用于控制再生制动量的系统和方法
【专利摘要】本发明提供一种用于控制再生制动量的系统和方法。其中,用于控制再生制动量的系统包括:行驶信息检测器,其被配置成检测制动踏板是否工作,并检测换档信息;以及混合动力控制单元,其被配置成基于换档信息,在实际换档过程中固定再生制动量,并且在未执行实际换档时,利用所需制动力来计算再生制动量。
【专利说明】
用于控制再生制动量的系统和方法
技术领域
[0001]本发明涉及一种用于控制再生制动量的系统和方法,更具体涉及一种在换档(shift)过程中控制再生制动量的技术。
【背景技术】
[0002]电动车辆是具有由存储在电池中的电能驱动的电动机,并利用电动机的全部或一部分驱动力作为动力源的一类车辆。当今,电动车辆分为利用电池电能作为动力源的纯电动车辆(EV),和具有内燃机以便为电池充电和/或利用从发动机产生的动力来驱动车辆的混合动力电动车辆(HEV)。
[0003]通常,在车辆制动期间,电动车辆利用一部分制动力发电,并将所产生的电能充入电池。因此,电动车辆利用依据车辆行驶速度的动能的一部分作为所需的能量,以驱动发动机,同时实现动能减小(即,行驶速度减小),并产生电能。上述制动方法被称作再生制动。
[0004]通过反向驱动单独的发电机或电动机,可以在再生制动期间产生电能。通过在电动车辆制动期间对再生制动进行控制,可改善电动车辆的行驶距离(例如,增大行驶距离),并改善混合动力电动车辆的燃料效率,并减少有害废气的排放。
[0005]参考图1,现有技术计算所需制动力来计算再生制动量(SlO),利用所需制动力计算干预前电动机转矩(S20),然后利用干预前电动机转矩计算再生制动量(S30)。
[0006]在不需要换档的一般条件下,通过调节干预后电动机转矩来控制变速器的输入转矩,并通过离合器和变速器中的制动元件的滑动,通过干预前电动机转矩的剖面(profile)来确定变速器的输出轴转矩。在换档的多个实例中,通过执行如上所述的控制,可以更准确地估算变速器的输出轴的转矩,因此可改善再生制动系统的驾驶性能和燃料效率。然而,在换档期间,由于离合器和变速器中制动元件的滑动,可增大转矩。因此,输入轴的转矩通过转矩干预而减小,从而与变速器输出轴转矩相对应。当前,在车辆制动期间,通过在进入换档之前参考干预前转矩进行换档。因此,即使在驾驶者的制动意图改变时,驾驶者的意图仍不会反映到换档上(例如,实际上没有换档)。
[0007]参考图2,即使在换档期间制动力增大时,仍利用干预前电动机转矩来计算再生制动量,可能会错误地计算再生制动量。换言之,当在换档期间开始制动时,混合动力控制单元(HCU)被配置成因驾驶者的所需制动增大,而产生干预前电动机转矩。然而,由于变速器控制单元(TCU)参考换档前的电动机转矩,因此制动力丧失,因此产生推动感觉。因此,在现有技术中,即使在换档期间,仍利用干预前电动机转矩来计算再生制动量,从而错误地将没有执行充电的区域确定成执行再生制动的情况。
【发明内容】
[0008]为了解决现有技术中存在的上述问题,同时完整保留现有技术具有的各个优点而提出本发明。本发明一方面提供一种用于控制再生制动量的系统和方法,其可确定在实际换档期间是否进入制动,以便将驾驶者的所需再生制动转矩假定成在实际换档之前的转矩,并防止干预前电动机转矩增大,从而防止错误地计算再生制动量。
[0009]根据本发明的示例性实施例,用于控制再生制动量的系统可包括:行驶信息检测器,其被配置成检测制动踏板是否工作,并检测换档信息;以及混合动力控制单元(例如,混合动力控制器),其被配置成基于换档信息,在实际换档过程中固定再生制动量,并且在未执行实际换档时,利用所需制动力来计算再生制动量。
[0010]混合动力控制单元可被配置成,在换档过程中,基于制动踏板是否工作来确定所需制动力是否增大。混合动力控制单元可被配置成,在换档过程中,当所需制动力增大时固定再生制动量,并且在所需制动力保持大致恒定或减小时计算再生制动量。混合动力控制单元可被配置成,在实际换档结束之后,将干预前电动机转矩的绝对量增加到与所需制动力一样大。
[0011]根据本发明另一种示例性实施方式,提供一种用于控制再生制动的方法,包括以下步骤:计算所需制动力;确定换档是否被执行;当换档未被执行时,利用干预前电动机转矩来计算再生制动量;在换档过程中,确定所需制动力是否增大;以及在换档过程中,当所需制动力增大时,将再生制动量固定到之前的再生制动量。
[0012]该方法还可包括以下步骤:在换档过程中,当所需制动力未增大时,利用干预前电动机转矩来计算再生制动量。此外,该方法可包括以下步骤:在换档结束时,利用所增大的所需制动力来计算干预前电动机转矩,并且利用干预前电动机转矩来计算再生制动量。在换档结束时,增大的所需制动力以三级斜率(3-stage slope)来应用。
【附图说明】
[0013]通过下面的详细描述,并结合附图,本发明的上述及其它目的、特征和优点将会更加显而易见,其中:
[0014]图1是示出根据现有技术的用于控制再生制动量的一般方法的示例性流程图;
[0015]图2是示出根据现有技术,取决于再生制动量的一般控制的实验值的示例性图表;
[0016]图3是根据本发明示例性实施例的用于控制再生制动量的系统的示例性配置图;
[0017]图4是示出根据本发明示例性实施例的用于控制再生制动量的方法的示例性流程图;
[0018]图5是示出根据本发明示例性实施例,取决于再生制动量的实验值的示例性图表。
[0019]附图标记说明:
[0020]101:行驶信息检测器
[0021]106:电池。
【具体实施方式】
[0022]可以理解的是,本文中所使用的术语“车辆”或“车辆的”或其它类似的术语包括一般而言的机动车辆,比如包含运动型多用途车辆(SUV)、公共汽车、货车,各种商用车辆的客车、包含各种轮船和舰船的船只、飞行器等等,并且包括混合动力车辆、电动车辆、混合动力电动车辆、氢动力汽车和其它替代燃料汽车(例如,从除了石油以外的资源中取得的燃料)。如在本文中所引用的,混合动力车辆是具有两种或多种动力来源的车辆,例如汽油动力车辆和电动动力车辆二者。
[0023]尽管示例性实施例被描述为使用多个单元来执行示例性过程,然而可以理解的是,该示例性过程还可以由一个或多个模块来执行。另外,可以理解的是,术语控制器/控制单元指的是包括存储器和处理器的硬件装置。存储器被配置成存储模块,处理器被专门配置成执行上述模块,从而执行一个或多个过程,下面进一步详述。
[0024]此外,本发明的控制逻辑可被实施为包含由处理器、控制器等执行的可执行程序指令的计算机可读介质上的非暂时性计算机可读介质。计算机可读介质的例子包括,但不局限于,ROM、RAM、光盘(CD)-ROM、磁带、闪存盘、智能卡和光数据存储装置。计算机可读记录介质也可以分布在连接计算机系统的网络中,以使计算机可读介质可以以分布式方式,例如,通过电信息通信服务器或控制器区域网(CAN),被存储和执行。
[0025]本文所用的术语仅用于描述特定实施例的目的,而并非旨在限制本发明。除非上下文明确指出,否则如本文中所使用的单数形式“一”、“一个”和“该”等意图也包括复数形式。还应该理解的是,在本说明书中使用“包括”和/或“包含”等术语时,是意图说明存在该特征、整数、步骤、操作、元素和/或组件,而不排除一个或多个其它特征、整数、步骤、操作、元素、组件、和/或其组合的存在或增加。如本文中所使用的,术语“和/或”包括一个或多个相关列出项目的任何和所有组合。
[0026]在下文中,将参考附图,详细描述本发明的示例性实施例,以使本领域技术人员能够容易地实现本发明的本质。
[0027]本发明的示例性实施例公开一种在未执行换档的一般情况下利用干扰前电动机转矩计算再生制动量,在换档期间将再生制动量调整到之前的再生制动量,在换档结束时将干扰前的电动机转矩的绝对量增加到与驾驶者的所需制动力一样大来计算再生制动量,以实现迅速进入再生制动的技术,从而保持制动感觉,并使制动感觉的差异最小化。
[0028]接下来,将参考图3-5详细描述本发明的示例性实施例。
[0029]图3是示出根据本发明示例性实施例的用于控制混合动力车的再生制动量的系统的示例性图表。参考图3,根据本发明的示例性实施例,用于控制再生制动量的系统可包括行驶信息检测器101、发动机控制单元(E⑶)102、混合动力控制单元(HCU) 103、离合器控制单元(CCU) 104、动力控制单元(PCU) 105、电池106、电池管理系统(BMS) 107、发动机200、发动机离合器250、电动机300、以及变速器400。
[0030]行驶信息检测器101可包括制动踏板传感器和加速踏板传感器(APS),并提供制动踏板是否对HCU 103(在下文中称作混合动力控制单元)起作用的检测信号,其中制动踏板传感器被配置成检测制动踏板是否工作(例如,接合),而加速踏板传感器(APS)被配置成检测加速踏板的操作位移(例如,接合程度)。此外,行驶信息检测器101可被配置成检测来自变速器(未示出)的换档信息,并且将检测到的换档信息提供给混合动力控制单元103。E⑶102可与通过网络连接以运行发动机200的HCU 103相连接,并将发动机200的工作状态信息提供给HCU 103。
[0031]混合动力控制单元103可以是最高控制器,并且可被配置成整体地运行通过网络连接的较低控制器,并收集和分析每个较低控制器的信息,以运行混合动力车辆。此外,HCU103可被配置成基于关于制动踏板是否被操作的行驶信息检测器101的检测信号来计算所需的制动力,确定是否执行换档以在换档时固定再生制动量,并且在未执行换档时应用计算出的所需制动力,并利用干预前电动机转矩来计算再生制动量。
[0032]换言之,即使干预前电动机转矩的绝对量在制动和换档期间增加,HCU 103仍然参考换档前的电动机转矩,而无需反映增加的绝对量来执行转矩干预。因此,当制动力在换档期间增加时,通过保持换档之前的电动机转矩,可防止制动感觉的丧失。此外,在制动力减小期间,通过追踪所需制动力,驾驶者可能不会感受到制动感觉的差异。同时,与现有技术相比,HCU 103可被配置成在换档结束之后将干预前电动机转矩的绝对量增加到与驾驶者的所需制动力一样大,以实现再生制动的迅速进入,从而提高燃料效率并改善制动感觉的差异。此外,考虑到制动油压的追踪能力,HCU 103可被配置成应用三级斜率(3-stageslope),从而确保更迅速的再生制动力并改善驾驶性能。
[0033]在执行再生制动的控制时,CXU 104可被配置成,即使在检测到电源切断时,仍然基于HCU 103的控制,保持变速器400的齿轮啮合。P⑶105可包括电动机控制单元(MCU)、由多个电源开关装置构成的逆变器、和保护电路,并且可被配置成基于从HCU 103施加的控制信号,将从电池106供应的直流(DC)电压转换成三相交流(AC)电压,以执行电动机300的驱动。
[0034]在HEV模式中,为了帮助发动机200的输出,电池106可被配置成基于再生制动量的控制,将电力供应给电动机300,并且可利用从电动机300产生的电压进行充电。此外,在EV模式下,电力可供应给电动机300,并且在再生制动时,将从作为发动机工作的电动机300产生的电压进行充电。
[0035]BMS 107可被配置成整体检测关于电池106的电压、电流、温度等信息,以便管理和调节充电状态,并且调节电池106的充电和放电的电流量,以防止将电池过度充电至阈值电压或以下,或防止将电池过度充电至阈值电压或以上。BMS 107可被配置成基于在HCU103中所需的控制信号来操作主继电器,以将电池106的输出调节成打开或关闭。基于ECU102的控制,发动机200可被操作成以最优操作点来驱动。
[0036]混合动力起动发电机(HSG) 210可被配置成,基于车辆的行驶状况,怠速停止并重新起动发动机200。发动机离合器250可被布置在发动机200与电动机300之间,并且可基于CCU 104的控制来工作,以调节发动机200与电动机300之间的动力传输。电动机300可通过经由P⑶105施加的三相AC电压来驱动,以辅助发动机200的输出转矩,并且当发动机200的输出中存在额外(例如,附加)转矩时或者在制动期间,电动机300可通过发电机来运行。
[0037]变速器400可被配置成基于CXU 104的控制来调整变速比,并按照变速比来分配基于行驶模式通过离合器250加和并施加的输出转矩,并将输出转矩传输给驱动轮以驱动车辆。变速器400可用作自动变速器或无级变速器。在根据本发明示例性实施例的、具有上述功能的混合动力车中,执行与现有混合动力车相同或类似的一般操作,因此省略对其的详细说明。
[0038]接下来参考图4描述根据本发明示例性实施例的用于控制再生制动的方法。首先,HCU 103可被配置成利用从行驶信息检测器101输出的制动踏板操作信号,计算使用者所需的制动力(例如,制动力预期量)(SlOl)。然后HCU 103可被配置成利用从行驶信息检测器101输出的换档信息,确定车辆当前是否处于实际换档模式(S102)。
[0039]HCU 103可被配置成,当车辆未处于实际换档模式时,利用所计算的所需制动力,来计算干预前的电动机转矩(S107),并且利用计算出的电动机转矩来计算再生制动量(S108)。同时,HCU 103可被配置成,当车辆处于实际换档模式时,利用从行驶信息检测器101输出的制动踏板操作信号,来确定所需的制动力在实际换档之后是否增大(S103)。
[0040]基于S103的确定结果,当所需的制动力未增大时,HCU 103可被配置成利用所计算的所需制动力来计算干预前电动机转矩(S107),并且利用计算出的电动机转矩来计算再生制动量(S108)。此外,基于S103的确定结果,当所需的制动力增大时,HCU 103可被配置成将再生制动量固定到之前计算出的再生制动量(S104),并且确定实际换档是否结束(S105)。HCU 103可被配置成,基于步骤S105的确定结果,在实际换档未结束时,重复执行以上步骤S105 ;并且当实际换档结束时,计算在以上步骤S103中增大的所需制动力(例如,所需转矩),并且将计算出的所需制动力以三级斜率来应用(S106),利用增大的所需制动力来计算干预前电动机转矩(S107),并且利用所计算的电动机转矩来计算再生制动量(S108)ο
[0041]如上所述,本发明的示例性实施例具有以下两个特征。参考图5描述本发明的特征,图5示出根据本发明示例性实施例,基于再生制动的实验值的示例图。
[0042]第一特征是用于计算在换档期间制动时的再生制动量的方法。如上所述,在换档过程中执行制动时,即使干预前电动机转矩的绝对量可增大,变速器(未示出)仍可被配置成不反映增大的绝对量,而是通过参照换档前的电动机转矩来执行转矩干预。因此,在换档过程中,在制动力增加时,再生制动需求转矩可以保持在现有转矩,由此来防止制动感觉的丧失,通过在制动力减小期间追踪所需制动力,使得驾驶者感觉不到制动的异样感。
[0043]第二特征是,在实际换档结束之后,通过将干预前电动机转矩的绝对量增大到与驾驶者的所需制动力一样大,从而与现有技术相比,能够更快地进入再生制动,从而提高燃料效率并改善制动的异样感。此外,在这种情况下,考虑到制动油压的追踪能力,通过应用三级斜率,可更迅速地确保再生制动力,并改善驾驶性能。
[0044]根据本发明的示例性实施例,可防止错误地计算换档期间的再生制动量,从而防止驾驶性能和燃料效率因再生制动量的错误计算而劣化。
[0045]上面已经出于说明性的目的,提供了上述本发明的示例性实施例。因此,本领域技术人员应该理解,在未背离所附权利要求所公开的本发明的范围和精神的情况下,还可以进行各种修改、变化、替换和附加,并且这些修改、变化、替换和附加均落在本发明的范围内。
【主权项】
1.一种用于控制再生制动量的系统,包括: 行驶信息检测器,其被配置成检测制动踏板是否工作,并检测换档信息;以及 混合动力控制单元,其被配置成基于所述换档信息,在实际换档过程中固定再生制动量,并且在未执行实际换档时,利用所需制动力来计算再生制动量。2.如权利要求1所述的系统,其中所述混合动力控制单元被配置成,在实际换档过程中,基于所述制动踏板是否工作来确定所需制动力是否增大。3.如权利要求2所述的系统,其中所述混合动力控制单元被配置成,在实际换档过程中,当所需制动力增大时固定再生制动量,并且在所需制动力保持恒定或减小时计算再生制动量。4.如权利要求3所述的系统,其中所述混合动力控制单元被配置成,在实际换档结束之后,将干预前电动机转矩的绝对量增加到与所述的所需制动力一样大。5.如权利要求1所述的系统,其中所述行驶信息检测器包括加速踏板传感器和制动踏板传感器。6.一种用于控制再生制动的方法,包括以下步骤: 通过控制器计算所需制动力; 通过所述控制器,利用行驶信息检测器确定实际换档是否被执行; 当实际换档未被执行时,通过所述控制器利用干预前电动机转矩来计算再生制动量; 在实际换档过程中,通过所述控制器确定所需制动力是否增大;以及 在实际换档过程中,当所需制动力增大时,通过所述控制器将再生制动量固定到之前的再生制动量。7.如权利要求6所述的方法,还包括以下步骤: 在实际换档过程中,当所需制动力未增大时,通过所述控制器利用所述干预前电动机转矩来计算所述再生制动量。8.如权利要求7所述的方法,还包括以下步骤: 在实际换档结束时,通过所述控制器利用所增大的所需制动力来计算所述干预前电动机转矩,并且利用所述干预前电动机转矩来计算所述再生制动量。9.如权利要求8所述的方法,其中在实际换档结束时,将所增大的所需制动力以三级斜率来应用。10.如权利要求1所述的方法,其中所述行驶信息检测器包括加速踏板传感器和制动踏板传感器。
【文档编号】B60W20/00GK105984458SQ201510100242
【公开日】2016年10月5日
【申请日】2015年3月6日
【发明人】许志旭, 杜光日, 金尚准, 赵泰焕
【申请人】现代自动车株式会社, 起亚自动车株式会社