36所示的组件500,或图38所示的组件700A和700B,以及成型结构件600,来检测墨的有无情况。
图38(A)示出模块体100另一实施例。图38(A)的模块体750A具有驱动器106和液体容器基座360。模块体750A以其前面与容器1侧壁的内表面为同一面地安装在容器1上。驱动器106包括压电层160,上部电极164,下部电极166,及振动板176。下部电极166形成在振动176的上面。下部电极166的上面形成压电层160,在压电层160的上面形成上部电极164。因而,压电层160是被上部电极164及下部电极166从上下夹着。压电层160,上部电极164和下部电极166形成压电元件。压电元件形成在振动板176上。压电元件及振动板176的振动区是驱动器实际振动的振动部。在容器1的侧壁上设开口385。因此,墨通过容器1上的开口385与振动板176接触。
下面,说明图38(A)所示的模块体750A的动作。上部电极164及下部电极160将驱动信号传递给压电层160,将压电层160检测到的共振频率信号传递给打印装置。压电层160根据上部电极164及下部电极166传递的驱动信号而发振,产生残留振动。因该残留振动,压电层160产生反向电动势。计算反向电动势波形的振动周期,通过检测此时的共振周期就能检测出有无墨。因模块体750A是以如下方式安装在容器1上,该方式是驱动器106以与驱动器106的振动部的压电元件侧相反的面,也就是说,在图38(A)中,只是振动板176与墨容器1内的墨接触,所以图38(A)的模块体750A是不需要图32至图36所示的导线104a,104b,404a,404b,504a,504b埋入电极模块体100内。因此,成形过程较为简单,而且,模块体750A的更换,回收成为可能。由于驱动器106受到基座360的保护,避免了驱动器106与外部接触。
图38(B)示出模块体100的另一个实施例。图38(B)的模块体750B具有驱动器106和基座360。模块体750B以其前面与容器1侧壁的内表面为同一面地安装在容器1上。驱动器106包括压电层160,上部电极164,下部电极166,及振动板176。下部电极166形成在振动176的上面。下部电极166的上面形成压电层160,在压电层160的上面形成上部电极164。因而,压电层160是被上部电极164及下部电极166从上下夹着。压电层160,上部电极164和下部电极166形成压电元件。压电元件形成在振动板176上。压电元件及振动板176的振动区是驱动器实际振动的振动部。在容器1的侧壁上设薄壁部380。模块体750B是以如下方式安装在容器1上,该方式是驱动器106以与驱动器106的振动部的压电元件侧相反的面,也就是说,在图38(B)中,只是振动板176与墨容器1的薄壁部380接触。因此,驱动器106与薄壁部380一起进行残留振动。
下面,说明图38(B)所示的模块体750B的动作。上部电极164及下部电极166将驱动信号传递给压电层160,将压电层160检测到的共振频率信号传递给打印装置。压电层160根据上部电极164及下部电极166传递的驱动信号而发振,在共振周期进行振动。因振动板176与容器1的薄壁部380接触,所以驱动器106的振动部与薄壁部380一起进行残留振动。由于薄壁部380的容器1的内表面侧与墨接触,因此,驱动器106与薄壁部380一起进行残振动时,该残留振动的共振频率及振幅随墨残余量变化。因该残留振动,压电层160产生反向电动势。计算反向电动势波形的振动周期,通过检测此时的共振周期就能检测出墨残量。
图38(B)的模块体750B是不需要如图32至图36所示那样将电极导线104a,104b,404a,404b,504a,504b埋入模块体100内。因此,成形过程较为简单,而且,模块体750A的更换,回收成为可能。由于驱动器106受到基座360的保护,避免了驱动器106与外部接触。
图39为组件700B安装于容器1上时的墨容器的剖面图。在本实施例中,作为安装结构件的一个实例,采用组件700B。该组件700B按照液体容器安装部360朝向容器1的内部突出的方式,安装于容器1上。在安装板350中,开设有开口370,开口370与驱动器106中的振动部处于同一面上。另外,在组件700B的底壁中,开设有孔382,形成有压电装置安装部363。驱动器106按照将其中的一个孔382盖住的方式设置。因此,墨通过压电装置安装部363中的孔382和安装板350中的开口370,与振动板176相接触。压电装置安装部363中的孔382和安装板350中的开口370共同形成墨存留部。压电装置安装部363和驱动器106通过安装板350和膜部件固定。在液体容器安装部360和容器1之间的连接部上,设置有密封结构372。该密封结构372可由合成树脂等的塑性材料形成,也可由○形环形成。图39(A)中的组件700B与容器1是各自独立的,但是如图39(B)所示,也可通过容器1的局部,形成组件700B的压电装置安装部。
图39(A)的模块体700B无需将图32至图36所示的导线埋入到组件中,于是,使成形步骤简化,此外,要更换组件700B,从而,可进行再循环。
在墨盒晃动时,墨附着于容器1的顶面或侧面上,由于悬挂于容器1的顶面或侧面上的墨与驱动器106相接触,从而驱动器106可能产生误动作。但是,由于组件700B中的液体容器安装部360在容器1的内部突出,这样因悬挂于容器1的顶面或侧面上的墨的作用,驱动器106不会产生误动作。
此外,在图39(A)的实施例中,仅仅振动板176和安装板350的局部按照与容器1内部的墨相接触的方式,安装于容器1上。在图39(A)的实施例中,无需将图32至图36所示的导线104a,104b,404a,404b,504a,504b埋入电极的组件中。于是,使成形步骤简化。此外,可更换组件106,从而可进行再循环。
图39(B)为将驱动器106安装于容器1上时的墨容器的剖面图。在图39(B)的实施例的墨盒中,防护部件361按照独立于驱动器106的方式,安装于容器1上。于是,防护部件361和驱动器106作为组件而整体形成,但是防护部件361可按照使用者的手无法接触到驱动器106的方式提供保护。设置于驱动器106的前面的孔380开设于容器1的侧壁上。驱动器106包括压电层106,上部电极164,下部电极166,振动板176和安装板350。在安装板350的上面,形成振动板176,在振动板176的上面,形成下部电极166。在下部电极166的顶面,形成压电层160,在压电层160的顶面,形成上部电极1 64。于是,压电层160的主要部分按照下述方式形成,该方式为其由上部电极164的主要部分和下部电极166的主要部分,沿上下夹持住。压电元件由作为压电层160,上部电极164和下部电极166中的相应主要部分的圆形部分形成。压电元件形成于振动板176上。压电元件和振动板176的振动区域为驱动器实际上产生振动的振动部。在安装板350上,开设有开口370。另外,在容器1的侧壁中,开设有孔380。于是,墨通过容器1中的孔380和安装板350中的开口370,与振动板176相接触。容器1中的孔380和安装板350中的开口370共同形成墨存留部。此外,由于驱动器106由防护部件361防护起来,这样可避免从外部接触到驱动器106。另外,也可采用图20中的底板178,来代替图39(A)和39(B)的实施例中的安装板350。
图39(C)表示包括具有驱动器106的成型结构件600的实施例。在本实施例中,作为安装结构件的一个实例,采用成型结构件600。该成型结构件600包括驱动器106和成型部364。该驱动器106与成型部364成整体形成。成型部364由硅树脂等的塑性材料形成。成型部364的内部具有导线362。成型部364按照具有从驱动器106延伸的两根脚的方式形成。为了将成型部364与容器1以液体密封的方式固定,成型部364中的两根脚的端部呈半球状。该成型部364按照驱动器106在容器1的内部突出的方式,安装于容器1上,驱动器106中的振动部与容器1内的墨相接触。该成型部364避免驱动器106中的上部电极164,压电层160和下部电极166受到墨的影响。
由于图39中的成型结构件600在成型部364与容器1之间,不必形成密封结构372,这样墨难于从容器1中泄漏。还有,由于采用成型结构件600不相对容器1的外部突出的形式,这样可避免从外部接触到驱动器106。在墨盒晃动时,墨附着于容器1的顶部或侧面,悬挂于容器1的顶部或侧面上的墨与驱动器106相接触,这样驱动器106可能会产生误动作。由于成型结构件600中的成型部364在容器1的内部突出,这样在悬挂于容器1的顶面或侧面上的墨的作用下,驱动器106不会产生误动作。
图40表示采用图20所示的驱动器106的墨盒和喷墨打印机的实施例。多个墨盒180安装于喷墨打印机中,该喷墨打印机具有与相应的墨盒180相对应的多个墨导入部182和保持架184。多个墨盒180接纳分别不同种类的,比如不同颜色的墨。在多个墨盒180的底面,安装有至少作为声阻抗检测机构的驱动器106。通过将驱动器106安装于墨盒180中,便可检测墨盒180内部的墨的残余量。
图41表示喷墨打印机中的打印头部周边的具体结构。该喷墨打印机包括墨导入部182,保持架184,打印头板186和喷嘴板188。在喷嘴板188中,形成有多个喷射墨的喷嘴190。墨导入部182包括空气供给口181和墨导入口183。空气供给口181向墨盒180供给空气。墨导入口183从墨盒180,送入墨。墨盒180包括空气导入口185和墨供给口187。空气导入口185从墨导入部182中的空气供给口181,送入空气。墨供给口187向墨导入部182中的墨导入口183供给墨。由于墨盒180从墨导入部182送入空气,这样便促使墨从墨盒180,供给到墨导入部182。保持架184使从墨盒180经导入部182供给的墨连接打印头板186。
图42表示图41所示的墨盒180的又一个实施例。在图42(A)的墨盒180A中,驱动器106按照沿垂直方向倾斜的方式形成于底面194a上。在墨盒180中的容器194的内部,容器194中的距内部底面的规定高度的,与驱动器106面对的位置上,设置有防波壁192。由于驱动器106相对容器194的垂直方向倾斜地设置,使墨的清扫性良好。
在驱动器106与防波壁192之间,形成充满墨的间隙。另外,防波壁192与驱动器106之间的间隙按照不会因毛细管力的作用而保持墨的方式间隔开。当墨容器194受到横向晃动时,在墨容器194的内部,墨产生波动,由于该冲击,气体或气泡为驱动器106检测到,驱动器106可能会产生误动作。通过设置防波壁192,便可防止驱动器106附近处的墨产生波动,可防止驱动器106的误动作。
图42中的墨盒180B中的驱动器106安装在墨容器194的供给口的侧壁上。如果驱动器可安装在墨供给口187附近,则驱动器106也可安装于墨容器194的侧壁或底面上。另外,最好驱动器106安装于墨容器194中的宽度方向的中心处。由于墨通过墨供给口187而供向外部,这样通过将驱动器106设置于墨供给口187的附近,确实直到接近墨用完的时刻,使墨与驱动器106相接触。于是,驱动器106可确实检测接近墨用完的时刻。
此外,通过将驱动器106设置于墨供给口187的附近,在墨容器安装于滑架上的墨盒保持架上时,确实使驱动器106定位于滑架上的接点处。其理由是,墨容器与滑架之间的连接中的最重要的是墨供给口与供给针之间的确实连接。这是因为如果稍有偏差,则会损伤供给针的前端,或破坏○形环等的密封结构,产生漏墨情况。为了防止这样的问题,通常,喷墨打印机具有下述特殊的结构,该结构在将墨容器安装于滑架上时,可使墨容器对应于正确的位置。由此,通过将驱动器设置于供给口附近,则可使驱动器106确实地实现对位。再有,通过将驱动器106安装于墨容器194中的宽度方向的中心,可更加确实地使其实现对位。这是因为在安装墨水容器到保持架上时,在该墨容器以宽度方向的中心线作为中心轴线而晃动情况下,该墨容器的晃动是极其微小的。
图43表示墨盒180的再一个实施例。图43(A)为墨盒180C的剖面图,图43(B)为将图43(A)所示的墨盒180C的侧壁194b放大的剖面图,图43(C)为从其正面看到的透视图。墨盒180C在同一电路主板610上,形成有半导体存储机构7和驱动器106。如图43(A)所示,防波壁1192x按照与驱动器106相对的方式,设置于容器194的内部。如图43(B)、(C)所示,半导体存储机构7形成于电路主板610的上方,驱动器106形成于同一电路主板610中的,半导体存储机构7的下方。异型的○形环614按照将驱动器106的周围包围的方式,装设于侧壁194b上。在侧壁194b上形成有多个铆接部616,该铆接部616用于将电路主板610与墨的容器194连接。通过对铆接部616进行铆接,将电路主板610与墨的容器194连接,将异型的○形环614压靠于电路主板610上,则可使驱动器106中的振动区域与墨相接触,同时可使墨盒的外部和内部保持在密封状态。
在半导体存储机构7和半导体存储机构7附近处,形成有端子612。该端子612使信号在半导体存储机构7与喷墨打印机等的外部之间进行传递。半导体存储机构7也可由比如,EEPROM等的可改写的半导体存储器构成。由于半导体存储机构7与驱动器106形成于同一电路主板610上,这样在将驱动器106和半导体存储机构7安装于墨盒180C上时,通过一个安装步骤便完成。另外,使墨盒180C的制造时和再循环时的作业步骤简化。还有,由于部件的数量减少,这样可降低墨盒180C的制造成本。
驱动器106检测容器194内的墨的消耗状态。半导体存储机构7存储驱动器106所检测到的墨残余量等的墨的信息。即,半导体存储机构7存储下述信息,该信息与进行检测时所采用的墨和墨盒的特性等的特性参数有关。半导体存储机构7预先将容器194内的墨盛满时的,即墨充满于容器194时的,或墨用完时的,即容器194内的墨消耗完时的共振频率作为特性参数的一个进行存储。容器194内的墨处于盛满或用完状态的共振频率也可在容器初次安装于喷墨打印机上时进行存储。此外,容器194内的墨处于盛满或用完状态的共振频率还可在容器194的制造过程中进行存储。由于通过预先将容器194内的墨处于盛满或用完时的共振频率存储于半导体存储机构7中,在喷墨打印机一侧读取共振频率的数据,可对检测墨残余量进行检测时的误差进行修正,这样可正确地检测到墨残余量减少到基准值的情况。
图44示出墨盒180的另一实施例。图44(A)所示的墨盒180D在墨容器194的侧壁194b上安装着多个驱动器106。最好如图24所示的、一体成形的多个驱动器106作为这些驱动器106。多个驱动器106上下间隔在配置在侧壁194b上。由于将多个驱动器106上下间隔地配置在侧壁194b上,因此可阶段性地检测墨残量。
图44(B)所示的墨盒180E中,驱动器606安装于墨容器194中的侧壁194b上。通过沿垂直方向较长的驱动器606,可连续地检测墨容器194内部的墨的残余量变化。最好该驱动器606的长度大于侧壁194b的高度的一半。在图43(B)中,驱动器606具有基本上从侧壁194b的顶端附近延伸至其底端附近的长度。
在图44(C)所示的墨盒180F中,与图44(A)所示的墨盒180D的一样,多个驱动器106安装于墨容器194中的侧壁194b上,在多个驱动器106的相对面上按规定间隔设置有防波壁192。最好把如图24所示的、一体成形的多个驱动器用作为这些驱动器106。在驱动器106与防波壁192之间,形成有墨充满的间隙。此外,防波壁192与驱动器106之间的间隙,按照不会因毛细管力而保持墨的方式间隔开。当墨容器194横向晃动时,由于该横向晃动,在墨容器194的内部产生墨的波动,由于该冲击,气体或气泡为驱动器106所检测到,驱动器106可能会产生误动作。如本发明所示,通过设置防波壁192,可防止驱动器106附近处的墨产生波动,可防止驱动器106产生误动作。再有,防波壁192可阻止因晃动墨产生的气泡侵入驱动器106的情况。
图45表示墨盒180的又一个实施例。图45(A)中的墨盒180G具有从墨容器194上面194C延伸到下面的多个隔壁212。由于相应的隔壁212的底端与墨容器194的底面之间按照规定的间距间隔开,这样墨容器194的底部是连通的。墨盒180G包括由多个隔壁212分别分隔成的多个接纳室213。该多个接纳室213的底部相互是连通的。在多个接纳室213中的每个中,驱动器106安装于墨容器194的上面194C上。最好把如图24所示的、一体成形的多个驱动器用作为这些驱动器106。驱动器106基本上设置于容器194中的接纳室213的顶面194C的中间部。接纳室213的容积在墨供给口187一侧为最大,随着从墨供给口187朝向墨盒180G的里侧的不断远离,接纳室213的容积逐渐减小。每个驱动器间的空间在供墨口187处是最宽的,由于从供墨口187至墨盒180G内部的距离增加,该空间变窄。由于墨从墨供给口187排出,空气从空气导入口185进入,这样墨从墨供给口187一侧的接纳室213,朝向墨盒180G里侧的接纳室213,实现消耗。比如,在最靠近墨供给口187的接纳室213中的墨消耗,最靠近接纳室213中的墨的液位下降期间,在其它的接纳室213中,墨是盛满的。如果最靠近墨供给口187的接纳室213中的墨消耗完,空气侵入从墨供给口187开始计的第2个接纳室213,该第2个接纳室213内的墨开始消耗,该第2个接纳室213中的墨的液位开始下降。此刻,在从墨供给口187开始计的第3个或以后的接纳室213中,墨是盛满的。按照上述方式,墨依次在从靠近墨供给口187的接纳室213,到较远的接纳室213中进行消耗。
这样,由于把驱动器106按间隔配置在各个容纳室213上,在墨容器194的上面194C上,驱动器106能够阶段性检测墨量的减少。此外,由于容纳室213的容量从供墨口187向容纳室深处慢慢地变小,因此,驱动器106检测墨量减少的时间间隔也慢慢变短,在接近墨用尽程度检测频率增高。
图45(B)的墨盒180H具有一个隔壁212,该隔壁212从墨容器194的上面194c延伸到下方。由于隔壁212的下端和墨容器194的底面相隔一预定空间,因此墨容器194的底部连通。墨盒180H具有由隔壁212分隔的2个容纳室213a和213b。容纳室213a和213b的底部彼此连通。供墨口187侧的容纳室213a的容量比从供墨口187看位于内侧的容纳室213b的容量大。最好,容纳室213b的容量比容纳室213a的容量的一半小。
容纳室213b的上面194c装着驱动器106。此外,在容纳室213b内形成槽式缓冲区214,该缓冲区214收集墨盒180H制造时进入的气泡。在图45(B)中,缓冲区214是一条从墨容器194的侧壁194b向上方延伸的槽。由于缓冲区214收集侵入墨容纳室213b的气泡,因此,能够防止因气泡造成的驱动器106检测墨用尽的误动作。由于把驱动器106设置在容纳室213b的上面194c上,因此,相对于从检测出墨接近用完之后,至墨完全用尽状态的墨量,采用由计点器控制的与容纳室213a内的墨消耗状态对应的修正,就能将墨消耗至最后。而且,以改变隔壁212的长度或间隔等的方式调节容纳室213b的容量,就能够改变检测出墨接近用完后的可继续消耗的墨量。
图45(C)示出在图45(B)的墨盒180H的容纳室213b内填充多孔质材料216的结构。多孔质材料216从容纳室213内的上面至下面的整个空间内完全充满。多孔质材料216与驱动器106接触。当墨容器翻倒时,其在滑架上的往复运动中,空气将进入墨容纳室213b中,这有可能引起驱动器106的误动作。但是,如果具备了多孔质材料216,由其吸纳空气,从而防止了空气流入驱动器106中。因多孔质材料216保持墨,所以能够防止因摇动墨容器,墨粘在了驱动器106上,造成驱动器106误将无墨检测为有墨。最好多孔质材料216设置在容量最小的容纳室213内。另外,通过把驱动器216设置在容纳室213b的上面194c,就可以对从检测出墨接近用完至墨完全用尽状态的墨量进行修正(补正),将墨消耗至最后。此外,以改变隔壁212的长度或间隔等的方式调节容纳室213b的容量,就能够改变检测出墨接近用完后的可继续消耗的墨量。
图45(D)示出墨盒180J,墨盒内的多孔质材料216是由孔径不同的两种多孔质材料216a及216b构成。多孔质材料216a配置在多孔质材料216b上方。上侧多孔质材料216a的孔径大于下侧多孔质材料216b的孔径。或者,多孔质材料216a采用亲液性比多孔质材料216b低的材料形成。孔径小的多孔质材料216a的毛细管力比孔径大的多孔质材料216a的大,因此,容纳室213b内的墨汇集在下侧的多孔质材料216b内并由其保持。因而,不会出现空气到达驱动器106初次检测出无墨,而墨再次到达驱动器106又检测出有墨的现象。因墨被吸收在远离驱动器106侧的多孔质材料216b,所以,驱动器106附近的墨的流动性较好,检测有无墨的声阻抗变化的变化量较大。因把驱动器106设在容纳室213b的上面194c,就可以对从检测出墨接近用完至墨完全用尽状态的墨量进行修正(补正),将墨消耗至最后。此外,以改变隔壁212的长度或间隔等的方式调节容纳室213b的容量,就能够改变检测出墨接近用完后的可继续消耗的墨量。
图46示出墨盒180K的断面图,该墨盒是图45(C)所示的墨盒180l的另一实施例。图46所示的墨盒180K的多孔质材料216是按下述方式设计的,即多孔质材料216的下部水平方向的断面积朝着墨容器194的底面方向被慢慢压缩变小,孔径也变小。图46(A)的墨盒180K的侧壁设置了肋条,以便于将多孔质材料216的孔径压缩变小。因多孔质材料216下部受压,孔径变小,所以墨汇集在多孔质材料216下部并保留着。由远离驱动器106侧的多孔质材料216下部吸收墨,驱动器106附近的墨流动性较好,检测墨有无的声阻抗的变化的变化量增大。因而,虽然墨波动,其会粘到装于墨盒180K上面的驱动器106上,但能防止驱动器106误将无墨检测成有墨。
另一方面,图46(B)及图46(C)的墨盒180L,因为多孔质材料216下部被压缩,其下部水平方向的断面积在墨容器194的宽度方向上向着墨容器194的底面慢慢变小,容纳室水平方向的断面积慢慢地朝着墨容器194的底面方向慢慢变小。因多孔质材料216下部受压,孔径变小,所以墨汇集在多孔质材料216下部并保留着。由远离驱动器106侧的多孔质材料216下部吸收墨,驱动器106附近的墨流动性较好,检测墨有无的声阻抗的变化的变化量增大。因而,虽然墨波动,其会粘到装于墨盒180K上面的驱动器106上,但能防止驱动器106误将无墨检测成有墨。
图47示出使用驱动器106的墨盒的另一实施例。图47(A)的墨盒220A具有第一隔壁222,该隔壁222从墨盒220A下面向下方延伸。在第一隔壁222的下端和墨盒220A的底面之间保留一个间隔空间,墨通过墨盒220A的底面流入供墨口230。在供墨口230侧靠近第一隔壁222处,形成了第二隔壁224,该隔壁224从墨盒220A的底面向上方延伸。在第二隔壁224上端和墨盒220A之间分隔出一个空间,墨通过墨盒220A上面流向供墨口230。
从供墨口230处看,由第一隔壁222在第一隔壁222的里侧形成第一容纳室225a。仍从供墨口230处看,由第二隔壁224于第二隔壁224的外侧形成第二容纳室225b。第一容纳室225a的容量比第二容纳室225b的容量大。在第一隔壁222及第二隔壁224之间设置了只起毛细管作用的间隔,而形成了毛细管路227。因而,第一容纳室225a的墨在毛细管路227的毛细管力作用下,汇集于毛细管路227内。因此,能够防止气体和气泡混入第二容纳室225b内。另外,第二容纳室225b内的水位稳定地慢慢下降。从供墨口230看,由于第一容纳室225a位于第二容纳室225b的里侧,因此,在第一容纳室225a的墨消耗掉后,消耗第二容纳室225b内的墨。
驱动器106安装在墨盒220A的供墨口230侧的侧壁上,即第二容纳室225b的供墨口230侧的侧壁上。驱动器106检测第二容纳室225b内的墨消耗状态。由于把驱动器106装在第二容纳室225b的侧壁上,能够稳定地检测墨接近用完时的墨残量。此外,通过改变驱动器106在第二容纳室225b上的安装高度,就能够自由地设定任意时间点上的墨残量至墨用尽的过程。因由毛细管路227从第一容纳室225a向第二容纳室225b供给墨,驱动器106不受墨盒220A横摇而造成墨横摇的影响,驱动器106仍可正确地测定墨残量。而且,由于毛细管路227保持墨,因此,防止了墨从第二容纳室225b逆流到第一容纳室225a内。
墨盒220A的上面设置逆止阀228。因该逆止阀228的作用,可防止墨盒220A横摇时墨泄出到墨盒220A外部。因把逆止阀228设置在墨盒220A的上面,就能够防止墨从墨盒220A中蒸发掉。随着墨盒220A内的墨消耗,墨盒220A内的负压超过逆止阀228的压力时,逆止阀228打开,空气被吸入墨盒220A,之后关闭,将墨盒220A内的压力保持一定。
图47(C)及图47(D)示出逆止阀228的详细断面。图47(C)的逆止阀228具有阀232,该阀232具有橡胶制的阀圈232a。在墨盒220上对着阀圈232a设置了与墨盒220外部相通的气孔233。气孔233由阀圈232a开关。逆止阀228当墨盒220内的墨减少,墨盒220内的负压超过逆止阀228的压力时,其阀圈232a向墨盒220内侧张开,外部空气流入墨盒220内。图47(D)的逆止阀228具有橡胶制的阀圈232和弹簧235。当墨盒220内的负压超过逆阀228的压力时,逆止阀228的阀圈232受弹簧作用而打开,外部空气被吸入墨盒220内,之后关闭,将墨盒220内压力保持一定。
图47(B)的墨盒220B是在第一容纳室225a内配置多孔质材料242替代在图47的墨盒220A上设置的逆止阀。多孔质材料242保持墨盒220B内的墨,同时,防止墨盒220B横摇时墨流向墨盒220B外部。
以上,关于装在滑架上的、与滑架分体的墨盒,在墨盒或滑架上安装驱动器106上的情况进行了描述,但也可以把驱动器106安装在与滑架一体的、并与滑架一起安装在喷墨打印机上的墨箱上。此外,也可将驱动器106安装在如下的墨箱上,该墨箱是与滑架分体,通过管子向滑架供墨的封密滑架式墨箱。更进一步地,可以将本发明的驱动器安装在与打印头和墨容器制成一体且可替换的墨盒上。
上面,说明了本实施例的带墨消耗检测功能的各种墨盒。在这些墨盒中,是利用压电元件来检测墨的消耗。这些构成中,揭示了带空腔的液体检测用装置,即驱动器。典型构成如图20所示。在其它实施例中,揭示了压电装置和安装结构体为一体的安装模块。代表例如图32所示。如前所述,因使用安装模块体,保护了压电装置。而因使用了安装模块体,使压电装置的安装更为容易。在本实施例中,特别揭示了带空腔的安装模块体。在这些墨盒中,利用压电装置检测墨消耗。在这些构成中,揭示了带空腔的墨盒。该实施例典型的构成如图28所示。通过设置开口空腔可得以下的优点。这些类型的液体检测用装置具有以下的优点。
(1)再参照图20,驱动器106具有作为基材的底板178。在底板178上形成压电元件160,164,166。底板178的空腔162设置在与压电元件相对的位置上。通过空腔162,在压电元件和容器内部之间传递振动。关于其它实施例,图32示出组装好的安装模块体100。图33示出分解状态的安装模块体100。驱动器106(压电装置)和安装结构体为一体构造。安装模块体100安装在墨盒上。在为安装结构体局部的板110上设置开口112。开口112相当于本发明的开口空腔(以下适当时开口将开口称为开口空腔)。开口112与驱动器106相对,且配置在从驱动器106向着墨内部的位置上。通过空腔112在压电装置和容器内部间传递振动。墨消耗时,液面下降,露出开口112。此时,在开口112内残余一定量的墨,并被保持住。此外,图28所示的另外的实施例中,墨盒容器1具有底面1a。在底面1a下侧上装着作为压电装置的驱动器650。容器1在与驱动器650的压电元件73相对的位置上具有开口1c(以下称为空腔)。即,空腔1c形成在从压电元件73向着容器内部的位置上,并与容器内部连通。通过空腔在压电元件和容器内部间传递振动。当墨消耗时,液面下降,空腔162露出。此时,空腔162内残余一定墨,并被保持住。墨保持量由空腔162的形状和设置角度及墨的粘度决定。与该一定量墨相对应的声阻抗可以通过测定预先求得。根据是否检测到这样的声阻抗,就可确实地掌握墨消耗。
如前所述,在检测墨消耗时,可利用压电元件的残留振动状态。压电元件在振动后进入残留振动状态。残留振动状态,特别是其共振频率对应声阻抗的变化及墨消耗状态。根据是否检测到空腔162保持少量墨时的残留振动状态,就可确实地检测出墨消耗。另外,根据是否检测到空腔112保持少量墨时的残留振动状态,就可确实地检测出墨消耗。根据本实施例,如前所述,因设置了空腔,能够避免出现因墨波浪引起的误检测。从开始就附着墨,不存在波浪造成墨附着,因此检测结果不易受墨影响。
在本实施例中,因设置了空腔162,压电元件和墨距离缩短。具体地,压电元件174和墨水间的振动板176比底板178薄得多。主要对压电元件的残留振动造成影响的只是元件附近的少量墨。这些少量墨因设置了空腔162而存在于压电元件附近,并与振动板接触。这样,随墨消耗而引起的残留振动的变化非常显著,因此能可靠地检测墨消耗。
因设置空腔,驱动器106和墨的距离变狭。不借助板110就可在驱动器106和墨间传递振动。在此,主要影响压电装置的残留振动的因素,是存在于压电元件附件的少量墨因设置了空腔162而存在于压电元件附近,并与振动板接触。这样,随墨消耗而引起的残留振动的变化非常显著,因此能可靠地检测墨消耗。
空腔可以不穿通板110。此时,由板110的凹部构成空腔。
此外,在本实施例中,局部设置空腔,由周围的部件来确保墨的密封性。因此能够有效地保护驱动器106,特别是其压电元件免受导电墨的影响。
因设置空腔1c,驱动器650(特别是压电元件73)和墨的距离变近。在图28的例子中,容器壁不是位于驱动器650和墨之间。振动板72比底板71及容器壁薄。
这里,说明了以声阻抗为基础的墨消耗检测,特别是利用残留振动的检测。但是,使用驱动器,利用弹性波及其反射波也可检测墨消耗。可以求出直到反射波返回的时间。也可适用其它的原理。以下的说明也是一样。
(2)空腔的形状是在规定的液体状态下保持墨的形状。在检测目标的墨消耗状态下,也能够保持墨地设定空腔形状。以与此时的墨量对应的残留振动为基准,的确能够检测墨是否消耗掉。
空腔内无残余墨本来应该容易检测到墨消耗。但是,出现如前所述的墨附着问题。当在空腔内残余或不残余墨时,即墨残余状态有偏差时,该偏差完全可能导致检测误差。在此情况下,最好如上的空腔保持墨。为了达到该目的,例如,使空腔的深度为能够防止墨全部流出的规定深度就行。在本实施例中,由于底板具有适当的厚度,因此,空腔也就确保了必要的深度。
(3)在本实施例中,空腔162贯穿作为基材的底板178。在图28所示的实施例中,空腔1c贯穿底面1a的容器壁。由于空腔162的贯通,墨的状态更可靠地传递给压电元件。在压电元件73和容器壁之间设置作为中间部件的振动板72。振动板72与压电装置一起振动,且密闭空腔1c。另一方面,在压电元件和底板178之间设置作为中间部件的振动板176。振动板176与压电装置一起振动,且密闭空腔162。因而,根据本实施例,既确保了墨密封状态,又能可靠检测墨消耗状态。
作为本实施例的变形例,空腔也可以不贯通底板。即,空腔由底板上的凹部构成。此时,可得到容易确保密封性的优点。通过使底板上的凹部的厚度变薄,若形成振动区域,就可不用振动板,因此,构成更为简单,且制造容易。图48示出该构成的实例。
对于将本发明适用于模块体上的实例,由于模块体的板具有适当厚度,因此空腔具备了必要的深度。
如图49所示,作为本实施例的变形例,空腔800也可以不贯通容器壁802。即,空腔800由容器壁的凹部构成。压电装置804相对于凹部配置。在此情况下,可得到容易确保密封性的优点。若使底板上的凹部厚度变薄,形成振动区域,则可不用图28的振动板或者底板,由此模块体的构成更为简单,制造更容易。
与图49类似的构成也由图31揭示。在驱动器670的底板80上形成作为空腔的凹部81。该底板80被置入容器1的底面1a上的贯开口内,结果可得到与图49相类似的构成。制造具有该构成的驱动器也比较容易。
(4)再参照图20,压电元件由压电层160,上部电极164和下部电极166构成。底板上形成下部电极166,在下部电极166的上方形成压电层160,再在压电层160的上方形成上部电极164。在另外实施例中,模块体100的驱动器106或压电装置具有压电元件。作为本实施例的一个特征,空腔的面积大于下部电极的面积。更详细地,开口空腔的压电元件侧的面积大于压电层和下电极重叠部分的面积。这样可得到下面的优点。
在图20的构成中,下部电极166最接近空腔,而且最小。压电元件在被下部电极166遮盖的范围内做振动。振动区域的大小实际等于下部电极166。因此,就利用下部电极166的变化调整压电元件的振动特性。在本实施例中,与下部电极166相适应地设定空腔形状。即,使空腔162的面积比下部电极166的面积大。由于此构成,压电元件可在适当的状态下振动。
(5)其次,说明空腔深度和空腔开口尺寸之间的合适关系。在图20及图48中,空腔深度是底板厚度方向的尺寸。空腔贯通底板时,空腔深度与底板厚度相等。空腔开口尺寸是与空腔深度成垂直方向的尺寸为底板上开口的大小。另一方面,关于模块体的实施例,进一步说明空腔深度和空腔开口尺寸之间的适当关系。在图33中,空腔深度是模块体100的中心轴方向的空腔尺寸。在图33中,由于空腔112贯通板110,空腔深度等于板厚加底板厚度。空腔开口尺寸是与空腔深度垂直方向的尺寸,等于板上开口的大小。下面,说明液体容器实施例的空腔深度和空腔开口尺寸的适当关系。在图28中,空腔深度是贯通容器壁方向空腔尺寸。在图28中,由于空腔1c贯通容器壁,因此空腔深度等于壁厚加底板厚度。空腔开口尺寸是与空腔深度成直角方向上的尺寸,等于容器壁的孔的大小。
在本实施例中,设定空腔深度比开口尺寸的小。于是,空腔是浅而宽的形状。由此,可得以下的优点。
由于空腔浅而宽,因此,墨减少时,残余在空腔内的墨量变少。因而,墨消耗造成残留振动的变化加大,可提高检测精度。
当空腔为深而狭的形状时,从空腔向容器内合适地传递振动就不可能。相对地,根据本实施例,由于空腔为浅而宽,因此,在检测残留振动的变化方面可得到良好的振动传递。
根据本发明人的研究,空腔深度为开口尺寸的1/3或小于1/3为优选。因此,显著实现了残留振动的变化。
在上述说明中,主要采用了圆形空腔。但是,在本发明的范围内,可采用空腔的各种形状。在考虑空腔形状时,本发明将空腔深度设定为小于空腔开口的最小宽度。最好,空腔深度是空腔开口的最小宽度的1/3或小于1/3。例如,空腔为长方形时,短边的尺寸比空腔深度大。
(6)作为本实施例的一个特征,开口空腔具有以压电元件中心实际上对称的形状。最好,空腔是圆形。作为另一实施例的一个特征,开口空腔具有以液体检测用装置的振动中心或压电元件中心实际对称的形状。最好,空腔为圆形。
根据该构成,依次地得到单峰出现的频率特性。一次振动模式可由压电膜支配,S/N比率增高。残留振动的振幅也增大。因而,检测性能良好。若采用正方形,则可降低感应器固定对振动特性的影响。例如,可以考虑用环氧类树脂粘合剂固定感应器。该种粘合剂在硬化时发生收缩。因此,当空腔形状不对称时,因为收缩的影响会发生歪斜,所以振动特性在空腔周围因场所不同而不同。
相对地,本实施例中,空腔形状是对称的。因为用粘合剂将板固定到感应器不容易受到歪斜影响,在空腔整个一周得到均等的振动特性。因为用普通的粘合剂固定感应器而不容易受歪斜影响,所以在空腔整个一周得到均等的振动特性。如该例所示,采用本实施例,因能减轻感应器固定的影响,感应器可被可靠地安装在墨盒上。还可采用相对比较简单的安装方法。压电元件以及墨盒的制造也容易。
特别地,根据本实施例,因空腔形状为圆形,所以可得到很高的均等性。由于检测性能良好,上述的本实施例的优点将更加显著。采用圆形,就可以冲孔方式形成空腔,制造极为容易,也有优点。
(7)液体检测用装置或驱动器被设置在与检测目标规定的液体消耗状态所对应的液面位置上。在另外的实施例中,安装模块体100及压电装置或驱动器106被设置在与检测目标规定的液体消耗状态所对应的液面位置上。当液面通过检测装置时,空腔内处于保持了残余墨的状态。液体检测装置发出检测信号,该信号表示当液面通过检测装置时的开口空腔内与墨对应的残留振动状态,构成了液体用装置,特别是构成了空腔形状。
如前所述,当空腔深度t和空腔开口半径a满足(a/t)>(3×π/8)的条件时,空腔略呈圆形,在空腔内残余墨的状态下,能够检测墨消耗。
(8)作为本实施例的较好的应用例,空腔的容器内部侧的开口面积或尺寸应比压电元件侧的开口面积或尺寸大。因此,使空腔变形为向容器内部变宽的形状。根据该构成,由于能够有效地防止不要的墨残余在空腔部内,因此可提高检测能力。
参照图50(A)及图50(B),图50(A)示出锥形空腔。图50(B)示出阶梯形空腔。这两种空腔都向墨容器内部扩大。根据这些空腔的形状,不要的墨就不易残余在空腔周围。即,空腔内只留一定量的墨。因此,可提高检测的可靠性,实现检测精度的提高。当空腔不是锥形或阶梯形时,因表张力的影响,不要的墨有可能残余在空腔周围。此时,空腔内墨保持量有些偏差。保持量的偏差是检测不可靠的一个原因。根据本实施例,能够避免这样的事情,可靠地检测墨消耗。
(9)作为本实施例较好的应用例,从空腔处开设一条延伸槽,该槽与空腔相连通。图51示出了该连通槽的实例。连通槽G被设置在底板178上面对墨盒内侧的面上。连通槽G从空腔162起延伸至底板178的中途。因设置连通槽G,空腔内的墨不易外流,降低了空腔内残余的墨量。因表面张力的影响,能够有效地降低残余在空腔周围的不需要的墨量,可稳定墨的保持量。由于液面是否通过空腔,即墨是否被消耗掉对残留振动的变化所造成的影响更为显著,因此,能更可靠地检测墨消耗,可提高检测精度。为了让更多的墨从空腔流出,最好形成连通槽。更好地,连通槽通向墨盒供墨口。连能槽从空腔处朝供给口的方向延伸。这样,可顺利地将空腔内的墨导向供给口。
(10)更好地,液体检测用装置(驱动器)如图32及其它多个附图所示,以与安装结构体成一体的模块状安装在墨盒上。因此,能从外部保护液体检测用装置。
(11)作为本实施例的较好应用例,连通空腔的连通槽被设置在面对墨盒内部的部位上,并从空腔处延伸。连通槽如图52所示。连通槽G从空腔112起,至板110的途中止。因设置连通槽G,空腔内的墨不易外流,降低了空腔内残余的墨量。因表面张力的影响,能够有效地降低残余在空腔附近的不需要的墨量。因此,还可稳定墨的保持量。由于液面是否通过空腔,即墨是否被消耗掉对残留振动的变化所造成的影响更为显著,因此,能更可靠地检测墨消耗,提高检测精度。为了让更多的墨从空腔流出,希望形成连通槽。更好地,连通槽通向墨盒供墨口。连能槽从空腔处沿朝向供给口的方向延伸。这样,可顺利地将空腔内的墨导向供给口。
(12)作为本实施例特征之一,模块体的安装结构体嵌入墨盒上的贯通口112内。参照图53,图32的模块体100安装在盒壁的贯开口内。模块体100的本体和墨盒壁部的孔的形状相同,模块体100无间隙地插入贯开口内。因模块体100端部的凸缘,确保了密封。因采用这种构造,组装模块体极为容易,且可把带空腔的感应器部配置在合适的位置上。
(13)在本实施例中,在压电装置或驱动器上形成与安装结构体的开口空腔连通的凹部。该凹部是设在驱动器底板上的贯开口,起到开口空腔(部分)的作用。因这样的构成,开口空腔靠近压电装置的振动部,参照图38。
(14)对于较好的实施方式,开口空腔要靠近吸出空腔内墨的液体吸收体。液体吸收体由如多孔质材料,必要时为海棉类材料构成。
图54(A)及图54(B)示出空腔800和吸收体802靠近的构造实例。前者中,吸收体802直接接触空腔800。后者中,吸收体802面对从空腔800处延伸的连通槽G。
因这样构成,能够从空腔内吸出不需要的墨。可消除表面张力等对墨残余状态造成不稳定的影响。即,减少空腔内不必要的残余墨保持量。空腔内的残余墨可被完全吸出。由于降低了墨保持量的偏差引起的检测误差,因此可提高检测精度。
(15)对于另外较好的实施例方式,在开口空腔内设置保持液体的液体吸收体。即,吸收体不是配置在空腔外,而是配置在空腔内。此处,液体吸收体也可以由如多孔质材料,必要时如海棉状材料构成。图55显示不在空腔800内设置吸收体804的构成例。
在该构成中,墨主要地保持在空腔内。墨的保持量由吸收体的构造和形状决定。如图所示,在吸收体充满空腔内时,由空腔的形状决定墨保持量。即使在该状态下,空腔内墨保持量的偏差也较小。由于降低了墨保持量的偏差引起的检测误差,可提高检测精度。
(16)更好地,因为安装模块体被装在墨盒上,故相对墨盒可装拆。以安装模块体的状态把感应器安装在墨盒上,因此,感应器的安装容易。取下安装模块体,也就取下了感应器,因此,墨盒的再利用变得容易。
(17)可以把压电装置嵌入液体容器上的贯通口内。压电装置的安装较为容易。在合适的应用例中,当安装压电装置时形成贯通口。此时,在容器壁安装位置上制出的薄壁部被压电装置突破。
图56示出安装带有压电装置的模块体810之前的状态。容器壁812上设置薄壁部分814。薄壁部分814设置在安装模块体810的设置场所。为了组装安装模块体810,即压电装置,把安装模块体810压入容器壁812内时,安装模块体810突破薄壁部814。因此,形成贯开口。安装模块体810和贯开口密封接触。这样,根据本实施例,安装模块体的组装容易,在安装模块体810和容器壁之间能得到良好的密封状态。
(18)实施例中,开口空腔靠近吸出空腔内墨的液体吸收体设置。液体吸收体由如多孔质材料,心要时如海棉类材料构成。
图13示出空腔和吸收体靠近的构造实例,前者中,吸收体74直接接触空腔1c。后者中,吸收体75面对从空腔1c处延伸的连通槽1h。
因这样构成,能够从空腔内吸出不需要的墨。可消除表面张力等对墨残余状态造成不稳定的影响。即,减少空腔内墨保持量的偏差。空腔内也可以完全无残余墨。由于降低了墨保持量的偏差引起的检测误差,因此可提高检测精度。
(19)对于另外一较好的实施例方式,在开口空腔内设置保持液体的液体吸收体。即,吸收体不是配置在空腔外,而是配置在空腔内。此处,液体吸收体也可以由如多孔质材料,必要时如海棉状材料构成。图57示出在空腔1c内设置吸收体800的构成例。
在该构成中,空腔内确实保持有墨。墨的保持量由吸收体的构造和形状决定。如图所示,在吸收体充满空腔内时,由空腔的形状决定墨保持量。即使在该状态下,空腔内墨保持量的偏差也较小。由于降低了墨保持量的偏差引起的检测误差,可提高检测精度。
(20)对于较好方式,压电装置包括压电元件和形成压电元件的基材或底板,开口空腔形成在基材上。图20示出了这样的压电装置。由于空腔与振动子直接相邻,因此本实施例的优点非常显著。如图28所示,空腔也可设在基材和容器壁上。
(21)如图32所示,压电装置可用安装模块体进行安装。安装模块体包含与压电装置一体的安装结构体。安装结构体具有将压电装置安装到墨容器上的构造。安装模块体以和压电装置一体的状态安装到墨容器上。空腔设置在安装模块体的前面,当安装模块体被安装在墨水容器上时,空腔朝向容器的内侧。利用安装模块体进行组装,就能够把空腔配置在容器内部。应该把压电装置及空腔配置在能够进行检测液体消耗的位置上,而且从容器外部能保护的位置上。
(22)本实施例中液体容器是墨盒。墨盒是墨容器和墨箱的一个实例。墨箱如下所说,不限于上述的盒。
喷墨打印机的墨箱有滑架式和固定式。在上述实施例中,主要说明了滑架式墨箱。即,墨盒安装在滑架上。然而,本发明同样也适合于固定式墨箱。此时,作为墨箱的墨盒设置喷墨打印机的固定部(壳体)上,用管子将墨盒与打印头进行连接,在该固定的墨盒上设置压电装置。
图58示出固定式墨盒的一例。打印头832装在滑架830上。打印头832通过管子834与墨盒836连接。墨盒836固定在图中未示出的喷墨打印机的相应设置部位,该部位不是在可移部位上。墨盒836具备压电装置838,此外还有与压电装置838相对的开口空腔。
在上述实施例中,副墨盒设置在打印头附近,副墨盒与可更换的墨盒连通。副墨盒如图3及图4所示(参照标号33)。该副墨盒也起墨盒的作用。因此压电装置也可安装在副墨盒上。相对压电装置设置开口空腔。该变形在滑架式墨盒和固定式墨盒上均适用。
(23)墨箱具有将其内部分隔成多个空间的隔板,多个压电装置可分别设置在这些空间上。该形式如图2所示,适用于彩色打印机上。能够分别检测出容纳于多个空间内的彩色墨的消耗状态。相对各空间的压电装置,设置开口空腔。
上面,用具体实施例说明了本发明,但本发明的技术范围不限于上述实施例所记载的范围。在上述实施例中,可做出多种变化或改进。这样的变化或改进同样包含在本发明的技术范围内。
例如,液体容器不限于墨盒。本发明也可适用于墨盒以外的打印机用墨箱。当然,本发明也适合于容纳墨以外液体的容器。
液体检测装置也可以不发生自振。即,发振和残留振动状态的输出不是自身完成的。例如,其它的驱动器发出振动后,再检测液体检测用装置的振动状态。在另一实施例中,随着滑架的移动等,因墨盒振动,压电元件也振动时,检测出该振动。即,不是主动地发生振动,而是利用打印机动作自然地发生的振动,来检测墨消耗。另一方面,与上述变形例相反,液体检测用装置只发生振动。此时,可获得其它感应器的振动状态。
上述变形相对于使用压电元件的其它检测功能,例如使用弹性波及反射波的检测功能也同样适用。即,使用压电元件发生振动或检测。
如上所述,根据本发明,在液体检测用装置上设开口空腔,就可提高液体消耗状态的检测能力。根据本发明,在将压电装置安装到液体容器上的安装模块体上设开口空腔,也可提高液体消耗状态的检测能力。根据本发明,在安装压电装置的液体容器上设开口空腔,可提高液体消耗状态的检测能力。
权利要求
1.一种液体检测装置,该检测装置固定在液体容器上,用于检测液体容器内所容纳的液体的消耗状态,该液体检测装置包括一个以其自身中心对称的振动部;和至少一个电极,该电极与所述振动部通过电连接。
2.根据权利要求1所述的液体检测装置,其特征在于所述振动部基本上为圆形。
3.根据权利要求1所述的液体检测装置,其特征在于还包括压电元件;设置在所述压电元件上表面的上部电极;设置在所述压电元件下表面上的下部电极;和振动板,该振动板具有与所述下部电极接触的上表面和局部与液体容器内的液体接触的下表面;其中,至少有部分压电元件,所述上部电极,所述下部电极和所述振动板构成所述振动部。
4.根据权利要求3所述的液体检测装置,其特征在于所述压电元件,所述上部电极,和所述下部电极各包含一主要部分,该主要部分是和所述振动部一致的同心圆。
5.根据权利要求1所述的液体检测装置,其特征在于还包括具有上表面和下表面的底板,其上表面接触所述振动板的下表面,其下表面接触液体容器内的液体,且所述底板包括一个空腔,该空腔接触液体容器内所容纳的液体。
6.根据权利要求5所述的液体检测装置,其特征在于所述空腔是和所述振动部一致的同心圆。
7.根据权利要求5所述的液体检测装置,其特征在于所述底板的柔顺性极大于所述振动板的柔顺性。
8.根据权利要求5所述的液体检测装置,其特征在于所述振动部的振动边缘位于所述空腔的外表面附近。
9.根据权利要求3所述的液体检测装置,其特征在于还包括安装部件,该安装部件有一与所述振动板的下表面接触的上表面和与液体容器内部下表面相对的下表面,所述安装部件包括与所述振动部的中心对应的开口。
10.根据权利要求1所述的液体检测装置,其特征在于是根据所述振动部对所述振动部周围的声阻抗的变化来检测液体消耗状态。
11.根据权利要求1所述的液体检测装置,其特征在于根据振动部周围的残留振动的变化来检测液体消耗状态。
12.根据权利要求1所述的液体检测装置,其特征在于根据所述的振动部的共振频率的变化来检测液体的消耗状态。
13.根据权利要求3所述的液体检测装置,其特征在于对于所述振动部,所述的压电元件的面积大于所述下部电极的面积,所述上部电极的面积大于所述下部电极的面积,所述压电元件的面积大于所述上部电极的面积。
14.根据权利要求12所述的液体检测装置,其特征在于还包括有上表面和下表面的底板,其上表面接触所述振动板的下表面,其下表面接触容纳在液体容器内的液体,且所述底板包括一个空腔,该空腔接触液体容器内所容纳的液体,且所述空腔的面积大于所述下部电极。
15.根据权利要求3所述的液体检测装置,其特征在于产生压电效应的所述压电元件的部分面积基本上与所述下部电极的面积相同。
16.根据权利要求5所述的液体检测装置,其特征在于所述空腔的半径与其深度之比大于3π/8。
17.一种液体容器,包括其内容纳液体的外壳;所述外壳上形成的供液孔;固定在所述外壳上的液体检测装置,所述液体检测装置包括一个以其自身中心对称的振动部;和至少一个电极,该电极与所述振动部通过电连接。
18.根据权利要求17所述的液体容器,其特征在于所述振动部基本上为圆形。
19.根据权利要求17所述的液体容器,其特征在于还包括压电元件;设置在所述压电元件上表面的上部电极;设置在所述压电元件下表面上的下部电极;和振动板,该振动板具有与所述下部电极接触的上表面和局部与液体容器内的液体接触的下表面;其中,至少部分压电元件,所述上部电极,所述下部电极和所述振动板构成所述振动部。
20.根据权利要求19所述的液体容器,其特征在于所述压电元件,所述上部电极,和所述下部电极各包含一主要部分,该主要部分是和所述振动部一致的同心圆。
21.根据权利要求17所述的液体容器,其特征在于还包括一个具有上表面和下表面的底板,其上表面与所述的振动板的下表面相接触,其下表面与液体容器内的液体相接触,并且,所述底板有一个与液体容器内液体相接触的空腔。
22.根据权利要求21所述的液体容器,其特征在于所述空腔是和所述振动部一致的同心圆。
23.根据权利要求19所述的液体容器,其特征在于对于所述振动部,所压电元件的面积大于所述下部电极的面积,所述上部电极的面积大于所述下部电极的面积,所述压电元件的面积大于所述上部电极的面积。
24.根据权利要求17所述的液体容器,其特征在于所述液体检测装置安置在所述供液孔附近。
25.根据权利要求17所述的液体容器,其特征在于所述液体检测装置基本上安置在所述外壳宽度方向的中央。
26.根据权利要求17所述的液体容器其特征在于至少所述液体检测装置的所述振动部安置在一个平面上,该平面相对于容纳在所述外壳内的液体液面而言向上倾斜。
27.根据权利要求26所述的液体容器其特征在于上倾角度在30至60度范围内。
28.根据权利要求17所述的液体容器其特征在于所述液体检测装置安置在所述外壳的角部上。
29.根据权利要求28所述的液体容器其特征在于所述外壳的所述角部相对于所述外壳内容纳的液体液面而言向上倾斜。
30.一种检测容纳在液体容器内的液体消耗状态的模块,包括安装在所述外壳上的液体检测装置,所述液体检测装置包括一个以其自身中心对称的振动部;至少一个电极,该电极与所述振动部通过电连接;和安装结构,该安装结构与所述液体检测装置形成一体,将所述液体检测装置安装到液体容器上。
31.根据权利要求30所述的模块,其特征在于所述振动部基本上是圆形的。
32.根据权利要求30所述的模块,其特征在于还包括压电元件;设置在所述压电元件上表面的上部电极;设置在所述压电元件下表面上的下部电极;和振动板,该振动板具有与所述下部电极接触的上表面和局部与液体容器内的液体接触的下表面;其中,至少部分压电元件,所述上部电极,所述下部电极和所述振动板构成所述振动部。
33.根据权利要求32所述的模块,其特征在于所述压电元件,所述上部电极,和所述下部电极各包含一主要部分,该主要部分是和所述振动部一致的同心圆。
34.根据权利要求30所述的模块,其特征在于还包括一个具有一表面和下表面的底板,其上表面与所述振动板的下表面相接触,而其下表面接触至液体容器中的液体,且所述的底板包括一个与液体容器中的液体相接触的空腔。
35.根据权利要求34所述的模块,其特征在于所述空腔是和所述振动部一致的同心圆。
36.根据权利要求32所述的模块,其特征在于对于所述振动部,所述压电元件的面积大于所述下部电极的面积,所述上部电极的面积大于所述下部电极的面积,所述压电元件的面积所述上部电极的面积。
37.一种液体检测装置,该检测装置固定在液体容器上,用于检测液体容器内所容纳的液体的消耗状态,该液体器包括一个包括压电元件的振动部;和至少一个电极,该电极与所述振动部通过电连接。一底板,所述振动部和所述电极设置在该底板上,所述底板包括一个空腔,该空腔设置在面对振动部的位置上,所述空腔与所述液体容器内容纳的液体相接触。
38.根据权利要求37所述的液体检测装置,其特征在于根据所述振动部周围的声阻抗变化来检测液体的消耗状态。
39.根据权利要求37所述的液体检测装置,其特征在于通过所述振动部周围的残留振动的变化来检测液体的消耗状态。
40.根据权利要求37所述的液体检测装置,其特征在于根据所述振动部周围的共振频率的变化来检测液体的消耗状态。
41.根据权利要求37所述的液体检测装置,其特征在于还包括一中间部件,该中间部件设置在所述底板和所述压电元件之间,其中,所述空腔穿过所述底板,且所述中间部件密封所述空腔,与所述振动部一起振动。
42.根据权利要求37所述的液体检测装置,其特征在于所述空腔的深度小于所述空腔最狭处宽度。
43.根据权利要求42所述的液体检测装置,其特征在于所述空腔的深度小于所述空腔最狭处宽度的1/3。
44.根据权利要求37所述的液体检测装置,其特征在于所述空腔的外表面是锥形。
45.根据权利要求37所述的液体检测装置,其特征在于所述空腔的周围表面是台阶状。
46.根据权利要求37所述的液体检测装置,其特征在于还包括一条凹槽,该凹槽设置在所述底板上,所述凹槽连接所述空腔。
47.一种液体容器,包括其内容纳液体的外壳;所述外壳上形成的供液孔;固定在所述外壳上的液体检测装置,所述液体检测装置包括一个包括压电元件的振动部;和至少一个电极,该电极与所述振动部通过电连接;和一个空腔,该空腔形成在所述外壳上的面对所述振动部的位置上,所述空腔接触容纳在液体容器内的液体。
48.根据权利要求47所述的液体容器,其特征在于所述液体检测装置根据所述振动部周围的声阻抗的变化来检测液体消耗状态。
49.根据权利要求47所述的液体容器,其特征在于所述液体检测装置通过所述振动部周围的残留振动的变化来检测液体消耗状态。
50.根据权利要求47所述的液体容器,其特征在于所述液体检测装置根据所述振动部周围的共振频率的变化来检测液体消耗状态。
51.根据权利要求47所述的液体容器,其特征在于还包括一中间部件,该中间部件设置在所述外壳和所述压电元件之间,其中,所述空腔穿过所述外壳的壁,且所述中间部件密封所述空腔,并与所述振动部一起振动。
52.根据权利要求47所述的液体容器,其特征在于所述空腔的深度小于所述空腔最狭处宽度。
53.根据权利要求52所述的液体容器,其特征在于所述空腔的深度小于所述空腔最狭处宽度的1/3。
54.根据权利要求47所述的液体容器,其特征在于所述空腔的外表面是锥形。
55.根据权利要求47所述的液体容器,其特征在于所述空腔的外表面是台阶状。
56.根据权利要求47所述的液体容器,其特征在于还包括一条凹槽,该凹槽设置在所述外壳壁上,所述凹槽连通所述空腔。
57.根据权利要求56所述的液体容器,其特征在于所述凹槽从所述空腔通向所述供液孔。
58.根据权利要求47所述的液体容器,其特征在于所述液体检测装置安置在所述供液孔附近。
59.根据权利要求47所述的液体容器,其特征在于所述液体检测装置基本上安置在所述外壳宽度方向的中央。
60.根据权利要求47所述的液体容器其特征在于至少所述液体检测装置的所述振动部安置在一个平面上,该平面相对于容纳在所述外壳内的液体液面而言向上倾斜。
61.根据权利要求60所述的液体容器,其特征在于上倾角度在30至60度范围内。
62.根据权利要求47所述的液体容器,其特征在于所述液体检测装置设置在所述外壳的角部上。
63.根据权利要求62所述的液体容器,其特征在于所述外壳的所述角部相对于所述外壳内容纳的液体液面而言向上倾斜。
64.一种检测容纳在液体容器内的液体消耗状态的模块,包括安装在所述外壳上的液体检测装置,所述液体检测装置包括一个包括压电元件的振动部;至少一个电极,该电极与所述振动部通过电连接;安装结构,该安装结构与所述液体检测装置形成一体,将所述液体检测装置安装到液体容器上;和一个空腔,该空腔形成在所述安装结构上的面对所述振动部的位置上,所述空腔接触并保持容纳在液体容器内的液体。
65.根据权利要求64所述的模块,其特征在于所述液体检测装置通过周围的声阻抗的变化来检测液体消耗状态。
66.根据权利要求64所述的模块,其特征在于所述液体检测装置通过所述振动部周围的残留振动的变化检测液体消耗状态。
67.根据权利要求64所述的模块,其特征在于所述液体检测装置根据所述的振动部周围的共振频率检测液体消耗状态。
68.根据权利要求64所述的模块,其特征在于还包括一中间部件,该中间部件设置在所述安装结构和所述压电元件之间,其中,所述中间部件密封所述空腔,与所述振动部一起振动。
69.根据权利要求64所述的模块,其特征在于所述空腔的深度小于所述空腔最狭处宽度。
70.根据权利要求69所述的模块,其特征在于所述空腔的深度小于所述空腔最狭处宽度的1/3。
全文摘要
一种液体检测装置,该检测装置固定在液体容器上,用于检测液体容器内所容纳的液体的消耗状态,该液体检测装置包括一个以其自身中心对称的振动部;和至少一个电极,该电极与所述振动部通过电连接。
文档编号B65D85/00GK1274645SQ0010626
公开日2000年11月29日 申请日期2000年5月19日 优先权日1999年5月20日
发明者碓井稔, 塚田宪儿, 金谷宗秀 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1