专利名称:用于固定翼飞行器来进行地球物理探测的拖曳组件的利记博彩app
技术领域:
·
本发明涉及用于固定翼飞行器来进行地球物理探測的接收器线圈拖曳组件系统。
背景技术:
地球物理电磁(“EM”)勘探技术可有效地确定地表和地表下的土壌、岩石和其它物体的导电率。可使用基于地面的设备和航空设备来执行地球物理EM勘探。设备由诸如直升机、飞机或飞船之类的飞行器进行运输的航空方法可用于大面积探測。对于机载电磁(“AEM”)系统,可在飞机或直升机以几乎恒定的速度于地面上方大约恒定的高度处沿着几乎平行且接近等间距的航线飞行的同吋,获取探测数据。—些地球物理探測方法是主动的,其中设备是用于将信号传递给目标区域,然后測量对于所传递信号的响应。而其它的地球物理被动探测方法是被动的,其中在并不首先将信号传递至目标区域的情形下測量从目标区域产生的信号。被动地球物理EM勘探方法的示例是音频磁性(“AFMAG”)探測,其中对从诸如闪电放电之类自然发生的原始信号源所产生的电磁(EM)场进行测量。这些电磁场作为由电离层和地球表面所引导的平面波而围绕地球传播。远离测量点发生的闪电活动会产生具有频率在例如8Hz和500Hz之间的近似平坦频谱密度的信号,该信号随着地理位置、天数、季节以及气候条件而改变。在美国专利6,876,202中示出被动AFMAG地球物理电磁勘探方法的示例。期望ー种拖曳组件,该拖曳组件可有效地用于与固定翼飞行器结合。
发明内容
根据ー个示例实施例,提供一种用于固定翼飞行器的航空地球物理电磁(EM)探測拖曳组件系统。该系统包括接收器线圈组件,该接收器线圈组件包括基本上刚性的管状接收器线圈框架和接收器线圏,该接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,而接收器线圈容纳在该内通道内;绞盘系统,该绞盘系统固定于固定翼飞行器,且该绞盘系统具有固定于接收器线圈组件的拖曳线缆并且构造成将拖曳线缆伸出以在探测过程中在接收器线圈处于名义水平定向的情形下、将接收器线圈组件由固定翼飞行器中悬出,以及构造成将拖曳线缆收回以将接收器线圈组件拉拽到固定翼飞行器底侧的收回位置中以便起飞和降落;以及闭锁系统,该闭锁系统用于安装于具有可释放闭锁部件的飞行器底侦牝以在接收器线圈组件处于收回位置时与该接收器线圈组件配合。
根据另一不例实施例,一种航空地球物理电磁(EM)探测系统包括固定翼飞行器;接收器线圈组件,该接收器线圈组件包括基本上刚性的管状接收器线圈框架、接收器线圈以及细长支承部件,该接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,且空气能通过敞开中部区域而穿过接收器线圈框架,接收器线圈容纳在内通道内,而细长支承部件在接收器线圈框架的隔开位置之间贯穿该敞开中部区域延伸;绞盘系统,该绞盘系统固定于该固定翼飞行器,且绞盘系统具有固定于接收器线圈组件的拖曳线缆并且构造成将拖曳线缆伸出以在探测过程中在接收器线圈处于名义水平定向的情形下、将接收器线圈组件由固定翼飞行器悬出,以及构造成将拖曳线缆收回以将接收器线圈组件拉拽到固定翼飞行器底侧的收回位置中以便起飞和降落;闭锁系统,该闭锁系统用于安装于具有可释放闭锁部件的飞行器底侧,以在接收器线圈组件处于收回位置时与细长支承部件配合;以及信号处理设备,该信号处理设备与接收器线圈连通,用以从接收器线圈中接收代表响应于自然发生电气情形而由所探測地貌产生的EM磁场的信号。根据另ー示例实施例,提供ー种使用固定翼飞行器执行航空地球物理探測的方法。该方法包括提供接收器线圈组件,该接收器线圈组件包括基本上刚性的管状接收器线 圈框架和接收器线圏,该接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,空气通过敞开中部区域能穿过接收器线圈框架,而接收器线圈容纳在内通道内;在固定翼飞行器上提供绞盘系统,该绞盘系统具有固定于接收器线圈组件的拖曳线缆并且构造成将拖曳线缆伸出以将接收器线圈组件由固定翼飞行器悬出,以及构造成将拖曳线缆收回以将接收器线圈组件拉拽到固定翼飞行器底侧的收回位置中以便起飞和降落;在固定翼飞行器的底侧上提供闭锁系统,该闭锁系统具有可释放闭锁部件,以在接收器线圈组件处于收回位置时与细长支承部件配合;以及在固定翼飞行器的飞行过程中将拖曳线缆伸出,以使处于名义水平位置中的接收器线圈框架悬置并且接收来自接收器线圈的信号。
在以下说明中提供示例实施例。该说明參见附图,附图中图I是根据示例实施例的航空地球物理电磁(HM)探测拖曳组件系统的立体图,该拖曳组件系统包括悬自拖曳和闭锁组件的接收器线圈组件,且该拖曳和闭锁组件固定于固定翼飞行器。图2是图I所示航空地球物理探測拖曳组件系统的立体图,其中接收器线圈组件嵌套在固定于固定翼飞行器的拖曳和闭锁组件中。图3是图I所示航空地球物理探測拖曳组件系统的立体图,其中接收器线圈组件嵌套在拖曳和闭锁组件中。图3A是图I所示航空地球物理探測拖曳组件系统的拖曳和闭锁组件的闭锁系统的立体图。图4是图I所示航空地球物理探测接收器线圈组件系统的拖曳组件的立体图。图5示出根据本发明的一个示例实施例的AFMAG地球物理勘探系统的视图,该AFMAG地球物理勘探系统包括图I所示的航空地球物理探测拖曳组件系统。图6是沿图4中剖线VI-VI所剖取的根据示例实施例的接收器线圈组件的侧部部件之一的剖视图。
图7是沿图6中剖线VII-VII所剖取的接收器线圈组件的侧部部件之一的剖视图。图8是沿图4中剖线VI-VI所剖取的根据另ー示例实施例的接收器线圈组件的侧部部件之一的剖视图。图9是沿图8中剖线X-X所剖取的接收器线圈组件的侧部部件之一的剖视图。图10是根据另ー示例实施例的接收器线圈组件的侧部部件之一的剖视图。
具体实施例方式图I和2示出根据本发明示例实施例的航空地球物理电磁(EM)探測拖曳组件系统100,该拖曳组件系统100包括接收器线圈组件112和拖曳及闭锁组件102。拖曳及闭锁 组件102固定于固定翼飞行器104的底侧并且包括绞盘系统105,该绞盘系统具有可伸縮的拖曳绳索110,用以悬置和收回接收器线圈组件112。绞盘系统105可例如包括液压驱动的绞盘,该绞盘位于飞行器机身内部,且拖曳绳索110延伸通过飞行器机身中的开ロ 106。在图I中示出,接收器线圈组件112从拖曳及闭锁组件102的拖曳线缆110悬挂于悬置位置。具体地说,在图I中示出接收器线圈组件112,其中在接收器线圈组件112从飞行器展开或缩回至飞行器时,拖曳线缆110处于部分伸出或部分缩回的位置。借助非限制的示例,该接收器线圈组件112可以悬置约100米(或更大或更小的量),用以在飞行时执行地球物理探測。图2示出处于缩回位置的接收器线圈组件112,该接收器线圈组件由拖曳及闭锁组件102固定于飞行器104的底侧。通常,在不执行探测时、例如在飞向探測位置或飞离探測位置时以及在起飞和降落过程中,接收器线圈组件112会保持在缩回位置。在地球物理探測过程中,将接收器线圈组件112如图I所示悬置可减轻由拖曳飞行器104所产生的噪声。參见图I和4,接收器线圈组件112包括基本上刚性的气动管状接收器线圈框架120,该接收器线圈框架限定矩形内部通道124,且矩形多匝圈接收器环路或线圈116 (由虚线示出)容纳在该内部通道124中。可从附图中理解的是,接线器线圈框架120形成环路,使得内部通道124是连续闭环。在所示的实施例中,接收器线圈框架120具有基本上矩形形状,该矩形形状限定了中部敞开区域或开ロ 122的周缘。内部通道124围绕中部敞开区域122延伸,且空气可穿过该中部敞开区域122。矩形接线器线圈框架120由成对平行管状侧部框架部件130、132形成,该成对平行管状侧部框架部件由前后平行管状框架部件134、136所互连。在所示的实施例中,管状侧部框架部件130、132长于前后平行管状框架部件134、136,且垂直稳定翅140定位在矩形接收器线圈框架120的后端或尾端附近,以助于在飞行过程中使框架保持沿恒定方向定向,且接收器线圈120处于使其轴线垂直定向的标称水平定向中。在一示例实施例中,呈细长支承部件142形式的中部横梁横贯中部开ロ 122的中央而从前部管状框架部件134延伸至后部管状框架部件136。如所示的实施例,中部支承部件142可基本上定位在侧部管状框架部件130、132之间并平行于侧部管状框架部件,并且包括中部拖曳绳索紧固件144,且拖曳绳索110连接于该紧固件144。管状框架部件130、132,134和136中的每个以及支承部件142可成形为赋予接收器线圈拖曳组件112 —定形状,以减轻空气流动阻力和振动并且还使该拖曳组件在被拖曳的同时保持恒定的定向。这样,管状部件相对于它们在接收器线圈框架内的相应定向可以是流线型的和整流的,例如后部管状框架部件136可具有平翼状构造。管状框架部件130、132、134和136以及支承部件142可以基本上由诸如玻璃纤维之类电绝缘且非磁性的材料形成。參见图1-3A,拖曳和闭锁组件102包括机械或液压驱动的闭锁系统150。在图3A中最佳示出,在所示的实施例中,闭锁系统150包括隔开的前部和后部闭锁部件152、154,用以在接收器线圈组件在飞行器104下方处于其缩回闭锁位置时,与接收器线圈组件112的中部支承部件142可靠地配合。前部和后部闭锁部件152、154中的每个包括相应的成对对置地枢转安装的闭锁臂158和上部支架部件156,该成对闭锁臂158用以与中部支承部件142的外表面的相对两侧配合,而上部支架部件156用以与中部支承部件142的顶面配合。闭锁臂158可包括扩开下端,以在接收器线圈组件进入或离开其收回位置而运动时,作为用于中部支承部件142的引导件。在所示的实施例中,拉杆162可用于机械地联结闭锁臂158,使得前部和后部闭锁部件152、154 —致地操作。闭锁系统150包括撑 杆系统160,用以将闭锁系统固定于飞行器104。替代的闭锁系统构造也可用于将接收器线圈组件112固定于飞行器,上述闭锁系统仅仅是ー个示例。再次转向接收器线圈框架120,在一示例实施例中,框架构造成可沿着水平平面分开,以使得接收器线圈136能插入、维护以及从矩形内部线圈通道126中移除。在至少ー些示例实施例中,弹性悬置系统用于将接线器线圈116固定在矩形内部线圈通道124内,为此,图6-10示出了三个不同的可能接线器线圈悬置系统。在图6和7中示出单个悬置接收器线圈悬置系统。此种系统包括矩形内部框架部件12A,该内部框架部件通过多个紧固组件40而弹性地悬置在线圈通道124的中部,这些紧固组件沿着管状框架部件130、132、134和136中每个的长度而在内部隔开(虽然在图6中示出这些部件具有圆形横截面,但从之前的附图中可理解的是,这些部件可具有不同的横截面形状)。矩形内部框架部件12A可以是接收器线圈固定在其中的刚性的顶部敞开凹槽。每个紧固组件40包括弹性悬置部件32,该弹性悬置部件在管状框架部件130、132、134和136的内壁以及内部框架部件12A之间延伸。在一个示例实施例中,每个弹性悬置部件32 (例如可由橡胶形成)在相対的第一和第二端部38处固定于内部框架部件12A的侧部上的纵向隔开位置,而在大约中点36处固定于管状框架部件130、132、134和136的内壁,使得弹性悬置部件32形成“V”形,这会连同侧向カー起将相对的纵向カ施加于内部框架部件12A。(应理解的是,“V”形弾性部件可由两个单独的弾性件所替代。)紧固块34可通过粘合剂或其它紧固件固定于管状框架部件130、132、134和136的内壁,从而提供一表面用以通过螺栓或其它紧固件来固定中点36。在所示的实施例中,紧固组件40成对位于内部框架部段12A的相对两侧上,使得由弹性悬置部件32将基本上相等但相对的力施加于内部框架部段12A,从而内部框架部段12A的正常静止位置位于由管状框架部件130、132、134和136所限定的线圈通道124中心处。在一个示例实施例中,对开管状框架部件130、132、134和136中的弹性悬置部件32都固定于该框架部件的一个半部(例如,底半部),以便于在利用另ー半部来将接收器线圈通道124闭合之前,将内部框架部段12A固定就位。弾性部件32可由橡胶或其它合适的弾性或弾力材料形成。紧固组件40可采用除了图6和7所示构造以外的许多不同构造,以使内部框架部件12A弾性地悬置。在一些实施例中,内部框架部件12A具有V形横截面,并且限定开ロ槽42,该开ロ槽提供容纳接收器线圈16A的内部线缆通道44。在一些示例实施例中,内部框架部件12A能替代地具有半矩形或半圆形或圆形或者其它的横截面区域。在至少ー些实施例中,接收器线圈116形成为环路或 多匝圈线圈,且该环路或多匝圈线圈由带子和/或其它类型的紧固机构固定在槽42中。參见图8和9,在另ー替代实施例中,双悬置系统用于将接收器线圈内部框架12A悬置在接收器线圈组件112的外部管状框架部件130、132、134和136内。虽然示作具有圆柱形横截面,但管状框架部件130、132、134和136可具有除了前面附图所示构造以外的其它横截面构造。在图8和9所示的双悬置构造中,沿着每个内部框架部件12A的长度而定位的悬置组件40连接于中间框架部件74,该中间框架部件再从外部框架部件130、132、134和136悬下。例如,第一弹性悬置部件32相对地将内部框架部件12A悬置在圆柱形或半圆柱形中间框架部段74的中心,而该中间框架部段74则以类似的方式由附加弹性部件76对中地悬置,且这些附加弹性部件76在中间框架部段74和外部框架部件130、132、134或136之间延伸。在图9中可观察到,附加弹性部件76也可设置成V形型式,从而以类似于第一弹性悬置部件32的方式发挥抵抗纵向运动以及径向运动的作用。如上所述,中间框架部段74可以是半圆柱形的,这允许在组装和修理过程中能容易地够到框架部段74的内部。因此,在图8和9所示的实施例中,支承接收器线圈116的内部框架部段20A通过多个第一弹性悬置部件32而悬挂于多个相应中间框架部段74,这些中间框架部段再通过ー个或多个第二弹性悬置部件76 (例如可由橡胶形成)而从外框架14A悬下。内部框架部段12A还可定位在通道124的中心或附近。如下区域可涂覆有诸如硅酮之类的减磨剂(i)在第一悬置部件32以及内部框架部段12A和中间框架部段74的各个之间的连接部附近,以及(ii)在第二悬置部件76以及中间框架部段74和外部框架部件的各个之间的连接部附近。硅酮涂层可减小由于附连点或连接点处摩擦而产生的噪声。在一些示例实施例中,第一悬置部件可通过线缆扎匝连接于相应的框架部段,且该线缆扎匝穿过预先钻出的孔或所附连的环部。或者,可使用任何数量的其它可能方法来附连第一和第二悬置部件,这些方法包括钩子或经加工的钩状附连点连接于附连点,藉此悬置部件可环绕在钩子周围,然后由硅酮覆盖;或者,第一和第二悬置部件上的环部可螺合到附连点中;另一可能性是将第一和第二悬置部件胶合至内部框架,并且胶合至外部框架或中间框架部段。如图8和9所示,第一和第二悬置部件32和76以超过90度的角度延伸,从而分别使内部框架部段12A和接收器线圈116在内部接收器线圈通道124中的中部位置处径向地且纵向地偏置。上述单悬置结构和双悬置结构可在至少ー些实施例中通过降低接收器线圈组件在接收器线圈上的振动效果来改进接收器线圈组件的信噪比SNR。在其它示例实施例中,可使用其它支承机构,这些支承机构包括三悬置弹簧并且利用泡沫来围绕线圈,或者以降噪的方式将线圈定位在内部框架中部的其它装置。图10示出用于内部框架12A的另一可能悬置构造。图10所示的构造类似于上文參见图6和7所描述的构造,但增加了中间刚性杆94,该中间刚性杆94在通道124中纵向地行进,且该通道124位于内部框架12A的相对两侧和由外部框架部件130、132、134或136所限定的壁之间。内部框架12A的一侧上的弹性悬置部件32各自在大约中点98处附连于其中ー个刚性杆94,而内部框架12A的相对侧上的弹性悬置部件32各自在中点98处附连于另ー个刚性杆94。杆94可将悬置部件系结在一起,以将施加于任何单个部件的力散布至多个悬置部件中。此外,杆94自身可用作能量吸收结构。在一些实施例中,杆94可破坏成较小的杆部段。可例如在专利申请PCT/CA2009/000607和U. S. 12/118,194中发现适合于用在接收器线圈组件112中的线圈悬置系统的又ー些示例实施例,且这些专利申请的相应内容以參见的方式纳入本文。例如与以往由固定翼飞行器拖曳的鱼雷式探測器(bird)相比,使用具有诸如接收器线圈拖曳组件112之类中部敞开结构的矩形框架在至少ー些构造中能以轻型且空气动力学的方式支承相对较大的环状接收器线圈116。虽然接收器线圈拖曳组件已描述成具有带有中部支承部件的矩形环状构造,但可替代地使用其它中部敞开框架型式,例如包括三角形构造、五边形或更多边的简单多边形构造或者圆形或卵形或椭圆形构造等等。
在一些示例实施例中,地球物理电磁(EM)探测拖曳组件系统100构造成用在AFMAG型地球物理勘探系统中,其取决于例如在上述美国专利号6,876,202中示出的翻转角或倾斜角测量值,该专利以參见的方式納入本文。在此种应用中,姿态传感器可位于接收器线圈组件112上,从而可检测出该组件的定向,并且将该定向信息用在从接收器线圈组件所收集的信号中得到的倾斜角信息的计算中。例如,ー个或多个加速度计可固定于线圈组件112来确定姿态信息。或者,GPS接收器可在接收器线圈组件上放置于隔开的位置处,以追踪其姿态。在这点上,图5示出根据ー示例实施例的AFMAG探测系统200,该探测系统包括地球物理电磁(EM)探测拖曳组件系统100。如上所述,AFMAG系统对从自然发生的原始信号源中产生的EM磁场进行测量。该AFMAG系统200包括地球物理电磁(EM)探测拖曳组件系统100和接地组件14。地球物理电磁(EM)探测拖曳组件系统100安装于固定翼飞行器以被拖曳在一定探測区域上方,并且包括接收器线圈116和低噪声放大器18。在一示例实施例中,接收器线圈116构造成在飞行过程中具有垂直偶极定向,以提供沿Z轴线的电磁场测量。拖曳组件系统100连接于诸如计算机22之类的信号处理设备,该信号处理设备大体设置在飞行器内部并且包括模数转换装置(ADC)24,该模数转换装置24连接成接收低噪声放大器18的输出。机载计算机22装备有ー个或多个存储构件,这些存储构件可包括RAM、闪存、硬盘驱动器或其它类型的电子存储件,并且可构造成对于从传感器16所接收的信号执行数据处理功能。在一示例实施例中,拖曳组件系统100还包括空间姿态检测装置28,来对空气组件12和特定线圈116在飞行中的滚动、俯仰或偏航进行补偿,而横滚、俯仰或偏航会致使由电磁传感器线圈116对电磁场产生的倾斜角的測量发生异常。空间姿态检测装置28包括侧斜仪装置,该测斜仪装置用于对线圈组件112尤其是传感器线圈116在以任何给定量进行飞行的过程中的滚动、俯仰和偏航进行測量。除了偏航测量以外,空气姿态检测装置28可包括诸如罗盘之类使用磁场矢量的方向来追踪飞行路线的装置。在示例实施例中,线圈组件112或承运飞行器104可包括全球定位系统(“GPS”)装置,从而从传感器线圈116和空间姿态检测装置28所获得的数据能与地理位置和GPS时间相关联,并且最終用于计算机22或远程数据处理计算机26,以校正磁场倾斜角的測量,从而反映线圈组件112尤其是传感器线圈116的运动,并使从传感器116获得的磁场数据与线圈组件112的空间姿态数据相关联。这使得探測数据的产生能基于传感器线圈116的空间姿态在飞行过程中的变化来进行调整。在一示例实施例中,机载设备还包括地理地形測量装置36,该地理地形測量装置连接于机载计算机22以对地质地貌进行补偿,否则这些地形地貌即使在地表面之下存在及其均匀的岩石情形下、会通过使倾斜角产生假异常而使水平磁场失真。地形地貌测量装置36收集飞行后(或者在一些情形中实时)的数据,来计算探測区域的地形地貌的倾斜角。在一个示例实施例中,地形地貌测量装置36包括第一高度计装置和第二高度计装置,该第一高度计装置提供与机载传感器16在固定參考系(例如海平面)上方的绝对海拔有关的数据,而第二高度计装置提供与机载传感器16在实际探測地形上方的相对海拔有关的数据。在探測区域的当地坐标系中将相对海拔数据和绝对海拔数据进行比较,以对探測区域的地形地貌进行评估而能够用于计算探測区域地形地貌的倾斜角。接地组件14构造成放置在静止基点上,并且包括至少ー对电磁传感器17,该至少一对电磁传感器通过低噪声放大器19连接于接地组件计算机23。在一示例实施例中,电磁 传感器17是接收器线圈,该接收器线圈构造成提供沿X和Y轴线的磁场测量。计算机23包括模数转换装置(ADC) 25,该模数转换装置连接成接收低噪声发电器19的输出,并且该计算机装备有ー个或多个存储构件,这些存储构件可包括RAM、闪存、硬盘驱动器或其它类型的电子存储件,并且可构造成对于从传感器17所接收的信号执行数据处理功能。接地组件还可包括GPS接收器,使得从传感器17所接收的X和Y轴线数据能利用GPS时钟时间而进行时间标记,用以与由机载计算机22所记录的Z轴线数据相关联。(Z轴线是垂直轴线,而X和Y轴线使正交的水平轴线。)在一示例实施例中,由机载计算机22所收集的数据和由接地计算机23所收集的数据最终经由相应的通信链路30、32 (可以是有线或无线链路或者可包括存储器介质的物理传输)传输至数据处理计算机26,在该数据处理计算机26处,从传感器16和17所获得的磁场数据、从空间姿态检测装置28所获得的姿态数据、从地形地貌测量装置36所获得数据以及从与空气组件12和接地组件14中每个相关联的GPS传感器所获得的GPS数据都可进行处理,以使用例如在美国专利6,876,202中所陈述的技术来确定用于探测视域的翻转特性。然后,该信息可用于确定探測位点的导电率型式,以识别未来探查的异常。因此,在一个示例实施例中,现在将借助非限制的示例来对接收器线圈组件112(还称作“探測器”)进行描述。在该示例中,探測器112容纳多匝圈矩形环或线圈116以及它们的悬置系统和电子器件。在拖曳飞行中,线圈116的轴线名义上是垂直的。环路的尺寸由起飞和降落过程中在用于装载环的拖曳飞行器下方可得到的空间所限制。在Cessna208B拖曳飞行器的情形中,借助非限制的示例,环尺寸沿侧向方向可以是3m中心矩,而沿纵向方向可以是4m中心矩。在较大拖曳飞行器的情形中,例如在横向上和纵向上高达8m的较大环可用于提供改进的信噪比。例如在横向上和纵向上是3m的较小环可在用于较小飞行器时提供有用的效果。敞开中部区域122所具有的尺寸恰小于线圈116的尺寸。环、悬置系统以及电子器件的质量可例如大约是60kg,近似均匀地分布在接收器线圈支承框架的周围,而在ー些实施例中,探測器可具有150kg上下的总质量。在一个示例中,探測器112将具有内径至少为0. 22m的圆形横截面的封闭空通道224以用于安装环路。多个附连点设置在通道224的内表面上以悬置线圈116。探測器112可沿着水平平面分开以打开通道,从而使得无需断开环就可以安装或维护环116和悬置件。
在一些示例实施例中,探测器112由电绝缘和非磁性的材料构成,除了由黄铜制成的紧固件以外,还可使用铝或316不锈钢。探測器112的各部件是流线型且整流的,以使由经过该探測器112的气流所产生的振动最小化。在探测飞行的一个示例中,探測器112通过IOOm线缆由处于80-120节(knot)空速的诸如Cessna 208B商用飞行器之类的固定翼飞行器拖曳。为了起飞、巡航以及降落,探測器112固定在附连于飞行器机身底部的支架(闭锁系统150)中。在一些示例实施例中,拖曳线缆110可以是包括承载线缆的机电线缆,该机电线缆具有等同于RG58A/U共轴线缆或更佳的导电器,或者替代地可包含至少四个扭转成对的至少AWG20。拖曳线缆110的承载线缆基本上由非磁性材料制成。拖曳和闭锁组件包括液压动カ绞盘系统105,该绞盘系统安装在飞行器104上,并且在飞行过程中在飞行器中操作者的控制下,该绞盘系统将探測器112展开并且回收到支架。在一个示例中,在拖曳飞行中,探測器112气动地稳定,且用于环116的通道224的俯仰和滚动姿态在水平±5°的范围内。在一些示例实施例中,探測器上的拖曳点可通过调整拖曳线缆紧固件144的位置而在地面上人工地前、后变化,以实现水平的飞行姿态。机电拖曳线缆的替代是使用非电气拖曳线缆,并且使用电池操作的无线电遥测系统来将数据传输至飞行器。 对本领域的技术人员可理解的是,还可实践本文所描述实施例的其它变型,而不偏离本发明的精神和范围。因此,其它修改也是可以的。
权利要求
1.一种用于固定翼飞行器的航空地球物理电磁(EM)探測拖曳组件系统,包括 接收器线圈组件,所述接收器线圈组件包括基本上刚性的管状接收器线圈框架和接收器线圈,所述接收器线圈框架形成围绕中部敞开区域延伸的连续内通道,且所述接收器线圈各纳在所述内通道内; 绞盘系统,所述绞盘系统用于固定于所述固定翼飞行器,所述绞盘系统具有固定于所述接收器线圈组件的拖曳线缆,并且构造成将所述拖曳线缆伸出以在探测过程中在所述接收器线圈处于名义水平定向的情形下、将所述接收器线圈组件由所述固定翼飞行器悬出,以及构造成将所述拖曳线缆收回以将所述接收器线圈组件拉拽到所述固定翼飞行器底侧的收回位置中以便起飞和降落;以及 闭锁系统,所述闭锁系统用于安装于飞行器底侧并且具有可释放闭锁部件,以在所述接收器线圈组件处于所述收回位置时与所述接收器线圈组件配合。
2.如权利要求I所述的系统,其特征在于,所述接收器线圈框架由成对的隔开平行管状侧部框架部件形成,且所述成对的隔开平行管状侧部框架部件在其前端处由前部管状框架部件互连,而在其后端处由后部管状框架部件互连。
3.如权利要求2所述的系统,其特征在于,所述系统包括细长支承部件,所述细长支承部件从所述前部管状框架部件至所述后部管状框架部件横贯所述敞开中部区域延伸,其中所述拖曳线缆附连于所述细长支承部件。
4.如权利要求3所述的系统,其特征在于,所述闭锁部件包括第一对和第二对相对的闭锁臂,用于对所述细长支承部件进行可释放地闭锁,以在所述接收器线圈组件处于所述收回位置时与所述接收器线圈组件配合。
5.如权利要求3所述的系统,其特征在干,所述拖曳线缆通过拖曳线缆紧固件附连于所述细长支承部件,且所述拖曳线缆紧固件可在所述细长支承部件上前后运动,以对所述接收器线圈组件的飞行姿态进行调节。
6.如权利要求2至5中任一项所述的系统,其特征在于,所述管状侧部框架部件比所述前部和后部管状框架部件长,且垂直稳定翅相对于飞行方向定位在所述接收器线圈框架的后端附近以助于使所述接收器线圈组件在飞行过程中悬置时保持沿恒定的方向定向,同时所述接收器线圈处于使其轴线垂直定向的名义水平定向中,并且所述后部管状框架部件具有平的翼状构造。
7.如权利要求2至6中任一项所述的系统,其特征在于,所述管状侧部框架部件和所述管状前部和后部框架部件各自由上部和下部形成,且所述上部和下部能彼此分开而露出所述内通道。
8.如权利要求I至7中任一项所述的系统,其特征在于,所述系统包括信号处理设备,所述信号处理设备用于从所述接收器线圈中接收代表响应于自然发生电气情形而产生的EM磁场的信号。
9.如权利要求I至8中任一项所述的系统,其特征在于,所述接收器线圈弹性悬置在所述内通道内。
10.如权利要求9所述的系统,其特征在于,所述接收器线圈支承在弾性地悬置在所述内通道内的内部框架部段内。
11.如权利要求10所述的系统,其特征在于,所述弹性部件从所述管状接收器线圈框架的内壁延伸至所述内部框架部段。
12.如权利要求11所述的系统,其特征在于,所述弹性部件设置成将反作用力施加在所述内部框架部段上,以使所述内部框架部段在所述内部通道内对中地偏置。
13.如权利要求I至12中任一项所述的系统,其特征在于,所述接收器线圈具有3米和8米之间的最小直径。
14.ー种航空地球物理电磁(EM)探测系统,包括 固定翼飞行器; 接收器线圈组件,所述接收器线圈组件包括基本上刚性的管状接收器线圈框架、接收器线圈以及细长支承部件,所述接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,且空气能通过所述敞开中部区域而穿过所述接收器线圈框架,所述接收器线圈容纳在所述内通道内,而所述细长支承部件在所述接收器线圈框架的隔开位置之间贯穿所述敞开中部区域延伸; 绞盘系统,所述绞盘系统固定于所述固定翼飞行器,所述绞盘系统具有固定于所述接收器线圈组件的拖曳线缆,并且构造成将所述拖曳线缆伸出以在探测过程中在所述接收器线圈处于名义水平定向的情形下、将所述接收器线圈组件由所述固定翼飞行器悬出,以及构造成将所述拖曳线缆收回以将所述接收器线圈组件拉拽到所述固定翼飞行器底侧的收回位置中以便起飞和降落; 闭锁系统,所述闭锁系统用于安装于飞行器底侧并且具有可释放闭锁部件,以在所述接收器线圈组件处于所述收回位置时与所述细长支承部件配合;以及 信号处理设备,所述信号处理设备与所述接收器线圈连通,用以从所述接收器线圈中接收代表响应于自然发生电气情形而由所探測的地貌产生的EM磁场的信号。
15.如权利要求14所述的系统,其特征在于,所述接收器线圈框架由成对的隔开平行管状侧部框架部件形成,且所述成对的隔开平行管状侧部框架部件在其前端处由前部管状框架部件互连,而在其后端处由后部管状框架部件互连。
16.如权利要求15所述的系统,其特征在于,所述细长支承部件从所述前部管状框架部件至所述后部管状框架部件横贯所述敞开中部区域延伸,其中所述拖曳线缆附连于所述细长支承部件。
17.如权利要求16所述的系统,其特征在于,所述闭锁部件包括第一对和第二对相对的闭锁臂,用于对所述细长支承部件进行可释放地闭锁,以在所述接收器线圈组件处于所述收回位置时与所述接收器线圈组件配合。
18.如权利要求14至17中任一项所述的系统,其特征在于,所述接收器线圈具有3米的最小直径。
19.ー种使用固定翼飞行器执行航空地球物理探測的方法,包括 提供接收器线圈组件,所述接收器线圈组件包括基本上刚性的管状接收器线圈框架和接收器线圈,所述接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,空气通过所述敞开中部区域能穿过所述接收器线圈框架,而所述接收器线圈容纳在所述内通道内; 在所述固定翼飞行器上提供绞盘系统,所述绞盘系统具有固定于所述接收器线圈组件的拖曳线缆并且构造成将所述拖曳线缆伸出以将所述接收器线圈组件由所述固定翼飞行器悬出,以及构造成将所述拖曳线缆收回以将所述接收器线圈组件拉拽到所述固定翼飞行器底侧的收回位置中以便起飞和降落; 在所述固定翼飞行器的底侧上提供闭锁系统,所述闭锁系统具有可释放闭锁部件,以在所述接收器线圈组件处于所述收回位置时与所述细长支承部件配合;以及 在所述固定翼飞行器的飞行过程中将所述拖曳线缆伸出,以使处于名义水平位置中的接收器线圈框架悬置并且接收来自所述接收器线圈的信号。
20.如权利要求19所述的方法,其特征在于,所述信号代表响应于自然发生的电气情形而由探測地貌所产生的磁场。
全文摘要
一种用于固定翼飞行器的航空地球物理电磁(EM)探测拖曳组件系统,包括接收器线圈组件,该接收器线圈组件包括基本上刚性的管状接收器线圈框架和接收器线圈,该接收器线圈框架形成围绕敞开中部区域延伸的连续内通道,而接收器线圈容纳在该内通道内;绞盘系统,该绞盘系统具有固定于接收器线圈组件的拖曳线缆,用以将接收器线圈组件延伸到探测位置;以及闭锁系统,该闭锁系统用于安装于飞行器底侧并且具有可释放闭锁部件,以在接收器线圈组件处于收回位置时与接收器线圈组件配合。
文档编号B64D3/00GK102770784SQ201080058280
公开日2012年11月7日 申请日期2010年10月21日 优先权日2009年10月23日
发明者E·B·莫里森, E·汤森 申请人:吉欧泰科航空物探有限公司