用于机翼和转子叶片结构的热塑性桁架结构和制造方法

文档序号:10575338阅读:568来源:国知局
用于机翼和转子叶片结构的热塑性桁架结构和制造方法
【专利摘要】本发明总体涉及热塑性桁架结构(219)以及形成它们的方法。桁架结构(219)通过使用热塑性材料诸如纤维增强热塑性树脂而形成,并且基于所述桁架结构(219)的形状利于定向载荷支撑。在一个示例中,纤维增强热塑性树脂的多个二维图案以锯齿形图案、正弦图案或其他反复图案被布置在彼此上,并在选择的位置被彼此粘附。二维图案然后可以在第三维度上被扩展以形成三维交联桁架结构(219)。三维交联桁架结构然后可以被加热或以其他方式处理以保持所述三维形状。
【专利说明】
用于机翼和转子叶片结构的热塑性桁架结构和制造方法
技术领域
[0001]本发明的实施例总体涉及轻量的热塑性/纤维结构,其用于传递剪切力并维持用于机翼和转子叶片结构的整流罩的形状。
【背景技术】
[0002]为了保持稳定,扭转柔软的结构诸如长的、细的机翼和转子叶片应该具有在叶片弦的前四分之一内的重心。整流罩通常由蒙皮和芯体构成“夹层”结构。使用热塑性、可熔融结合树脂的复合材料提供了更容易制造且更强硬的结构的可能性。在形成热塑性蒙皮时需要背压以产生高质量表面并且提供装配件的零件的良好粘附。
[0003]现有的解决方案利用肋条、蜂窝结构或泡沫作为用于整流罩结构的芯体材料。蜂窝结构经常用于转子叶片,然而,由于蜂窝结构不可以在蜂窝单元的开口部分上提供足够的背压,所以蜂窝难于熔融结合到热塑性蒙皮。当使用可溶性工具时,蜂窝结构也会造成问题。特别地,蜂窝结构不提供足够开放的结构以洗出可溶性工具介质,即使在使用了可透气式蜂窝结构时。肋条也可用于形成整流罩结构。然而,肋条必须间隔足够远,以免增加太多额外重量。肋条之间增加的间距需要额外的加固组件和较厚的蒙皮,这增加了不期望的重量。

【发明内容】

[0004]本发明总体涉及热塑性桁架结构以及形成它们的方法。桁架结构通过使用热塑性材料诸如纤维增强热塑性树脂而形成,并且基于所述桁架结构的形状便于定向载荷支撑。在一个示例中,纤维增强热塑性树脂的多个二维图案以锯齿形图案、正弦图案或其他反复图案被布置在彼此之上,并在选择的位置被彼此粘附。所述二维图案然后可以在第三维度中被扩展以形成三维交联桁架结构。三维交联桁架结构然后可以被加热或以其他方式处理以保持所述三维形状。
[0005]在一个实施例中,支撑结构包括三维交联桁架结构,该三维交联桁架结构包含结合在一起的多个热塑性导线片段。三维交联桁架结构可以被用作机翼、转子叶片、燃料箱和其它机械组件的支撑结构。
[0006]在另一实施例中,一种形成支撑结构的方法包含定位热塑性材料的第一导线片段,所述第一导线片段具有第一锯齿形图案;在所述第一导线片段上定位热塑性材料的第二导线片段,所述第二导线片段具有从所述第一锯齿形图案偏移的第二锯齿形图案;粘附所述第二导线片段到所述第一导线片段;在所述第二导线片段上定位热塑性材料的第三导线片段,所述第三导线片段具有所述第一锯齿形图案,所述第三导线片段与所述第一导线片段对齐,并且从所述第二导线片段偏移;粘附所述第三导线片段到所述第一导线片段;并且扩展所述第一导线片段、所述第二导线片段和所述第三导线片段。
【附图说明】
[0007]为了可以详细理解本发明的上述特征,如上简要概述的
【发明内容】
的更具体的描述可以参考实施例获得,所述实施例中的一些在附图中说明。然而,应注意,附图只说明示例性的实施例,并且因此不应将这些附图视为限制本发明的范围,并且本发明可允许其他等效的实施例。
[0008]图1示意性示出了根据本发明的一个方面的飞行器。
[0009]图2是根据本发明的一个方面的飞行器的机翼截面视图的示意图。
[0010]图3A-3C是根据本发明的方面的不同密度的桁架结构的示意图。
[0011]图4A-4L是图示说明根据本发明的一个方面的桁架结构的形成的示意图。
[0012]为了便于理解,相同的参考数字在可能的地方被用于指示附图中共有的相同的元件。可以预期的是,一个实施例的元件和特征可以被有利地并入其他实施例中,无需进一步限定。
【具体实施方式】
[0013]本发明总体涉及热塑性桁架结构以及形成它们的方法。桁架结构通过使用热塑性材料诸如纤维增强热塑性树脂而形成,并且基于所述桁架结构的形状便于定向载荷支撑。在一个示例中,纤维增强热塑性树脂的多个二维图案以锯齿形图案被布置在彼此之上,并在选择位置中被彼此粘附。二维图案然后可以在第三维度上被扩展以形成三维交联桁架结构。三维交联桁架结构然后可以被加热或以其他方式处理以保持三维形状。三维交联桁架结构可以被用作机翼、转子叶片、燃料箱和其它机械组件的支撑结构。
[0014]图1示意性示出了根据本发明的一个方面的飞行器100。图1所示的飞行器100包括用于容纳乘客和/或货物的机身110。提供飞行器100飞行所需升力的两个机翼114被耦连(coupled)到机身110的相对两侧。垂直安定面116和两个水平安定面118在机身的尾端被親连至机身110。提供推进飞行器100前进所需要的推力的一个或多个发动机102(示出两个)被耦连到机翼114。
[0015]在飞行器100的机翼114上还存在扰流板128、襟翼126和缝翼130,其可以被称为辅助飞行控制表面。扰流板128被设置在机翼114上并且执行各种功能,所述功能包括协助控制垂直飞行路径,作为空气制动器以控制飞行器100的前进速度和作为地面扰流板以减少机翼升力从而在制动时帮助保持起落架和跑道之间的接触。襟翼126和缝翼130被设置在飞行器100的机翼上,以改变影响飞行器100的升力和阻力,其中襟翼126被定位在所述机翼114的后缘,并且缝翼130被定位在机翼114的前缘。当襟翼126和缝翼130被扩展时,机翼114的形状改变以提供更多升力。由于增加的升力,飞行器100能够以较低的速度飞行,从而简化着陆过程和起飞过程两者。
[0016]飞行器100还包括多个主飞行控制,以方便在飞行过程中飞行器100的方向变化。飞行器100上的主飞行控制表面包括副翼124、升降舵120和方向舵122。副翼124被设置在飞行器100的机翼114后缘上并且控制飞行器100的侧滚(roll)。升降舵120被设置在飞行器100的水平安定面118上并且控制飞行器100的俯仰(pitch)。方向舵122被设置在垂直安定面116上并且控制飞行器100的偏航(yaw)。在一些飞行器中,可以具有将导向器控制器连接到致动器的电缆或导线(未示出),致动器用于移动主控制表面。
[0017]图2说明了根据本发明的一个方面的沿剖面线2-2的飞行器100的机翼114的截面视图。机翼114包括限定其外表面的外蒙皮215。三维交联导线桁架结构219被定位在蒙皮215内以向蒙皮215提供支撑并且保持蒙皮215处于预定形状。三维交联导线桁架结构219是由多个交联的或交叉的热塑性材料的导线片段形成的三维网格结构。热塑性材料的导线片段在各自交叉点处被接合以形成整体材料件,从而利于增加三维交联导线桁架结构219的结构强度。
[0018]三维交联导线桁架结构219限定具有多个开口221(标记出两个)的开放式网格结构。多个开口221便于可溶性工具结合三维交联导线桁架结构219的使用。在一个示例中,当构造三维交联导线桁架结构219时,可溶性材料或介质(未示出)可以被用于支撑热塑性材料的片段,使得三维交联导线桁架结构219具有期望的形状或配置。在这种示例中,所述三维交联导线桁架结构219可以以期望的取向被定位,并且可溶性材料可以被施加到三维交联导线桁架结构219以保持三维交联导线桁架结构219的配置。三维交联导线桁架结构219然后可以被固化以保持期望的取向,并且可溶性材料然后可以被除去。
[0019]可替换地,可溶材料可用于相对于三维交联导线桁架结构219支撑蒙皮215,使得蒙皮215可以被施加到三维交联导线桁架结构219并且在其间可以发生适当的粘附。在一个示例中,可以通过熔融结合进行粘附。熔融结合的过程涉及在组件的结合位置处加热和熔化热塑性材料,并且然后为了凝固和巩固而将这些表面按压在一起。在粘附后,可溶性材料可以选择性地相对于热塑性材料溶解到溶剂中并被除去,只留下三维交联导线桁架结构219和蒙皮215。不同于先前使用的蜂窝结构,三维交联导线桁架结构219的开口 221足够大以允许溶剂溶解和除去用于可溶性工具中的可溶性材料。在一个示例中,三维交联导线桁架结构219的孔隙率可为约50%或更高,以便于除去可溶性材料。
[0020]此外,进一步与蜂窝结构对比,三维交联导线桁架结构219的密度(例如,每个单位长度的导线片段交叉点的数目)可以变化,以降低在机翼114的相关区域中三维交联导线桁架结构219的重量。例如,机翼144的后四分之三223a具有比机翼114的前四分之一 223b更小的桁架结构密度,因此利于期望的机翼114的重量平衡。在一个示例中,机翼114的前四分之一的重量可以大约等于机翼的后四分之三的重量。期望的是,朝向翼弦的前缘转移重量以减少颤振的可能性。与此相反,蜂窝结构一般具有均匀的密度,并且因此,当使用蜂窝结构时降低机翼后缘重量的唯一方式是完全除去部分材料。然而,这种除去可能不期望地牺牲结构刚性和支撑,因为材料可能从机翼114内的关键支撑区域被除去。相比之下,三维交联导线桁架结构219可以利用沿机翼114的长度的变化的密度,使得通过使用较少密度的支撑结构降低重量,但结构支撑保持在关键位置中,因为三维交联导线桁架结构219没有为了减轻重量的目的而被完全移除。
[0021]图3A-3C说明了根据本发明的多个方面的不同密度的三维交联导线桁架结构319a-319c。图3A示出了具有第一密度的热塑性片段331a的三维交联导线桁架结构319a。片段331a之间交叉的相对角度332,以及每个片段331a的方向变化的相对角度333可以被调节以便于三维交联导线桁架结构319a处于期望的密度水平。
[0022]图3B示出了具有第二密度的热塑性片段331b的三维交联导线桁架结构319b。特别地,片段331b具有沿其长度变化或分级的密度。片段331b在区域334内具有较低密度并且在区域335内具有较大密度。通过改变沿桁架结构319b的长度的角度332、333来调节密度。因此,如图所示,三维交联导线桁架结构31%的密度可以沿其长度而变化(例如,沿弦线),以产生三维交联导线桁架结构319b的期望的重量和支撑轮廓。
[0023]图3C示出了具有重叠或交织的桁架结构335a、335b的三维交联导线桁架结构319c。因此,三维交联导线桁架结构319c由两个独立的桁架结构335a、335b形成,桁架结构335a、335b可以同时一起形成,或可以相对于彼此先后形成。例如,桁架结构335a可以被形成且定位为期望的配置,并且随后,桁架结构335b可围绕桁架结构335a形成。如图所示,桁架结构335a延伸弦诸如机翼弦的整个长度或大部分长度,而第二桁架结构335b延伸弦的局部距离,例如,弦长度的约30%到约50%。然而,可以预期的是,第二桁架结构335b可比图示延伸弦的更大或更小长度,诸如弦的大约10%至大约90%,并且特别地,例如弦长度的大约30%至大约70 %。
[0024]两个独立的桁架结构335a、335b的利用有利于用来调节三维交联导线桁架结构319c的相对重量和结构支撑的更有针对性的方法。特别地,第二桁架结构诸如桁架结构335b可以用于向机翼弦的前四分之一转移重量,或在承受更大载荷百分比的机翼区域内提供增加的结构支撑。与此相反,蜂窝结构不能够实现这种互锁几何结构,因此,在形状和配置上具有更多限制。
[0025]图4A-4L说明了根据本发明的一个方面的三维交联导线桁架结构的形成。图4A说明了热塑性材料的第一片段431a的定位。所述第一导线片段431a以锯齿形或Z字形图案被定位在支撑结构(未示出)上,如图所示。每个单位长度的每个Z字形的相对高度和每个Z字形的顶点可以基于完成的支撑结构所要求的期望结构需求和重量特性来选择。
[0026]使用自动铺设装置,所述第一导线片段431a可以从一卷热塑性材料中被分配,以按期望的Z字形配置定位第一导线片段431。在一个示例中,通过在第一方向(如y轴正向方向)上移动的自动铺设装置铺放第一导线片段431a,如由箭头480所示,同时在z方向上来回扫略以形成Z字形图案。
[0027]随后,如图4B所示,热塑性材料的第二导线片段431b以锯齿形图案被布置在第一导线片段431a上。第二导线片段431b的锯齿形图案从第一导线片段431a的锯齿图案偏移以形成部分或全部沿第一片段431a和第二导线片段431b的长度的交叉图案。在一个示例中,自动铺设装置在与第一方向相反的第二方向(例如,沿返回路径)上行进时沉积第二导线片段431b,如箭头481所示。第二导线片段431b可以具有大约等于第一导线片段431a的长度。
[0028]当定位第二导线片段431b时,第二导线片段431b和第一导线片段431a之间每个单位长度的交叉点的数目可以通过改变角度332和333而被调节(在图3B中示出)。通常,在材料的给定长度上的越多的交叉点提供对局部屈曲的越大的阻力。在任何给定的横截面内,通过第一导线片段431a和第二导线片段431b的交叉点形成的“X”的一半处于拉伸中,而另一半处于压缩中,这是由于作用在第一导线片段431a和第二导线片段431b上的力同时还支撑载荷。在处于拉伸的部分和处于压缩的部分之间的结合减少了处于压缩的部分的屈曲。每个单位长度上更大密度的交叉点可以被用于进一步减少局部屈曲;然而,这可能会增加密度,并且因此增加所得的桁架支撑结构的重量。
[0029]在铺放第二导线片段431b之后,第二导线片段431b和第一导线片段431a可以在交叉点432处通过加热交叉点432至足以引起其间粘附的温度而被接合。在一个示例中,激光可以被用于加热期望的区域(例如,第二导线片段431b和第一导线片段431a的交叉点),而不是整个片段本身,目的是便于在期望的位置结合。
[0030]当使用热塑性树脂诸如聚醚酮酮(PEKK)或聚醚醚酮(PEEK)(但是其它的热塑性树脂是可能的且可预计)时,热塑性材料的期望的区域可被加热到约550华氏度到约750华氏度的范围内的温度,例如约600华氏度至约700华氏度,以利于第一导线片段431a和第二导线片段431b的结合。可以设想,压力可以被施加到第一导线片段431a和第二片段431b以利于粘附(例如,熔融结合)。
[0031]在加热后,第一导线片段431a和第二导线片段431b可以被允许冷却以利于结合的固定。与环氧树脂材料相比(如那些在蜂窝结构中使用的环氧树脂材料),使用热塑性材料的结合形成要快得多。例如,热塑性塑料之间的结合可以在几秒钟或几分钟内被完成且被固定,然而使用环氧树脂的结合需要数小时来固定。因此,如本文所公开的,与使用环氧树脂的支撑结构相比,热塑性材料的利用可以利于减少构造时间。此外,热塑性材料可以比环氧树脂和/或酚更加热稳定。例如,某些热塑性材料可以在上至约600华氏度的温度下热稳定,而某些环氧树脂只可以在上至约200华氏度下热稳定。
[0032]在结合第二导线片段431b和第一导线片段431a之后,第三导线片段431c被布置在第一导线片段431a之上且与其对齐,如图4C所示。第三导线片段431c可以通过在第一方向上行进的自动铺设装置而被定位,如箭头480所示。一旦第三导线片段431 c被定位,第三导线片段431c就可以被接合到第一导线片段431a,例如,通过加热第一导线片段431a和/或第三导线片段431c的部分以引起它们之间的粘附。如图4C所示,第一导线片段431a和第三导线片段431c的锯齿性结构的上顶点被接合在一起,如在点433处所示。
[0033]在第三导线片段431c的沉积和粘附之后,第四导线片段431d被布置在第二导线片段431b之上且与其对齐,如图4D所示。第四导线片段431d可以通过在第二方向上行进的自动铺设装置而被沉积,如箭头481所示,并且可以与第二导线片段431b具有大约相同的长度。第四导线片段431d在点434处被接合到第三导线片段431c。第四导线片段431d也可以在由第二导线片段431b和第四导线片段431d形成的锯齿形形状的重叠的下顶点处被接合到第二导线片段431b,如在点435处所示。
[0034]如在图4E中所示,第五导线片段431e被布置在第一导线片段431a和第三导线片段431c之上且与其对齐。第五导线片段431e可以通过在第一方向上行进的自动铺设装置而被沉积,如箭头480所示。在第五导线片段431e被铺设后,第五导线片段431e可在第三导线片段431c和第五导线片段431e的重叠的下顶点处被粘附到第三导线片段431c,如在点436处所示。与之前的描述类似,第五导线片段431e可以使用热源诸如激光被粘附到第三导线片段431c。
[0035]在第五导线片段431e的铺设后,第六导线片段431f以锯齿形图案被布置在第二导线片段431b和第四导线片段431d之上且与其对齐,如图5F所示。第六导线片段431f可以通过在第二方向上移动的自动铺设装置而被沉积,如由箭头481所示。第六导线片段431f可以具有与第二导线片段431b和第四导线片段431d大约相等的长度。第六导线片段431f在上顶点和与第四导线片段431d的交叉点处使用热源被粘附到第四导线片段431d,热源诸如上面描述的激光。粘附的区域被指示在点437、438处。点437是第五导线片段431e和第六导线片段437f的交叉点。粘附点438是第六导线片段431f和在下面的第四导线片段431d的上顶点。
[0036]附加片段可以被布置在结构上以产生期望尺寸的桁架结构。例如,附加沉积和粘附(如在图4C-4F中所示的那些)可以根据需要被重复。另外,应注意的是,本文描述的特定粘附点仅是示例性的,并且片段之间的其他粘附区域是可预期的。
[0037]图4G示出了处于堆叠配置的片段431a_431f的旋转视图。为清楚起见,在导线片段431A-431f之间示出了空隙或间距。在图4H和图41中,片段431a-431f以局部扩展配置分别被示出。图4H示出了三维交联导线桁架结构419的俯视图,并且图41示出了三维交联导线桁架结构419的相应的透视图。参考图4G和4H,导线片段431a-431f在X方向上被扩展以形成三维结构,例如,三维交联导线桁架结构419。可以预期的是,扩展的水平可以被调节以产生三维交联导线桁架结构419的期望的密度或配置。
[0038]图4J和4K示出了处于进一步扩展配置的三维交联导线桁架结构419。图4J示出了三维交联导线桁架结构419的俯视图,并且图4K示出了三维交联导线桁架结构419相应的透视图。由于桁架结构419被扩展成期望的配置,所以三维交联导线桁架结构419可以经受热加工诸如退火操作,以将三维交联导线桁架结构419保持在期望的配置。所产生的被扩展的处于硬化状态的三维配置在图4L中被示出。例如,通过修整三维交联导线桁架结构419至期望的形状和/或大小,图4L中的结构可以被成形为机翼、转子叶片或其他组件。
[0039]导线片段431a_431f可以被扩展到期望的距离,使得每个导线片段431a_431f的锯齿形结构被取向在期望的方向中,因此当载荷被施加时利于定向载荷传递。定向载荷传递在使用相对减少的支撑材料量时允许增加的结构载荷被施加,因此降低了三维交联导线桁架结构419的重量。相反,蜂窝支撑结构(其由纸带结合环氧树脂或胶带形成)不适于支撑在特定方向上的载荷,当与三维交联导线桁架结构419相比时,蜂窝支撑结构可能需要更多蜂窝材料以用于支撑给定载荷。
[0040]三维交联导线桁架结构419还利于热塑性蒙皮的使用(例如图2中所示的蒙皮215),其可以比由其他材料诸如铝形成的可比较的蒙皮更轻。虽然热塑性蒙皮是期望的,但是它们具有与先前使用的支撑结构材料例如蜂窝支持结构的结合问题,这是由材料之间的结合不兼容性导致的。然而,由于材料的相似性,热塑性支撑桁架可以很容易地结合到热塑性蒙皮。例如,热塑性蒙皮可以包括由PEEK和/或PEKK形成的机翼蒙皮或转子叶片蒙皮。
[0041]在一个示例中,热塑性蒙皮的使用可以允许用于保持三维交联导线桁架结构419的刚性或配置的热处理被省略。在这种示例中,导线片段431a-431f可以被扩展成期望的配置,并且然后用在可溶性工具中的可溶性材料可以被施加到扩展结构并且被允许固定,以将导线片段431a-431f保持在扩展配置中。可溶性材料的示例包括从亚利桑那州图森的高级陶瓷制造公司(Advanced Ceramics Manufacturing)可获得的可溶性陶瓷。可以预期的是,具有熔点低于热塑性材料熔点的金属材料也可以被使用。
[0042]热塑性蒙皮可以被施加在所述形状上,并且被加热以在热塑性蒙皮和三维交联导线桁架结构419之间形成结合。可溶性材料然后可以被除去,留下处于期望配置中的三维交联导线桁架结构419,这是由三维交联导线桁架结构419和热塑性蒙皮之间的粘附剂结合导致的。因为没有利用外来粘附剂,所以与以前的结构相比最终结构的重量被进一步降低。
[0043]虽然本文的实施例涉及热塑性材料例如PEEK和PEKK的使用,但是可以预期的是,也可以使用纤维浸渍热塑性材料。在一个示例中,碳纤维浸渍热塑性材料或玻璃纤维浸渍热塑性材料可以被利用;但是,其他纤维的使用也可以预计。浸渍纤维的利用增加了热塑性树脂的强度,从而允许使用更少的热塑性树脂来支撑相同的载荷,并且因此,有利于生产更轻重量的桁架支撑结构。
[0044]在一个实施例中,塑料片段例如导线片段431a_431f在未被浸渍时可以具有约
0.0020英寸到约0.0030英寸的直径,并且当与纤维浸渍时,可以具有小于约0.0020英寸的直径,例如0.0010英寸至约0.0020英寸的直径。在另一示例中,导线片段431a-431f可以具有在约0.001英寸到约0.25英寸范围内的直径。可以预期的是,导线片段431a-431f可以具有圆形横截面或其他横截面。此外,导线片段431a-431f可以是中空的导线,其可提高屈曲强度。
[0045]虽然本文的实施例参考飞行器机翼和转子叶片被描述,但是应当注意的是,本文描述的桁架结构可以有利地用作其它组件的支撑结构,包括飞行器组件外部的那些支撑结构。另外,本文所描述的桁架结构可以被用于容纳流体的容器中,例如燃料箱,这是由于桁架结构的开放性,其允许流体从中流过。此外,虽然本文中的实施例相对于锯齿形图案描述,但是可以设想,其他振荡或重复图案例如正弦图案,也可以被使用。另外,虽然本文中的实施例利用自动铺设装置来定位热塑性导线,但是,可以预期的是,热塑性导线也可被手动定位。
[0046]本发明的优点包括:具有降低的重量和定向承载能力的开放型的支撑结构。由于材料的兼容性,所述支撑结构可以容易地结合到热塑性蒙皮,或者也可以容易地彼此结合以产生更大的支撑结构。
[0047]另外本发明包含根据如下条款所述的实施例:
[0048]条款1.一种支撑结构,其包含:
[0049]三维交联导线桁架结构,其包含结合在一起的多个热塑性导线片段。
[0050]条款2.根据条款I所述的支撑结构,其中所述结合是熔融结合。
[0051]条款3.根据条款I或2所述的支撑结构,其中所述热塑性导线片段每个均包含浸渍在其中的纤维。
[0052]条款4.根据条款3所述的支撑结构,其中所述纤维是碳纤维。
[0053]条款5.根据条款3或4所述的支撑结构,其中所述热塑性导线片段具有在约0.0010英寸至约0.0020英寸的范围内的直径。
[0054]条款6.根据条款1、2、3、4或5所述的支撑结构,其中所述热塑性导线片段包括聚醚酮酮。
[0055]条款7.根据条款1、2、3、4、5或6所述的支撑结构,其中所述热塑性导线片段包括聚醚醚酮。
[0056]条款8.根据条款1、2、3、4、5、6或7所述的支撑结构,其中所述热塑性导线片段由中空的导线形成。
[0057]条款9.根据条款1、2、3、4、5、6、7或8所述的支撑结构,进一步包括布置在所述三维交联导线桁架结构上并且结合到所述三维交联导线桁架结构的蒙皮。
[0058]条款10.根据权利要求8所述的支撑结构,其中所述蒙皮通过熔融结合被结合到所述三维交联导线桁架结构。
[0059 ]条款11.根据条款1、2、3、4、5、6、7、8、9或1所述的支撑结构,其中所述热塑性导线片段具有在0.0010英寸至约0.0020英寸的范围内的直径。
[0060]条款12.根据条款1、2、3、4、5、6、7、8、9、10或11所述的支撑结构,其中所述多个导线片段的密度沿所述支撑结构的长度变化。[0061 ]条款13.—种形成支撑结构的方法,其包含:
[0062]定位热塑性材料的第一导线片段,所述第一导线片段具有第一锯齿形图案;
[0063]在所述第一导线片段上定位热塑性材料的第二导线片段,所述第二导线片段具有从所述第一锯齿形图案偏移的第二锯齿形图案;
[0064]粘附所述第二导线片段到所述第一导线片段;
[0065]在所述第二导线片段上定位热塑性材料的第三导线片段,所述第三导线片段具有所述第一锯齿形图案,所述第三导线片段与所述第一导线片段对齐,并且从所述第二导线片段偏移;以及
[0066]粘附所述第三导线片段到所述第一导线片段。
[0067]条款14.根据条款13所述的方法,还包含扩展所述第一导线片段、所述第二导线片段和所述第三导线片段。
[0068]条款15.根据条款13或14所述的方法,还包含在所述第三导线片段上布置第四导线片段,所述第四导线片段具有所述第二锯齿形图案,所述第四导线片段与所述第二导线片段对齐。
[0069]条款16.根据条款15所述的方法,还包含粘附所述第四导线片段至所述第二导线片段和所述第三导线片段。
[0070]条款17.根据条款16所述的方法,还包含在所述第四导线片段上布置第五导线片段,所述第五导线片段具有第一锯齿形图案并且与所述第一导线片段和所述第三导线片段对齐。
[0071]条款18.根据条款17所述的方法,还包含粘附所述第五导线片段到所述第三导线片段。
[0072]条款19.根据条款13、14、15、16、17或18所述的方法,其中粘附所述第二导线片段到所述第一导线片段包含熔融结合所述第二导线片段到所述第一导线片段。
[0073]条款20.根据条款19所述的方法,还包含在扩展所述第一导线片段、所述第二导线片段和所述第三导线片段之后,热处理所述第一导线片段、所述第二导线片段和所述第三导线片段。
[0074]条款21.根据条款13、14、15、16、17、18、19或20所述的方法,还包含粘附热塑性蒙皮到所述第一导线片段、所述第二导线片段和所述第三导线片段。
[0075]条款22.根据条款13、14、15、16、17、18、19、20或21所述的方法,还包含使用可溶性工具介质将所述第一导线片段、所述第二导线片段和所述第三导线片段保持在扩展配置中。
[0076]虽然前述内容针对本发明的实施例,但本发明的其他和进一步的实施例可以被设计出而不脱离本发明的基本范围,并且本发明的范围通过所附权利要求而确定。
【主权项】
1.一种支撑结构,其包含: 三维交联导线桁架结构(219),其包含结合在一起的多个热塑性导线片段(431a、431b)。2.根据权利要求1所述的支撑结构,其中所述结合是熔融结合。3.根据权利要求1或2所述的支撑结构,其中所述热塑性导线片段(431a、431b)每个均包括浸渍在其中的纤维。4.根据权利要求1或2所述的支撑结构,其中所述热塑性导线片段(431a、431b)由中空的导线形成。5.根据权利要求1或2所述的支撑构件,还包含布置在并且结合到所述三维交联导线桁架结构(219)上的蒙皮(215)。6.根据权利要求1或2所述的支撑构件,其中所述多个导线片段(431a、431b)的密度沿所述支撑结构的长度变化。7.一种形成支撑结构的方法,其包含: 定位热塑性材料的第一导线片段(431a),所述第一导线片段具有第一锯齿形图案; 在所述第一导线片段(431a)之上定位热塑性材料的第二导线片段(431b),所述第二导线片段(431b)具有从所述第一锯齿形图案偏移的第二锯齿形图案; 将所述第二导线片段(431b)粘附到所述第一导线片段(431a); 将热塑性材料的第三导线片段(431c)定位在所述第二导线片段(431b)之上,所述第三导线片段(431c)具有所述第一锯齿形图案,所述第三导线片段(431c)与所述第一导线片段(431a)对齐并且从所述第二导线片段(431b)偏移;以及 将所述第三导线片段(431c)粘附到所述第一导线片段(431a)。8.根据权利要求7所述的方法,还包括扩展所述第一导线片段(431a)、所述第二导线片段(431b)和所述第三导线片段(431c)。9.根据权利要求7或8所述的方法,还包含将第四导线片段(431d)布置在所述第三导线片段(431c)之上,所述第四导线片段(431d)具有所述第二锯齿形图案,所述第四导线片段(431d)与所述第二导线片段(431b)对齐。10.根据权利要求9所述的方法,还包含将所述第四导线片段(431d)粘附到所述第二导线片段(431b)和所述第三导线片段(431c)。11.根据权利要求10所述的方法,还包含将第五导线片段(431e)布置在所述第四导线片段(431d)上,所述第五导线片段(431e)具有所述第一锯齿形图案并且与所述第一导线片段(431a)和所述第三导线片段(431c)对齐。12.根据权利要求11所述的方法,还包含将所述第五导线片段(431e)粘附到所述第三导线片段(431c)。13.根据权利要求7或8所述的方法,其中将所述第二导线片段(431b)粘附到所述第一导线片段(431a)包含将所述第二导线片段(431b)熔融结合到所述第一导线片段(431a)。14.根据权利要求7或8所述的方法,还包含将热塑性蒙皮(215)粘附到所述第一导线片段(431a)、所述第二导线片段(431b)和所述第三导线片段(431c)。15.根据权利要求7或8所述的方法,还包含使用可溶性工具介质将所述第一导线片段(431a)、所述第二导线片段(431b)和所述第三导线片段(431c)保持在扩展配置中。
【文档编号】B64C11/20GK105936335SQ201610118580
【公开日】2016年9月14日
【申请日】2016年3月2日
【发明人】M·H·考索恩, C·E·乌默尔, D·R·克雷格
【申请人】波音公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1