自动离合器打滑状态控制的方法和设备的利记博彩app

文档序号:3959432阅读:291来源:国知局
专利名称:自动离合器打滑状态控制的方法和设备的利记博彩app
技术领域
本发明涉及自动离合器控制系统,更具体地说涉及闭环自动离合器控制和减小机动车起动时的振动响应的方法。
近几年来,人们对提高机动车传动系统控制的自动化程度的兴趣越来越大,特别是在大型卡车传动轮系统的控制方面,更是如此。众所周知,小客车和轻型卡车都采用自动变速器。这类汽车的一般自动变速器采用液力变矩器和液压驱动机构,用以选择发动机轴与驱动轮之间的主传动传动比。这种传动齿轮的选择是根据发动机转速、车辆速度等进行的。大家知道,这种自动变速器比起熟练的手动变速操作来不仅降低了动力从发动机传递到驱动轴的效率,而且完全降低了节油作用和功率。由于降低了汽车的工作效率,这类液压自动变速器未能在大型卡车中广泛使用。
采用液压自动变速器时效率下降的其中一个原因是液力变矩器中产生的损耗。一般液力变矩器在所有工作状态下有打滑现象,从而在各种模式下产生拒矩和动力损耗。本技术领域中都知道配备锁止变矩器以便在发动机超过某些转速时使变速器的输入轴与输出轴直接连接。这种方法在接合状态下有足够的传递扭矩的效率,但在速度较低时效率没有提高。
为解决液力变矩器固有的效率不足的问题,有人提出,可采用自动驱动的摩擦离合器代替。但经过如此取代却出现了使用液力变矩器时所没有的问题。机动车的机械传动系统一般在机动车的变速器与驱动轮之间的动力传动系统中扭矩的随变特性是相当大的。在变速器与差速器之间的驱动轴或差速器与从动轮之间的后桥半轴中即可以看到上述扭矩随变特性的情况。往往有这样的情况,即独立的设计准则促使或要求动力传动系统有相当大的扭矩随变特性。机动车辆的动力传动系统中实质的扭矩随变特性会使离合器接合时产生振动响应。这些振动响应使汽车的传动系统的组成部分和其它零部件产生相当大的附加磨损。此外,这些振动响应还会使乘座室振动令人不能接受。
动力传动系统对离合器接合的振动响应在很大的程度上取决于变速器的输入速度,即离合器趋近发动机转速的方式。平稳趋近这些速度时(例如按衰减指数函数曲线趋近时)。不会在离合器锁止时产生扭矩过渡过程。若趋近速度是突发性的,则扭矩过渡过程传递到动力传动系统,从而使汽车动力传动系统中产生振动响应。下面的专利都是转让给本发明的受让人的,且体现出现有技术的发展情况,本发明一部分也是根据这些发展情况提出的。标题为“自动离合器的闭路起动和蠕动控制”的美国专利5,293,316通过控制离合器的动作过程使离合器平稳接合来最大限度地减小或消除离合器在接合过程中因动力传动系统随变特性所引起的扭矩振动现象。以下列出的专利申请都是使控制系统更牢靠的改进措施。标题为“自动离合器具有可靠算法的闭路起动和蠕动控制”的美国专利5,275,267解决了同样的问题,配备了前置滤波器来矫正系统的过渡响应和减少对个别汽车或车型采取特殊措施的需要。标题为“自动离合器可靠的控制方法和设备”的美国专利5,403,249以同样的系统为基础,通过消除发动机因离合器在某些情况下接合过速而过载,从而使发运机速度下降且甚至使离合器卸载,以避免使发动机失速的可能性进一步提高控制的可靠性。上述专利说明书中公开的系统装有一个打滑积分器,或实际上是两个串联连接对内环路的变化太敏感以致在某些情况下难以控制的积分器。标题为“离合器带PID调节的可靠自动控制的方法和设备”的美国专利5,439,428公开的改进措施可以更好更可靠地控制离合器。
标题为“离合器工作状态控制逻辑电路”的美国专利5,378,211中公开的逻辑电路确定了控制是在起动、蠕动、锁止抑或其它模式下进行的。起动模式和蠕动模式都需要离合器有一定程度的打滑来控制扭矩的传递。在上述诸专利所述的所有早期研究成果中,系统是按两个完全不同的独立的模式控制离合器的打滑程度的,而司机对蠕动与起动离合之间的变化是一清二楚的。
本发明采用单一打滑模式来代替起动和蠕动模式,在上述诸专利的措施的基础上进一步作了改进。这是通过提高离合器蠕动的平稳性和灵敏度并提高其颇低的打滑程度以达到散热小和耐磨时间长的目的。本发明是在过去研究工作的基础上提高控制的可靠性。可靠性的提高使我们可以大批生产可应用于各种各样重型卡车的变速器,而无需为卡车类型或载荷范围作个别调整。
本发明是用在这样一种系统的自动离合器控制器,该系统由动力源、摩擦离合器和至少一个惯性负载驱动轮所组成,驱动轮与扭矩随变特性对扭矩输入有振动响应的摩擦离合器连接。这种自动离合器控制器最好与变速换档控制器一起使用。这种自动离合器控制器在汽车起动过程中使离合器平稳接合,最大限度地减小对离合器接合的振动响应。这种自动离合器控制器适用于大型卡车。
自动离合器控制器接收来自发动机转速传感器和变速器输入转速传感器的输入。变速器输入转速传感器在输入端(即摩擦离合器输出端)检测变速器的转速。自动离合器控制器产生在全分离与全接合之间控制离合器执行机构的离合器接合信号。离合器接合信号使摩擦离合器用促使变速器输入转速以渐近线趋近基准转速的方式接合。这样做可以最大限度地减小对惯性载荷驱动轮扭矩输入的振动响应。
在汽车开动或正常起动过程中变速器在起步档(头档或二档)运行,控制仍然处于打滑模式。离合器接合信号调节离合器打滑程度,使变速器输入转速以渐近线的形式趋近发动机转速。当离合器完全接合且进入加速模式时,控制转入锁止模式,施加足够的离合器压力以防止离合器任何打滑的可能性。模式控制逻辑电路防止锁止状态直到挂高档为止,从而防止模式在起步档时转入锁止状态及从锁止模式转出。在蠕动运行过程中,这时油门设定和发动机转速都低,离合器的打滑程度用来控制汽车对油门位置的响应,允许低速操纵。打滑模式对此也起控制作用。
在打滑模式下,打滑基准随油门和发动机转速的变化而得出。打滑基准等于发动机在0%油门下的转速,且逐渐减小,在40%油门下就减小到0。确定打滑率时从发动机转速减去变速器输入转速,确定打滑误差时从打滑基准减去打滑率。该值是模仿美国专利5,439,428内控制环路的输入,来产生离合器接合信号的。控制环路的补偿器采取了改进措施,即增设了陷波频率在所期望振动频率范围内的三阶陷波滤波器。此三阶滤波器改善了具有高低动力传动系统减振级的汽车之间的可靠性和传递性能。
在打滑模式下提高车速时,由于发动机根据油门的要求在扭矩要求模式下运行,而可以很好进行控制。随着踏板要求的提高,发动机的扭矩和转速提高。油门不变时,离合器的打滑率几乎保持不变。可以通过提高发动机的转速但保持低的打滑率而使蠕动时获得较高的汽车车速。
结合附图阅读下面的说明可以更清楚地了解本发明的上述和其它优点。附图中,同样的编号表示类似部件,其中

图1是本发明用发动机通过离合器驱动变速器以及发动机和离合器控制器的原理示意图;图2是离合器扭矩与离合位置的关系曲线;图3是离合器控制的逻辑方框图,示出了各输入和输出端;图4是图3离合器控制逻辑方框图的泡形(bubble)逻辑电路图;图5示出了本发明自动离合器控制器的功能方框图;图6是本发明图5采用的打滑基准函数曲线。
图1示出了装有本发明的自动离合器控制器的机动车传动系统的原理图。机动车的动力源为发动机10。对于本发明最适用的那种大型卡车,发动机10可以是柴油内燃发动机。加速踏板11通过油门滤波器12控制发动机10的工作。一般说来,这类发动机的扭矩控制输入是控制空气供应的油门,但也可以采用其它控制参数,例如燃油供应量。在任何情况下,油门滤波器12用来根据加速踏板11给发动机提供扭矩控制信号。油门滤波器12是离合器控制器60的一部分,通过在某些情况下将踏板11的信号限制在较低值而过滤加到发动机10的油门信号。发动机10在其轴15上产生扭矩。发动机转速传感器13检测发动机轴15的转速。发动机转速传感器检测转速的实际位置可以在发动机的飞轮处。发动机转速传感器13最好是多齿齿轮,其齿的转速由磁性传感器检测。
摩擦离合器20有固定离合片21和活动离合片23,两种离合片可以完全接合或部分接合。固定离合片21可以采用发动机的飞轮。摩擦离合器20按固定离合片21与活动离合片23的接合程度将扭矩从发动机轴15耦合到变速器输入轴25上。应该指出的是,虽然图1只示出固定离合片和活动离合片组成的一对固定和活动离合片,但本技术领域的技术人员都知道,离合器20可以有多对这类离合片。
图2示出了典型的扭矩和离合器离合位置的函数。离合器扭矩/位置曲线80在开始接触点81之前接合范围的初始值为0。离合器扭矩随着离合器接合程度的增加单调地上升。在图2所示的实例中,离合器扭矩起初徐徐上升,然后较陡地上升,直到点82处完全接合时达到最大离合器扭矩。一般离合器设计要求完全接合时的最大离合器扭矩约为最大发动机扭矩的1.5倍。这样确保离合器20传递发动机10产生的最大扭矩时不打滑。
离合器执行机构27联接到活动离合片23,以便控制离合器20从分离状态通过部分接合状态到完全接合状态。离合器执行机构27可以是电动的、液压的或气动的执行机构,可以按位置或按压力加以控制。离合执行机构27根据离合器驱动控制器60来的离合器接合信号控制离合器的接合程度。离合器执行机构27是个闭路器件,控制着离合器的接合程度,使离合器位置传感器28测出的离合器离合位置跟随离合器接合信号。接触点的确定最好采用从离合器位置传感器28测出的离合器离合位置。本领域的技术人员都知道,离合器执行机构27可以根据所要求离合压力相应的离合器驱动信号受到压力控制,并采用离合器压力传感器测出的离合器压力反馈。
变速器输入转速传感器31检测变速器输入轴25的转速,即变速器30的输入。变速器30在变速换档控制器33的控制下给驱动轴35提供可选用的传动比。驱动轴35联接到差速器40上。变速器输出转速传感器37检测驱动轴35的转速。变速器输入转速传感器31和变速器输出转速传感器37最好取发动机转速传感器13同样的结构。机动车是大型卡车时,差速器40驱动四个依次与各车轮51至54联接的主动轴。
变速换档控制器33接收来自踏板11、发动机转速传感器13、车辆刹车踏板14、变速器输入转速传感器31和变速器输出转速传感器37的输入信号。变速换档控制器33产生控制变速器30的传动选择信号和耦合到离合器驱动控制器60的离合器接合/分离信号。变速换档控制器33最好对应油门设定、发动机转速、变速器输入转速和变速器输出转速改变主传动传动比。变速换档控制器33根据摩擦离合器应接合抑或分离分别给离合器驱动控制器60提供相应的接合信号和分离信号。变速换档控制器还给离合器驱动控制器60发送传动信号。此传动信号使与所选取档相应的一组系数可以重新调用(recall)。变速换档控制器33最好在换高档过程中简单地使惯性式制动器29接合。这样可以使变速器输入轴25的转速减慢,在挂更高档次之前与驱动轴35的转速匹配。确定接触点最好按下面即将谈到的方式采用惯性式制动器29。变速换档控制器33不是本发明的一部分,因而这里不再进一步说明。
离合器驱动控制器60给离合器执行机构27提供接合信号,供控制活动离合片23的位置用。这样做根据图2的离合器扭矩/位置关系曲线80控制离合器20所传递的扭矩量。离合器驱动控制器60在变速换档控制器33的控制下工作。离合器驱动控制器60在收到来自变速换档控制器33的接合信号时控制活动离合片23从分离到至少部分接合或完全接合的动作。在最佳实施例中,设想离合器接合信号表示所要求的离合器离合位置。离合器执行机构27最好有一个闭路控制系统,后者采用离合器位置传感器28测出的离合器离合位置将活动离合片23控制到所要求的位置。此外也可以令离合器接合信号表示所要求的离合器压力,由离合器执行机构27对此所要求的离合器压力进行闭路控制。
离合器驱动控制器60的控制作用只需要控制离合器在接触点81与完全接合点之间的位置。离合器的接合小于接触点81相应的接合程度不可能传递扭矩,因为离合器20完全分离。收到来自变速换档控制器33的接合信号时,离合器驱动控制器60最好迅速将离合器20往前转入与接触点81相应的位置。这样做将离合器接合控制的零点调到接触点81。这之后,离合器的接合由离合器驱动控制器60的控制功能控制。
大家都知道,离合器的接触点可以在工作过程中确定也可以事先确定。接触点最好事先通过试验方法确定,这个试验方法确定出现接触点时离合器的离合位置或压力。接触点测试方法在标题为“离合器接触点的识别”的美国专利5,337,868和标题为“离合器接触点的识别算法”的美国专利5,393,274有详细介绍,这两项美国专利都转让给本发明的受让人,这里也把这两项专利包括进来以供参考。这个方法最好是离合器驱动控制器60控制函数的子集。
确定接触点是将变速器30调到空档并采用惯性制动器29。惯性制动器29的作用通常是帮助变速器输入轴25的转速在挂高档期间与驱动轴35的转速匹配。由于离合器20在换档的过程中分离,因而需要的制动量很小。惯性制动器29需要产生的制动扭矩仅约为发动机怠速扭矩的5%。离合器20在发动机10怠速直到变速器输入转速达到发动机怠速的预定百分比之前是逐步接合的。离合器的这个接合程度相当于图2的点83,其作用是通过离合器20传递扭矩以克服惯性制动器29轻微的制动扭矩。为了确定接触点81,还要从该离合器接合程度减去固定的偏移量85。
图3是离合器模式控制逻辑电路输入和输出的示意图,该逻辑电路为离合器驱动控制器60的分支电路。逻辑电路根据发动机和变速器的工作情况确定工作模式,用来控制离合器驱动和油门滤波器的工作。逻辑电路的输入有来自传感器13表示发动机转速(Es)的信号、来自传感器31表示输入转速(Is)的信号、来自踏板11表示加速踏板位置的信号和离合器位置达到预定接触位置时产生的接触点信号。逻辑电路的输出为下述四个工作模式之一。
接触点趋近状态这时,控制离合器使其趋向接触点。当因踏板信号超出最小阈值而离开“自动模式切断”状态时,这个模式处于离合器开始闭合但尚未到达接触点的等待状态。若离合器业已接合,接通程度会降到接触点。在这个模式下不容许有任何发动机控制信号。
打滑模式 这个模式是在到达接触点、踏板信号超过最小电平(3%)而变速器仍然处于起步档时形成的。在用踏板以低于阈值(例如40%)蠕动时,离合器的接合被控制成使输入转速平稳地趋近发动机转速的某一百分率,因而使离合器打滑从而可以使汽车慢速行驶(maneuvers)。在踏板位置超出阈值起动时,离合器被控制成使其根据发动机的转速以适当的速度接合,使输入转速平稳提升到发动机的转速。
锁止模式 从起步档(头档或二档)挂高档时打滑模式就进入锁止模式。在此模式下,离合器控制信号使离合器完全接合。只有当发动机转速和踏板信号变低和/或汽车刹车时才退出锁止模式。锁止模式终止了油门滤波器的作用,这时控制信号等于踏板信号。
自动模式切断 离合器控制器处在自动模式时,上述四种模式总有一种模式起作用。没有这种自动操作时,自动模式切断就起作用。一般说来,这时踏板信号为零或接近零或者发动机转速接近怠速。在此情况期间没有控制信号输出,且离合器被控制成使其完全接合。
图4的泡形图说明了离合器模式控制逻辑电路。图中列出了作为用于特定发动机/变速器组合系统一个实例的具体数值。其它数值适用于其它用途。各数值表示所示参数的全值或最大值的十进制小数值。举例说,发动机怠速为25%或.25;这里选取.27值表示高于怠速的某一转速,而发动机小于.188的转速表示趋近于失速的情况。此外,低油门信号肯定是有一定目的的,这里要求系统把小于3%或.03的任何踏板值作为零信号处理。
图4的泡形图是在“自动模式切断”情况下绘制的。当踏板信号超过.03时,“接触点趋近模式”就起作用。在接触点趋近模式时,若踏板信号降到0.3以下且刹车,模式就返回到自动模式切断。从接触点趋近模式起,没有发生任何作用,直到出现接触点TP且踏板信号大于3%为止,然后打滑模式起作用。若踏板信号降到3%以下,模式就返回到接触点趋近模式。若发动机转速接近失速或施加制动且踏板信号低于.03,逻辑电路就返回到自动模式切断。在离合器成功接合的情况下,若变速器已换档到2档或更高的档位,就进入锁止模式。除非变速器返回到1档或2档,否则控制器仍然处于锁止模式,然后返回到打滑模式。若除踏板放开且发动机转速下降到低于其“高于怠速”点之外还出现制动信号,控制器会进入自动模式切断。
图5是离合器驱动控制器60控制功能的示意图。也和图1中所示的一样,离合器驱动控制器60接收来自油门11的油门信号、来自发动机转速传感器13的发动机转速信号和来自变速器输入转速传感器31的变速器输入转速信号。图5中所示的离合器驱动控制器60产生离合器接合信号,后者加到离合器执行机构27上,供操纵摩擦离合器20用。离合器的驱动(actuation)程度连同油门设定值、发动机转速和汽车的性能确定变速器的输入转速,该输入转速经变速器输入转速传感器31检测后加到离合器驱动控制器60上。因此,图5中所示的控制系统是闭路系统。
离合器驱动控制器60最好采用微控制器电路。发动机转速、变速器输入转速和油门设定值相应的各输入必须取数字形式。这些输入信号最好以与微控制器的工作速度相适应、且快得足以进行所要求的控制的速度取样。前面说过,发动机转速、变速器输入转速和变速器输出转速最好用多齿齿轮检测,多齿齿轮的齿的转动则由磁性传感器检测。磁性传感器检测出的脉冲串在预定的时间间隔加以计数。各计数值与测出的转速成正比。为了适当控制,变速器输入转速信号在汽车后退时其符号必须为负。测定输入轴25的转动方向需采取一定的方式。这类方向检测采用的是传统方法,这里不进一步说明。油门的设定最好通过象电位计之类的模拟传感器加以检测。这种模拟油门信号经模/数转换器转换成数字形式后供微控制器使用。微控制器按本技术领域周知的方式借助离散差分方程履行图5所示的各程序。因此,图5所示的控制方法不应只视为个别的硬件而是表示如何对实施本发明的微控制器进行编程。同一个微控制器,如果容量够大且经过妥善编程是可以兼作离合器驱动控制器60和变速换档控制器33的。我们认为Inte/80C196微控制器的计算容量就足以如此使用的。
打滑基准发生器62接收油门信号并根据图6所示的函数曲线产生打滑基准信号。在图6的函数曲线中,信号在0%油门下等于100%发动机转速Es,然后逐渐减小到在40%油门下的0%发动机转速。这里以采用线性下降的函数为宜,虽然也可以采用其它函数。因此打滑基准是发动机转速和油门位置的函数。在代数加法器64从发动机转速减去输入转速以产生打滑信号,再在代数加法器66从打滑基准信号减去打滑信号以确定打滑误差信号。其它的控制过程和上述包括在本发明书中以供参考的美国专利5,439,428的一样。打滑误差馈给PID(比例-积分-微分)调节器68,这种调节器在控制方法学中是众所周知的,可以取不同的形式。在本应用实例中可以采用PI调节器,取消微分项。PID调节器的输出馈给前置滤波器20。代数加法器72求出前置滤波器的输出与输入转速的差值。此差值加到补偿器74上。补偿器74包括车辆对扭矩输入的扭矩振荡响应的近似倒转模型且包括三阶陷波滤波器。补偿器74的增益/频率函数选择成使其减少离合驱动控制器60的闭路响应因车辆动力传动系统传递函数的变化所引起的变化,而且值得一提的是补偿器74在低频下的增益增加从而提高系统的可靠性。
离合器接合信号中通过发动机差速信号加有前馈信号。微分补偿器或加速补偿器78对发动机转速的变化速度起反应而产生微分信号,但经低通滤波器76滤波,以防因发动机小量减速而突然下降。该发动机转速微分信号及其由积分器80产生的积分信号加到代数加法器82上。代数加法器82将补偿器74的输出、来自加速补偿器76的发动机转速微分信号和来自积分器80的积分信号加起来产生离合器接合信号。离合器执行机构用此离合器接合信号来控制离合器的接合程度。
前馈信号在发动机转速加速时使离合器驱动控制器更好地响应。在发动机转速加速的情况下,前馈信号促使离合器20正比于发动机加速的速率快速接合。发动机转速在动力传动系统扭矩建立起来之前在油门全开时迅速升高。这是因为离合器驱动控制器60没有此前馈响应时的响应速度比响应的发动机峰值转速低所致。在有这种前馈响应的情况下,发动机快速加速使离合器接合得比无前馈响应时更快。离合器进一步接合时需要发动机提供额外的扭矩因而必然抑制发动机转速的增加。当发动机转速达到恒定值时,微分项衰减到零,同时积分器80维持抑制发动机转速所需要的离合器接合程度。控制功能的其它部分这时用来使变速器输入转速以渐进线的方式逐渐趋近基准转速。
本发明经改进的控制算法既具有美国专利5,439,428中所公开的全部优点又有若干其它优点。打滑基准信号使离合器在油门位置极低时基本上打滑,但随着油门值的增加大幅度减小打滑程度。总的效果不但使运行过程非常平稳而且使总的打滑现象减少,从而改善了离合器磨损的情况且减少热量的散失。据发现,算法的上述改变在不同类型的重型卡车获得了成效。因而提高卡车的运输能力。用三阶滤波器代替补偿器中的二阶滤波器不仅可以有效地消除动力传动系统的振动而且还提高了高低动力传动系统减振水平的可靠性和传递能力。这种经改进的离合器控制特别适合与美国专利4,403,249所公开的稳定(freeze)逻辑电路器件一起使用。
模式逻辑电路为消除挂高档之前的锁住现象而进行的从现行系统的改革避免了进入锁止模式而同时又在蠕动的这种不希望有的效果。这样,系统在高油门下处于打滑模式。在此打滑模式下可以出现零打滑率的情况。这样,打滑可能会例如因负荷增加而恢复,但司机觉察不出换档的复原情况。应该指出的是,当产生打滑基准信号时油门小于40%的情况下,控制用的基准值为打滑基准值;然而当打滑基准在高于40%油门下为零时,发动机转速和原先的系统一样变为控制基准,因而需要单独的起动或发动模式。
权利要求
1.一种传动系的自动离合器控制器(60),该传动系包括由油门(12)控制的发动机(10);摩擦离合器(20),其输入轴(25)与发动机(10)连接,其输出轴(35)与变速器(30)的输入端连接;油门位置传感器(13);用以产生油门信号;发动机转速传感器(13),与发动机(10)连接,用以产生发动机转速信号;变速器输入转速传感器(31),与摩擦离合器(20)的输出轴(35)连接,用以产生变速器对应于摩擦离合器(20)输出轴(35)转速的输入转速信号;离合器执行机构(17),与摩擦离合器(20)连接,用以根据离合器接合信号(28)控制摩擦离合器(20)从分离至完全接合的接合过程,所述自动离合器控制器包括打滑基准发生器(62),用以根据油门信号产生作为油门和发动机转速的函数的打滑基准信号;打滑误差信号发生电路,用以根据输入转速、发动机转速和打滑基准等信号产生打滑误差信号;PID(比例-积分-微分)调节器(68),用以根据打滑误差信号调节打滑误差;和控制电路,用以根据经调节的打滑误差产生离合器接合信号(28),以便最大限度地减小打滑误差信号,从而根据打滑基准信号控制打滑率。
2.如权利要求1所述的本发明,其特征在于,打滑基准发生器(62)产生打滑基准信号,该打滑基准信号为发动机转速的百分比,该百分比随着油门的增大而减小。
3.如权利要求1所述的本发明,其特征在于,打滑基准发生器(62)产生的打滑基准信号在0%油门下为100%发动机速度,然后逐渐下降到在确定油门设定值下的0%的发动机转速。
4.如权利要求1所述的本发明,其特征在于,打滑误差信号发生电路包括第一代数加法器(64)和第二代加法器(66),前者用以根据发动机转速信号和输入转速信号的差值确定打滑信号,后者用以根据打滑基准信号与打滑信号的差值确定打滑误差信号。
5.如权利要求1所述的本发明,其特征在于,控制电路包括补偿器(74),所述补偿器(74)有一个三阶陷波滤波器(76)。
6.如权利要求1所述的本发明,其特征在于,控制器有一个确定下列工作模式的模式逻辑电路自动切断模式,用以在油门基本上闭合时使自动控制器不起作用;接触点控制模式,用以在油门高于最小设定值时控制离合器到接触点(81);打滑模式,当到达接触点(81)时进入打滑模式,以便驱动自动控制电路,根据油门和发动机转速信号控制离合器的打滑状况;和锁止模式,当挂高档时进入此模式。
7.如权利要求1所述的本发明,其特征在于,控制电路包括补偿器(74),根据经调节的打滑误差产生补偿信号;前馈电路;和加法装置,用以将补偿信号和前馈输出加起来,产生离合器接合信号。
8.如权利要求7所述的本发明,其特征在于,前馈电路包括微分补偿器(78),用以根据发动机转速产生引导信号;和积分器(80),用以根据引导信号产生积分信号,从而由引导信号和积分信号构成前馈输出。
9.一种齿轮变速器具有下列特点的车辆中自动离合器控制方法变速器的输入轴通过摩擦离合器(20)由发动机(10)驱动,摩擦离合器(20)由离合器驱动控制器(60)驱动,其中摩擦离合器(20)可接合的部分开始时先接触,然后在驱动过程中逐渐增加扭矩传递量,离合器驱动控制器(60)有两种自动模式;打滑模式和锁止模式,所述自动离合器控制方法包括下列步骤测定发动机转速、变速器输入转速和油门位置并产生相应的信号;根据发动机转速和油门信号产生打滑基准信号;通过比较发动机转速和输入转速确定打滑率值;通过比较打滑基准和打滑率值确定打滑误差;控制离合器的驱动情况,以便最大限度地减小打滑误差。
10.如权利要求9所述的本发明,其特征在于,打滑基准信号由在零油门位置下的发动机转速和在较大油门值下逐渐减小以在中间油门值下达0%的发动机转速的发动机转速的百分比所组成。
11.如权利9所述的本发明,其特征在于,打滑基准信号由在零油门位置下的发动机转速和在较大油门值下逐渐减小以在中间油门值下达0%的发动机转速的发动机转速的百分比所组成;且当打滑基准为0时,根据发动机转速控制离合器的驱动情况。
12.如权利要求9的本发明,其特征在于,控制离合器驱动的步骤包括通过对打滑误差信号的比例和积分调节而修正打滑误差;通过修正输入转速信号与打滑误差信号的差值产生离合器接合信号以便最大限度地减小打滑误差信号。
13.如权利要求9所述的本发明,其特征在于,控制离合器驱动的步骤包括通过对打滑误差信号进行比例和积分调节而修正打滑误差;三阶滤波输入转速信号与打滑误差信号的差值以产生补偿信号;对发动机转速进行微分以产生微分信号;对微分信号进行积分以产生积分信号;将补偿信号、微分信号和积分信号加起来以产生离合器驱动信号。
14.如权利要求9所述的本发明,其特征在于,离合器驱动的控制步骤包括通过对打滑误差信号进行比例和积分调节而修正打滑误差;将主转速信号和经修正的打滑误差信号加起来;在陷波频率在预期振动频率范围的情况下用三阶陷波滤波器对加起来的信号进行滤波。
15.如权利要求9所述的本发明,其特征在于,达到接触点(81)之后,进入打滑模式;挂高档时,退出打滑模式,进入锁止模式;因此控制离合器的驱动以最大限度地减小打滑误差的步骤只在打滑模式下进行。
全文摘要
一种能减少离合器接合的振动响应的离合器自动控制器,控制器接收来自油门位置传感器、发动机转速传感器和变速器输入转速传感器的输入并产生离合器驱动信号来控制离合器执行机构从分离到完发合的过程。离合器接合信号使摩擦离合器至少一部分接合得促使测出的变速器输入转速用此振动响应接近侧转的模式以渐近线的方式趋近发动机转速。离合器自动控制器根据油门位置和发动机转速产生打滑基准信号并将其与实际的打滑率进行比较。
文档编号B60W10/02GK1165099SQ9710109
公开日1997年11月19日 申请日期1997年2月1日 优先权日1996年2月2日
发明者J·M·斯力克, 陈国华 申请人:易通公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1