车辆的利记博彩app

文档序号:10475195阅读:223来源:国知局
车辆的利记博彩app
【专利摘要】本发明提供一种车辆(10、10A),其具备与蓄电池(24)电连接且与左右车轮分别机械地连接的左右电动机(22A、22B),且与内燃机(12)机械地连接的发电机(14)与蓄电池(24)电连接,其中,在牵引力控制时等,可靠地保护蓄电池(24)。将第一电动机及第二电动机(22A、22B)这两个电动机暂时一体处理,基于左右合计电力(Y)来求出两个电动机的合计的允许电力变化幅度(α)即转矩降低量(TD),并将对求出的转矩降低量(TD)简单地进行等分而得到的值作为制约,来控制第一电动机及第二电动机(22A、22B)各自的动力,由此可靠地遵守蓄电池(24)的允许输入输出电力(允许输入电力(Z))。
【专利说明】
车辆
技术领域
[0001]本发明涉及一种前轮(左前轮和右前轮)及后轮(左后轮和右后轮)中的至少一方由左右的电动机驱动的车辆。
【背景技术】
[0002]在日本特开平05-111111号公报(以下,称为JPl 993-11111IA。)中,公开了一种从蓄电池通过驱动电路来驱动行驶用的电动机的电动机动车(图1)。在这种情况下,所述驱动电路由控制器控制,由此控制行驶用的所述电动机产生的驱动力。
[0003]在JP1993-111111A中公开了如下结构:在蓄电池的温度低于常温(在JP1993-111111A中为30[°C])时,认为蓄电池的剩余容量(蓄电量)降低,为了保护蓄电池,以免受过放电的影响,控制器根据蓄电池的温度降低而通过所述驱动电路对所述电动机产生的驱动力进行限制(图2、图3)。
[0004]在日本特开2007-245896号公报(以下,称为JP2007-245896A。)中,公开了一种例如通过发动机的动力来驱动前轮且通过电动机的动力来驱动后轮的全轮驱动(四轮驱动)车辆(图1)。向驱动所述后轮的所述电动机供给由专用发电机发出的电力,该专用发电机由发动机的旋转输出转矩驱动。
[0005]在JP2007-245896A中公开了如下结构:在由发动机驱动的前轮中产生了过度滑移的情况下,为了抑制该过度滑移,使发动机的旋转输出转矩降低,由此抑制车辆的加速度并防止马达转矩指令值的降低速度急剧减小,其结果是,抑制了所述专用发电机的电压异常上升的情况(
[0004]、[0011 ]、
[0033])。
[0006]在日本特开2013-215017号公报(以下,称为JP2013-215017A。)中公开了一种车辆,其前轮(左前轮和右前轮)及后轮(左后轮和右后轮)中的一方被驱动(图1,
[0127])。
[0007]在JP2013-215017A中公开了一种车辆用驱动装置,其构成为,在后轮(左后轮和右后轮)驱动行驶中,在一方的后轮中产生了过度滑移时,为了减少产生了过度滑移的后轮的驱动转矩且不产生横摆力矩,使另一方的后轮的驱动转矩也减少相应量,并且为了不降低车辆的驱动力,向前轮(左前轮和右前轮)分配减少了的驱动转矩{
[0082]-
[0085],图20(a)、图20(b)、图20(c)}。
[0008]在JP2013-215017A中公开了如下内容:通过这样控制,即使在不同摩擦系数(splity)路上等,也能够将与驾驶员要求对应的充分的转矩向路面传递,因此能够维持行驶性能([说明书摘要])。
[0009]在日本特开2011-79379号公报(以下,称为JP2011-79379A。)中公开了一种混合动力车辆用的驱动装置,在内燃机与电动机之间具备通过双离合器进行切换的变速器,并且所述内燃机与所述电动机串联连接(图1、图14)。
[0010]然而,对于JP2013-215017A所公开的前轮(左前轮和右前轮)及后轮(左后轮和右后轮)中的一方由左右的电动机驱动的车辆,无法直接适用JP1993-111111A所记载的与温度的降低相伴的蓄电池的保护技术及JP2007-245896A所记载的抑制专用发电机的电压异常上升的技术。这是因为,在JP1993-11111IA及JP2007-245896A中,分别通过一个电动机来驱动车轮。

【发明内容】

[0011]本发明与上述的技术及课题相关联而提出,其目的在于提供一种车辆,其具有将蓄电器的输出电力作为输入电力且与左车轮机械地连接的左电动机和与右车轮机械地连接的右电动机,且向所述蓄电器输入与内燃机机械地连接的发电机的发电电力,其中,在牵引力控制时等,能够以简单的结构可靠地保护所述蓄电器。
[0012]本发明的车辆的前轮及后轮中的至少一方被驱动,所述车辆具备:左电动机,其与左车轮机械地连接;右电动机,其与右车轮机械地连接;发电机,其与内燃机机械地连接;蓄电器,其与所述左电动机、所述右电动机及所述发电机电连接;以及电动机控制装置,其对所述左电动机及所述右电动机产生的动力进行控制,其中,所述电动机控制装置基于所述蓄电器的允许输入输出电力、所述发电机的发电电力、以及所述左电动机及所述右电动机合计消耗或产生的电力即左右合计电力,来求出所述左右合计电力的允许变化幅度即允许电力变化幅度,并基于对所述允许电力变化幅度进行等分而得到的值,来分别独立地控制所述左电动机及所述右电动机的动力。
[0013]根据本发明,将左电动机和右电动机这两个电动机暂时一体处理,基于左右合计电力,求出两个电动机的合计的允许电力变化幅度,并将对求出的所述允许电力变化幅度简单地进行等分而得到的值作为制约,来分别独立控制各电动机的动力,因此能够可靠地遵守蓄电器的允许输入输出电力,并且能够防止各电动机的控制的复杂化。
[0014]在这种情况下,也可以构成为,所述允许输入输出电力是允许输入电力,所述允许电力变化幅度是允许电力减少幅度,所述车辆还具备对所述蓄电器的蓄电量进行控制的蓄电量控制装置,所述蓄电量控制装置随着所述允许输入电力变小而降低所述蓄电量的目标值。
[0015]在这样构成的情况下,蓄电器的蓄电量低时允许输入电力增大,因此通过随着允许输入电力变小而降低所述蓄电器的所述蓄电量的目标值,从而能够将允许电力减少幅度、即左电动机及右电动机的转矩降低量确保得较大。
[0016]在这种情况下,也可以是,在所述允许电力减少幅度为TD、所述发电机的发电电力为X、所述左右合计电力为Y、所述允许输入电力为Z、以及消耗所述蓄电器的电力的电动辅机的消耗电力为L时,所述电动机控制装置通过下式TD < -X+Y+Z+L来求出所述允许电力减少幅度TD。
[0017]这样,以收敛于允许电力减少幅度[kW]<_(发电机的发电电力)[kW]+左右电动机的左右合计电力[kW] +向蓄电器的允许输入电力[kW] +电动辅机的消耗电力[kW]的制约条件下的方式对允许电力减少幅度[kW]进行控制即可,因此控制变得简单。
[0018]而且,优选的是,所述蓄电量控制装置在所述蓄电器的温度降低时,降低所述蓄电量的所述目标值。
[0019]在蓄电器的温度降低时,能够减少蓄电器的转矩降低量的制约所涉及的允许输入电力的降低量。
[0020]此外,所述电动机控制装置在所述蓄电器的温度降低时,预先降低所述左右合计电力的限制值,由此能够更可靠地保护蓄电器,且例如滑移时的牵引力控制量即转矩降低量不会不足。
[0021]若这样构成,则在蓄电器的温度降低时,本发明的车辆具备:电动机,其与车轮机械地连接;发电机,其与内燃机机械地连接;蓄电器,其与所述电动机及所述发电机电连接;动力控制装置,其对所述电动机产生的动力进行控制;以及动力调整装置,其在所述车轮产生了规定以上的滑移即过度滑移时,对所述电动机产生的动力在符号不发生反转的范围内进行调整,其中,所述动力控制装置基于所述蓄电器的温度或所述蓄电器的允许输入输出电力,来限制所述电动机产生的动力,所述动力调整装置不具有限制地在所述符号不发生反转的范围内对所述电动机产生的动力进行调整。
[0022]根据本发明,在产生了过度滑移时,为了无论电动机进行怎样的转矩降低也不会对蓄电器带来过放电或过充电的损伤,将电动机产生的动力即转矩自身缩小(限制动力),由此能够更可靠地保护蓄电器,并且牵引力控制量也不会不足。在这种情况下,通过与电动机产生的动力即转矩的减少(转矩降低)协调地减少发电机的发电量,也能够保护蓄电器,但根据本发明,不需要那样的复杂的协调控制。
[0023]根据本发明,将左电动机和右电动机这两个电动机暂时一体处理,基于左右合计电力,求出两个电动机的合计的允许电力变化幅度,并将对求出的所述允许电力变化幅度简单地进行等分而得到的值作为制约,来控制各电动机的动力,因此能够可靠地遵守蓄电器的允许输入输出电力,并且能够防止各电动机的控制的复杂化。
[0024]另外,根据本发明,在产生了过度滑移时,为了无论电动机进行怎样的转矩降低也不会对蓄电器带来过放电或过充电的损伤,将电动机产生的动力即转矩自身缩小,由此实现如下这样的效果:能够更可靠地保护蓄电器,并且牵引力控制量也不会不足。在这种情况下,通过与电动机产生的动力即转矩的减少(转矩降低)协调地减少发电机的发电量,也能够保护蓄电器,但根据本发明,不需要那样的复杂的协调控制。
【附图说明】
[0025]图1是表示能够搭载车辆用驱动装置的本发明的实施方式的车辆的简要结构的框图。
[0026]图2是图1的车辆中的前轮驱动装置的简要结构图。
[0027]图3是说明马达牵引力控制时的电力分配的示意性框图。
[0028]图4是用于说明马达牵引力控制下的蓄电池保护的特性图。
[0029]图5是表示本发明的变形例的车辆的简要结构的框图。
[0030]图6是用于说明蓄电池温度降低时的马达牵引力控制的特性图。
[0031]图7是用于说明蓄电池温度降低时的转矩降低量的限制及蓄电池保护的特性图。
[0032]图8是用于说明本发明的实施方式及变形例的整体处理的流程图。
【具体实施方式】
[0033]图1是表示本发明的一实施方式的车辆10的简要结构的框图。
[0034]车辆10是在车辆前部具有将电动机(M)14经由变速器(T/M) 18与内燃机12串联连接而成的驱动装置16(第二驱动装置,以下,称为前轮驱动装置。)的混合动力车辆,内燃机12与电动机14的动力经由变速器18向前轮Wf传递,另一方面,与该前轮驱动装置16分开地设置于车辆后部的驱动装置20(第一驱动装置,以下,称为后轮驱动装置。)的动力向后轮Wr(RWr、LWr)传递。
[0035]前轮驱动装置16的电动机14与后轮驱动装置20的第一电动机(M)22A及第二电动机(M)22B(左右电动机)经由作为将开关元件与三相全桥型连接的直流交流转换器的逆变器(1附)15、234、238而分别与蓄电池(8六1')24电连接,从而能够进行来自蓄电池24的电力供给和向蓄电池24的能量再生。蓄电池24是蓄电器(储能器),除了镍氢电池、锂离子电池等二次电池之外,还能够替换为电容器。在该实施方式中,采用了锂离子二次电池。需要说明的是,在蓄电池24中设有检测蓄电池温度Tb的蓄电池温度检测器25。
[0036]车辆10的各构成要素由作为控制装置的ECU(电子控制单元)26控制。ECU26如公知的那样,包括微型计算机,且作为基于来自各种传感器(各种检测器)的信息来使CHJ执行程序而执行各种动作的各种功能机构(各种功能部)进行动作。ECU26可以使用一个,也可以使用多个,为了避免繁杂和便于理解,在该实施方式中,通过一个ECU26进行说明。
[0037]车辆10在ECU26的控制下,能够进行仅是基于后轮驱动装置20的后轮ffr的驱动的后轮驱动行驶、仅使基于前轮驱动装置16的前轮Wf的驱动的前轮驱动行驶、以及将基于后轮驱动装置20的后轮Wr的驱动和基于前轮驱动装置16的前轮Wf的驱动并用的全轮驱动{八仰,四轮驱动(4胃0)}行驶。
[0038]在后轮驱动行驶中通过第一电动机22A及/或第二电动机22B来驱动后轮Wr,在前轮驱动行驶中通过内燃机12及/或电动机14来驱动前轮Wf。
[0039I [后轮驱动装置20的说明]
[0040]后轮驱动装置20具有车轴28A、28B,车轴28A、28B是车辆10的后轮ffr侧的左右的车轴,沿车宽方向配置在同轴上。需要说明的是,具有第一电动机22A及第二电动机22B的后轮驱动装置20的详细结构例如被JP2013-215017A公开,因此,在此为了避免繁琐和便于理解,以能够理解本发明的程度进行说明。
[0041 ] 后轮驱动装置20中,车轴驱动用的第一电动机22A及第二电动机22B和对该第一电动机22A及第二电动机22B的驱动旋转进行减速的减速器30A、30B与车轴28A、28B配置在同轴上。在减速器30A、30B中装入有由电动液压栗40驱动的液压制动器和将第一电动机22A及第二电动机22B的顺向的动力(前进驱动力)向车轴28A、28B传递的单向离合器。
[0042]第一电动机22A作为驱动左后轮LWr的左电动机而发挥功能,第二电动机22B作为驱动右后轮RWr的右电动机而发挥功能。
[0043]在后轮Wr上设有检测左后轮LWr、右后轮Rffr的转速的车轮速度传感器32A、32B,并且设有能够取得在左后轮LWr、右后轮Rffr中产生了规定以上的加速滑移或减速滑移(以后,有时仅简为“滑移”或“过度滑移” ο)的情况的滑移取得装置34。
[0044]在第一电动机22A及第二电动机22B上设有检测第一电动机22A及第二电动机22B的转速等的转速检测器即解析器36A、36B。
[0045]向上述的ECU26除了输入从车轮速度传感器32A、32B取得的左右后轮LWr、RWr的转速、从解析器36A、36B取得的第一电动机22A及第二电动机22B的转速之外,还输入转向角、油门踏板开度AP、挡位、蓄电池24的充电状态即SOC (也称为蓄电量或剩余容量,通常,以将充满电容量作为100%的%显示来表示。)、各种油温等,另一方面,从ECU26输出对包括内燃机12及电动机14的前轮驱动装置16进行控制的信号和对包括第一电动机22A及第二电动机22B的后轮驱动装置20进行控制的信号等。
[0046][前轮驱动装置16的说明]
[0047]图2表示前轮驱动装置16的简要结构。前轮驱动装置16的详细结构例如被JP2011-79379A的图1、图14等公开,因此,在此为了避免繁琐和便于理解,以能够理解本发明的程度进行说明。
[0048]前轮驱动装置16具备作为驱动源的内燃机12、作为驱动源、驱动辅助源或发电机而发挥功能的电动机14、用于将驱动源、驱动辅助源的动力向前轮Wf传递的变速器18、以及构成变速器18的一部分的作为差动式减速器的行星齿轮机构52。
[0049]电动机14是三相无刷同步马达,具有在定子铁心上卷绕有线圈的定子56和装入了以与该定子56对置的方式配置的永久磁铁的转子58。
[0050]行星齿轮机构52具有内齿轮52a、行星齿轮52c、行星齿轮架52d及与转子58连结的太阳齿轮52b。
[0051]变速器18是所谓的双离合器式的变速器,具备:在内燃机12的曲轴54上设置的第一离合器61(第一断接机构)及第二离合器62(第二断接机构);包含行星齿轮机构52的多个变速齿轮组;以及对上述变速齿轮组进行切换(切换变速挡)的第一变速致动器(第一变速机构、第一变速换挡-同步器)41及第二变速致动器(第二变速机构、第二变速换挡-同步器)42 ο
[0052]变速器18具备与内燃机12的曲轴54配置在同轴上且将来自内燃机12的动力经由第一离合器61直接传递的第一主轴(也称作第一个第一主轴。)101、及将来自内燃机12的动力经由所述第一主轴101、太阳齿轮52b、行星齿轮52c及行星齿轮架52d进行传递的中空状的连结轴103(也称为第二个第一主轴103。),并且具备将来自内燃机12的动力经由第二离合器62进行传递的中空状的第二主轴(也称为第一个第二主轴。)102、与该第二主轴102连结的空转齿轮列84(由空转驱动齿轮81、第一空转从动齿轮82及第二空转从动齿轮83构成。)、及作为第二空转从动齿轮83的旋转轴的第二主轴(也称为第二个第二主轴、中间轴。)105,还具备相对于第一主轴101、103及第二主轴102、105平行配置且通过差动齿轮机构95经由车轴50A(50B)来驱动前轮Wf的副轴(也称为输出轴。)104。
[0053]此外,在变速器18中,在两个变速轴中的一方的变速轴(奇数挡变速轴)即第一个第一主轴101及第二个第一主轴103(第一输入轴)上设有由第五速用驱动齿轮75、第七速用驱动齿轮77及第三速用驱动齿轮73构成的奇数挡齿轮组(第一齿轮组),在另一方的变速轴(偶数挡变速轴)即第一个第二主轴102及第二个第二主轴105(第二输入轴)上设有由第二速用驱动齿轮72、第四速用驱动齿轮74及第六速用驱动齿轮76构成的偶数挡齿轮组(第二齿轮组)。
[0054]在此,第一变速致动器41将未固定于第一主轴101、103(在图2中,为了方便而图示为固定。)的第五速用驱动齿轮75、第七速用驱动齿轮77及第三速用驱动齿轮73选择性与第一主轴101、103连结或分离。
[0055]第二变速致动器42将未固定于第二主轴105(在图2中,为了方便而图示为固定。)的第四速用驱动齿轮74、第六速用驱动齿轮76及第二速用驱动齿轮72选择性与第二主轴105连结或分离。
[0056]在副轴104上设置的第一共用从动齿轮91与第三速用驱动齿轮73啮合,且与第三速用驱动齿轮73—起构成第三速用齿轮对73p,另一方面,在副轴104上设置的第一共用从动齿轮91与第二速用驱动齿轮72啮合,且与第二速用驱动齿轮72—起构成第二速用齿轮对72p。
[0057]在副轴104上设置的第二共用从动齿轮92与第五速用驱动齿轮75啮合,且与第五速用驱动齿轮75—起构成第五速用齿轮对75p,另一方面,在副轴104上设置的第二共用从动齿轮92与第四速用驱动齿轮74啮合,且与第四速用驱动齿轮74—起构成第四速用齿轮对74p。
[0058]在副轴104上设置的第三共用从动齿轮93与第七速用驱动齿轮77啮合,且与第七速用驱动齿轮77—起构成第七速用齿轮对77p,另一方面,在副轴104上设置的第三共用从动齿轮93与第六速用驱动齿轮76啮合,且与第六速用驱动齿轮76—起构成第六速用齿轮对76p0
[0059]内燃机12在ECU26使第一离合器61接合时与变速器18的奇数挡变速轴即第一主轴101连接,并且通过第一主轴101与电动机14的转子58连接,从而能够将电动机14作为发电机进行驱动。
[0060]另外,内燃机12在将电动机14作为发电机进行驱动时,使用3、5、7速齿轮(第三速用驱动齿轮73、第五速用驱动齿轮75、第七速用驱动齿轮77)中的任一个并通过副轴104进行对前轮Wf的转矩传递。
[0061 ]而且,内燃机12在ECU26使第二离合器62接合时与变速器18的偶数挡变速轴即第一个第二主轴102及第二个第二主轴105连接,使用2、4、6速齿轮(第二速用驱动齿轮72、第四速用驱动齿轮74、第六速用驱动齿轮76)中的任一个并通过副轴104进行对前轮Wf的转矩传递。
[0062]另一方面,若在ECU26将第一离合器61及第二离合器62分离时使电动机14作为电动机进行动作,则转子58的旋转驱动力能够通过行星齿轮机构52而与变速器18的奇数挡变速轴即第一个第一主轴101连接,使用3、5、7速齿轮(第三速用驱动齿轮73、第五速用驱动齿轮75、第七速用驱动齿轮77)中的任一个并通过副轴104进行对前轮Wf的转矩传递。需要说明的是,当电动机14对前轮Wf进行转矩传递时,在从前轮Wf进行电力再生时,若第一离合器61及第二离合器62这两方都分离而切断与内燃机12的机械的连接,则效率良好。
[0063]在副轴104上设置的末端传动齿轮94在奇数挡的第三速用驱动齿轮73、第五速用驱动齿轮75、第七速用驱动齿轮77与偶数挡的第二速用驱动齿轮72、第四速用驱动齿轮74、第六速用驱动齿轮76中共用。
[0064]在该实施方式中,为了避免繁琐,包括对行星齿轮机构52进行操作的第一速段的变速控制在内而通过第一变速致动器41控制奇数挡的变速。
[0065]电动机14的转子58与I速的太阳齿轮52b直接连结,对内燃机12的动力的辅助从奇数挡侧进行。即,偶数挡使用时(第二离合器62的接合时),奇数挡侧的第一离合器61被分离,因此能够进行使用了第一速用驱动齿轮(行星齿轮机构52与第三速用驱动齿轮73)、第五速用驱动齿轮75及第七速用驱动齿轮77的辅助(动力传递)。
[0066]在再生发电、电动机行驶(EV行驶)时,第一离合器61及第二离合器62被切断,内燃机12被完全切离,而电动机14的动力传递只能通过奇数挡齿轮进行,因此再生发电和电动机行驶仅以奇数挡速进行。需要说明的是,起步在原则上仅能够以奇数挡速(通常,起步为第一速用驱动齿轮)进行。
[0067]在这样构成的双离合器的变速器18中,在通过第一变速致动器41及第二变速致动器42使下一低速挡侧或高速挡侧的变速齿轮预先待机(安放)的、所谓的预换挡状态下,通过将第一离合器61及第二离合器62交替连结(断接的、接合或分离),由此实现高速的变速。
[0068][马达牵引力控制]
[0069]E⑶26与各车辆状态相配合地控制前轮驱动装置16及后轮驱动装置20。特别是对于后轮驱动装置20,还作为具有马达牵引力控制系统(M-TCS)的电动机控制装置而发挥功能,该马达牵引力控制系统基于后轮的车轮转速或第一电动机22A及第二电动机22B的马达转速来进行抑制后轮Wr的滑移的马达牵引力控制,在执行马达牵引力控制时,控制第一电动机22A及第二电动机22B产生的转矩,从而控制左右后轮LWr、RWr的旋转状态等。
[0070]更详细来说,在前轮Wf及后轮ffr中的至少一方(在该实施方式中为前轮Wf及后轮这两方)被驱动的车辆10中,该车辆10具备:与后轮Wr机械地连接的第一电动机22A及第二电动机22B;与内燃机12机械地连接的发电机(电动机14);与第一电动机22A及第二电动机22B和所述发电机(电动机14)电连接的蓄电池24;作为对第一电动机22A及第二电动机22B产生的动力进行控制的动力控制装置而发挥功能的ECU(以下,根据需要也称为动力控制ECU。)26;以及在后轮Wr上产生规定以上的滑移即过度滑移时,对第一电动机22A及第二电动机22B产生的动力(称为顺向的动力。)在符号不发生反转的范围、换言之不成为逆向的动力的范围内进行调整的作为动力调整装置而发挥功能的ECU(以下,根据需要,称为动力调整 ECU。)26。
[0071]接下来,参照图3的车辆10的电力分配的示意性框图,说明在本发明的主要部分的马达牵引力控制系统成为动作状态的车辆10的后轮Wr由第一电动机22A及第二电动机22B驱动的状态下,ECU26对蓄电池24进行保护的保护动作。
[0072]在图3中,电动机14{由于是前轮Wf侧的电动机,因此,在图3中说明为Fr-MOT(前轮驱动电动机)}通过上述的双离合器式的变速器18而与车辆1的内燃机12 (说明为ENG)连接,作为发电机进行动作的电动机14的发电电力Pgen为Pgen = X[kW]。
[0073]蓄电池24的蓄电池电力Pbat[kW]以流出电力-0[kW]进行动作。流出电力是放电电力,流入电力是充电电力。蓄电池电力Pbat [kW]将放电侧采用为负,将充电侧采用为正。因此,流出电力表示放电电力。
[0074]驱动左后轮Lffr的第一电动机22Α{由于是后轮Wr侧的电动机,因此在图3中说明为Rr-MOT(后轮驱动电动机))}的消耗电力Pmotl[kW]与驱动右后轮RWr的第二电动机22B(Rr-Μ0Τ)的消耗电力Pmot2的左右合计电力Pmot为Pmot = Y[kW](也称为Rr-MOT输出电力。)。
[0075]由与蓄电池24连接的空调装置等高压辅机202及通过降压转换器204而与蓄电池24连接的12V蓄电池206和低压辅机208构成的辅机的辅机负荷电力Pl[kW]的值为辅机负荷电力Pl = L[kW](电动辅机的消耗电力)。
[0076]蓄电池24具有与S0C[%]对应的流入输出电力的极限,特别在低温时,如图4所示,具有纵轴的蓄电池流出电力最大值-Pdmax [ kW]及蓄电池流入电力最大值Pcmax [ kff ]这样的与横轴的S0C[ % ]对应的额定限制值。
[0077]需要说明的是,蓄电量SOC为SOC= SOCl时的正方向上的、即电流流入方向的(在图4中为下方向的)额定限制值即蓄电池流入电力最大值Pcmax为Pcmax = Z[kff](称为允许输入电力。)。
[0078]如图4所示,形成如下这样的特性:能够放电的电力值即蓄电池流出电力最大值_Pdmax随着S0C[ % ]从0 [ % ]向100[ % ]的增加而绝对值从O [kW]线性地增加,能够充电的电力值即蓄电池流入电力最大值Pcmax [ kW]随着SOC[ % ]从100 [ % ]向O [ % ]的减少而绝对值从0[kW]线性地增加。需要说明的是,实际上,若为几秒左右的短时间,则有时也可能进行超出该额定限制值(放电电力大于-Pdmax,充电电力大于Pcmax)的使用。
[0079]如图4所示,为了以备于在蓄电量S0C[%]为SOC=SOCl [%]且蓄电池24的动作点210处的蓄电池电力Pbat[kW]为Pbat = _f3[kW]时通过滑移取得装置34(图1)检测出在左后轮LWr或右后轮RWr中的任一方产生了超过阈值滑移量的过度滑移的情况等,E⑶26预先计算用于对第一电动机22A及第二电动机22B进行指令的转矩降低量TD[kW]的制约条件。
[0080]在此,转矩降低量TD[kW]由第一电动机22A及第二电动机22B的左右合计电力Pmot[kW]=Y(变化前,参照图3)减少至左右合计电力Pmot[kW]=Y'(变化后)时的差即下述的
(I)式表示。
[0081]Y-Y7 =TD, Y7 =Y-TD ---(I)
[0082]另一方面,从蓄电池动作点210起的允许电力变化幅度a[kW]如图4所示那样由下述的(2)式表示。
[0083]α = Ζ-(-β) ---(2)
[0084]如下述的(3)式所示,若允许电力变化幅度α为正的范围,则蓄电池流入电力Pc不会超过蓄电池流入电力最大值Pcmax( |Pc I < Pcmax | ) ο
[0085]α>0 ---(3)
[0086]S卩,为了使蓄电池流入电力Pc不超过限制,需要满足下述的(4)式。
[0087]Ζ+β> O ---(4)
[0088]另外,如图3所示,可知(2)式中的蓄电池24的流出电力-0[kW]成为从发电电力X减去第一电动机22A及第二电动机22B的左右合计电力Y和辅机负荷电力(电动辅机的消耗电力)L而得到的下述的(5)式所示的值。
[0089]-P=X-(Y+L) ---(5)
[0090]向(4)式的β中代入(5)式进行变形时,获得(6)式。
[0091]Z>X-(Y+L) ---(6)
[0092]即使左右合计电力Y变化为左右合计电力Y',也需要满足该(6)式,因此向Y中带入矿进行变形时,获得下述的(7)式。
[0093]Z-X+Y7 +L > O ---(7)
[0094]在(7)式中对矿求解而获得下述的(8)式。
[0095]Y7 > -Z+X-L ---(8)
[0096]为了计算转矩降低量TD的制约条件,获得将(I)式的右侧的式(V=Y-TD)代入(8)式而得到的下述的(9)式。在(9)式中对转矩降低量TD求解时,获得下述的(10)式。
[0097]Y-TD > -Z+X-L ---(9)
[0098]TD < -X+Y+Z+L ---(1)
[0099]并且,在该实施方式中,ECT26在任一个后轮ffr产生过度滑移时,在对转矩降低量TD进行等分(设为一半)的值TD/2 {(TD/2) = (-X+Y+Z+L) /2}的幅度的变化范围内,分别独立地控制第一电动机22A及第二电动机22B的动力。
[0100]此时,即便使第一电动机22A及第二电动机22B这两方各变化作为变化幅度的最大值的TD/2,其合计的变化幅度当然也不会超过转矩降低量TD,因此变化后的左右合计电力矿也收敛于规定以内,不会超过蓄电量SOCl处的蓄电池24的正方向的额定限制值即允许输入电力Z。
[0101]蓄电池24的动作点在图4中位于正侧(在图4中为下侧),但关于对蓄电池24的负方向、即电力流出方向上的(在图4中为上方向的)额定限制值即允许输出电力的蓄电池流出电力最大值-Pdmax的限制等,也能够同样考虑。
[0102][变形例]
[0103]图5是表示本发明的变形例的车辆1A的简要结构的框图。在图5所示的车辆1A中,与上述实施方式的车辆10的前轮驱动装置16及后轮驱动装置20的结构前后相反。即,车辆1A的前轮驱动装置16a具备对在车辆1A的前侧配置的左右的前轮Wf(LWf、LWr)进行驱动的第一电动机22A及第二电动机22B。另外,车辆1A的后轮驱动装置20a具备在车辆1A的后侧配置且经由变速器18与驱动后轮Wr的内燃机12串联连接的电动机14。对于该车辆1A的第一电动机22A及第二电动机22B的上述的[马达牵引力控制]能够同样适用。
[0104][实施方式的总结及其他的变形例]
[0105](I)如以上说明的那样,上述的实施方式的车辆10、1A的前轮Wf及后轮ffr中的至少一方被驱动,所述车辆10、1A具备:与左车轮(在图1例中为左后轮LWr,在图5例中为左前轮LWf)机械地连接的左电动机即第一电动机22A;与右车轮(在图1例中为后轮Rwr,在图5例中为前轮RWf)机械地连接的右电动机即第二电动机22B ;与内燃机12机械地连接的作为发电机而发挥功能的电动机14;与所述第一电动机22A、所述第二电动机22B及所述电动机14(发电机)电连接的作为蓄电器的蓄电池24;以及作为对所述第一电动机22A及第二电动机22B产生的动力进行控制的电动机控制装置的ECU26。
[0106]E⑶26在由第一电动机22A及第二电动机22B驱动的左右车轮中的任一方的车轮中检测出过度滑移时,基于蓄电池24的允许输入输出电力(在上述实施方式中为允许输入电力Z)、电动机14(发电机)的发电电力X、以及第一电动机22A及第二电动机22B合计消耗或产生的电力(在上述实施方式中为消耗电力)即左右合计电力(Rr-ΜΟΤ输出电力)Y,求出该左右合计电力Y的允许变化幅度(允许电力变化幅度α)即转矩降低量TD[kW],并基于对转矩降低量TD进行等分而得到的值TD/2,来分别控制第一电动机22A及第二电动机22B的动力。
[0107]实际上,E⑶26通过减少构成逆变器23A、23B(驱动力降低器、驱动力调整器、转矩降低器、转矩调整器)的开关元件的占空比来降低转矩。
[0108]这样,在该实施方式中,将第一电动机22A及第二电动机22B这两个电动机暂时一体处理,基于左右合计电力Y,求出第一电动机22A及第二电动机22B的合计的允许电力变化幅度α即转矩降低量TD,并将对求出的转矩降低量TD简单地进行等分而得到的值作为制约,来控制(限制)第一电动机22Α及第二电动机22Β各自的动力,因此能够可靠地遵守蓄电池24的允许输入输出电力(在上述实施方式中为允许输入电力Ζ),并且能够防止第一电动机22Α及第二电动机22Β的控制的复杂化。
[0109](2)在这种情况下,具体来说,所述允许输入输出电力是允许输入电力Ζ,所述允许电力变化幅度α是作为允许电力减少幅度的转矩降低量TD,而且,具备作为对蓄电池24的蓄电量SOC进行控制的蓄电量控制装置而发挥功能的ECU26,ECU26也可以将蓄电量SOC的目标值降低至低于蓄电量SOCl的值。
[0110]如图4所示,蓄电池24的蓄电量SOC低时允许输入电力Z增大,因此通过降低蓄电池24的蓄电量SOC的目标值,能够将允许电力减少幅度、即第一电动机22A及第二电动机22B的转矩降低量TD确保得更大。
[0111](3)更具体来说,ECU26在寻求所述允许电力减少幅度即转矩降低量TD的制约条件时,在为电动机14 (发电机)的发电电力X、第一电动机22A及第二电动机22B中消耗的左右合计电力Y、允许输入电力Z、以及消耗蓄电池2 4的电力的辅机负荷2 O 9的电力L (电动辅机的消耗电力)时,通过再次列举的下述的(10)式来求出允许电力减少幅度即转矩降低量TD的制约条件。
[0112]TD < -X+Y+Z+L ---(1)
[0113]这样,以收敛于“允许电力减少幅度[kW]<_(发电机的发电电力)[kW]+左右电动机的合计消耗电力即左右合计电力[kW] +向蓄电器的允许输入电力[kW]+辅机负荷的电力[kW]”的制约条件下的方式对允许电力减少幅度(转矩降低量TD)[kW]进行控制即可,因此控制变得简单。
[0114](4)需要说明的是,如图6所示,在蓄电池24的进一步温度降低时,相对于蓄电池24的蓄电量SOC[ % ]的蓄电池流出电力最大值-Pdmax [kW]及蓄电池流入电力最大值Pcmax[kff]分别成为由虚线表示的绝对值更小的蓄电池流出电力最大值-Pdmax7 [kW]及蓄电池流入电力最大值Pcmax7 [kW],在(9)式的右边中,从蓄电池24的蓄电池电力Pbat[kW]为Pbat =O值起的允许输入电力Z变小为允许输入电力Z7,转矩降低量TD的制约条件成为更严格且更小的值。
[0115]因此,为了抑制牵引力控制性能的降低,优选参照根据由蓄电池温度检测器25检测出的蓄电池温度Tbat而预先存储的特性(作为一例,为图6所示的蓄电池流出电力最大值-Pdmax7 [kW]及蓄电池流入电力最大值Pcmax7 [kff]),使蓄电量S0C[ % ]的目标值从蓄电量SOCl降低至目标剩余容量值,该目标剩余容量值例如成为在该低温时使允许输入电力Z7向允许输入电力Z返回那样的更小值的蓄电量S0C2。
[0116]若这样进行控制,则在蓄电池24的温度(蓄电池温度Tbat)进一步降低时,能够减少蓄电池24的转矩降低量TD的制约所涉及的允许输入电力Z的降低量。
[0117]需要说明的是,如图7的特性212所示,为了减少蓄电池温度Tbat的降低时的牵引力控制下的转矩降低量TD,通过使第一电动机22A及第二电动机22B中消耗的左右合计电力(Rr-MOT输出电力)Y的限制值(最大值)S卩左右合计限制电力Hmt与蓄电池温度Tbat的降低对应而降低,由此即便在蓄电池24的蓄电池温度Tbat的降低时,也能够可靠地保护蓄电池24。
[0118]在此,左右合计电力(Rr-ΜΟΤ输出电力)Y采用没有超出图7的特性212的左右合计限制电力Ylmt的范围的值。在这种情况下,若考虑到滑移产生后的转矩降低量TD与滑移产生时的转矩量、即左右合计电力(Rr-ΜΟΤ输出电力)Y成比例,换言之若考虑到左右合计电力(Rr-ΜΟΤ输出电力)Y越大而滑移量越大,则在滑移时需要较大的转矩降低量TD。因此,通过在滑移产生前预先使左右合计电力(Rr-ΜΟΤ输出电力)Y可采用的最大值即左右合计限制电力Hmt降低,从而能够减小滑移产生后的转矩降低量TD。
[0119]在参照图7的特性212的情况的第一电动机22A及第二电动机22B的低温下的牵引力控制时,为了使第一电动机22A及第二电动机22B无论进行怎样的转矩降低都不会对蓄电池24造成损伤,使第一电动机22A及第二电动机22B当前产生的动力即转矩自身缩小至左右合计限制电力Ylmt,由此能够更可靠地保护蓄电池24,并且滑移时的牵引力控制量即转矩降低量TD也不会不足。
[0120]需要说明的是,在图7的特性212中,横轴为蓄电池温度Tbat,但也可以替代蓄电池温度Tbat而为与蓄电池温度Tbat具有正相关的蓄电池24的允许输入输出电力。在该情况下,在滑移产生之前,在蓄电池24的允许输入输出电力减小时,可以控制成使第一电动机22A及第二电动机22B中消耗的左右合计电力(Rr-MOT输出电力)Y的限制值(最大值)即左右合计限制电力Hmt预先减小。
[0121]若采用利用了图7的特性212的左右合计限制电力决定处理(以下的图8的流程图中的步骤S3的处理),则通过与第一电动机22A及第二电动机22B产生的动力即转矩的减少(转矩降低)协调地减少作为发电机而发挥功能的电动机14的发电量,也能够保护蓄电池24,但不需要那样的复杂的协调控制。
[0122]参照图8的流程图,对上述的实施方式及其他的变形例进行总结说明时,在步骤SI中,ECU26通过未图示的开闭开关的输出等来检测是否设定为进行牵引力控制的牵引力模式,在判定为牵引力模式(牵引力控制下)(步骤S1:是)时,ECU26执行步骤S2?步骤S6的转矩降低量控制。
[0123]g卩,在步骤S2中,检测蓄电池温度Tbat。接下来,在步骤S3中,参照图7的特性212,决定与蓄电池温度Tbat对应的左右合计电力Y [ kW]的限制值(最大值)S卩左右合计限制电力Ylmto
[0124]进而,在步骤S4中,如参照图6进行说明的那样,与蓄电池温度Tbat对应而计算目标 SOC 0
[0125]然后,在步骤S5中,通过所述(10)式,基于左右合计电力Y,预先计算第一电动机22A及第二电动机22B的合计的允许电力变化幅度α即转矩降低量TD的制约条件。
[0126]最后在步骤S6中,在通过滑移取得装置34而取得了在任一个后轮ffr中产生了过度滑移的情况时,ECU26在对预先计算出的转矩降低量TD进行等分而得到(设为一半而得到)的值了0/2{(了0/2) = (4+¥+2+0/2}的幅度的变化范围内,分别独立地控制第一电动机22八及第二电动机22B的左右合计电力Y。
[0127]需要说明的是,本发明不限于上述的实施方式那样的车辆10、1A(全轮驱动车辆),在该车辆10、10A中,能够通过第一电动机22A及第二电动机22B来驱动后轮ffr(或前轮Wf),且利用内燃机12通过变速器18来使电动机14作为发电机进行动作,同时利用内燃机12通过变速器18来驱动前轮Wf(或后轮Wr)。
[0128]例如,基于本说明书的记载内容,当然可以采用适用于通过第一电动机22A及第二电动机22B驱动后轮或前轮Wf)且通过内燃机12使发电机发电(不是利用内燃机12通过变速器18来驱动前轮Wf及后轮Wr)来进行后轮驱动行驶(或前轮驱动行驶)或者全轮驱动行驶的所谓的(纯粹的)串联式混合动力车辆或增程式车辆等各种结构。
【主权项】
1.一种车辆(10、10A),其前轮(Wf)及后轮(Wr)中的至少一方被驱动,所述车辆(10、10A)的特征在于, 所述车辆(10、10A)具备: 左电动机(22k、,其与左车轮(Lffr、Lfff)机械地连接; 右电动机(22B),其与右车轮(RWr、RWf)机械地连接; 发电机(14 ),其与内燃机(12)机械地连接; 蓄电器(24),其与所述左电动机(22A)、所述右电动机(22B)及所述发电机(14)电连接;以及 电动机控制装置(26),其对所述左电动机(22A)及所述右电动机(22B)产生的动力进行控制, 所述电动机控制装置(26)基于所述蓄电器(24)的允许输入输出电力、所述发电机(14)的发电电力、以及所述左电动机(22A)及所述右电动机(22B)合计消耗或产生的电力即左右合计电力,来求出所述左右合计电力的允许变化幅度即允许电力变化幅度,并基于对所述允许电力变化幅度进行等分而得到的值,来分别独立地控制所述左电动机(22A)及所述右电动机(22B)的动力。2.根据权利要求1所述的车辆(10、10A),其特征在于, 所述允许输入输出电力是允许输入电力,所述允许电力变化幅度是允许电力减少幅度, 所述车辆(10、10A)还具备对所述蓄电器(24)的蓄电量进行控制的蓄电量控制装置(26), 所述蓄电量控制装置(26)随着所述允许输入电力变小而降低所述蓄电量的目标值。3.根据权利要求2所述的车辆(10、10A),其特征在于, 在所述允许电力减少幅度为TD、所述发电机(14)的发电电力为X、所述左右合计电力为Y、所述允许输入电力为Z、以及消耗所述蓄电器(24)的电力的电动辅机(209)的消耗电力为L时, 所述电动机控制装置(26)通过下式TD < -X+Y+Z+L来求出所述允许电力减少幅度TD。4.根据权利要求2或3所述的车辆(10、10A),其特征在于, 所述蓄电量控制装置(26)在所述蓄电器(24)的温度降低时,降低所述蓄电量的所述目标值。5.根据权利要求2或3所述的车辆(10、10A),其特征在于, 所述电动机控制装置(26)在所述蓄电器(24)的温度降低时,使所述左右合计电力的限制值降低。6.—种车辆(10、10A),其具备: 电动机(22A、22B),其与车轮(Wf、Wr)机械地连接; 发电机(14 ),其与内燃机(12)机械地连接; 蓄电器(24),其与所述电动机(22A、22B)及所述发电机(14)电连接; 动力控制装置(26),其对所述电动机(22A、22B)产生的动力进行控制;以及 动力调整装置(26),其在所述车轮(Wfjr)产生了规定以上的滑移即过度滑移时,对所述电动机(22A、22B)产生的动力在符号不发生反转的范围内进行调整, 所述车辆(10、10A)的特征在于, 所述动力控制装置(26)基于所述蓄电器(24)的温度或所述蓄电器(24)的允许输入输出电力,来限制所述电动机(22A、22B)产生的动力, 所述动力调整装置(26)不具有限制地在所述符号不发生反转的范围内对所述电动机(22A、22B)产生的动力进行调整。
【文档编号】B60K6/547GK105829184SQ201480068416
【公开日】2016年8月3日
【申请日】2014年12月16日
【发明人】寺山孔人, 安藤义纪, 塚本宗纪, 根来昌树, 藤本纯和, 野口真利, 阪口雄亮
【申请人】本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1