专利名称:聚亚烷基醚嵌段共聚物磷酸酯及基作为分散剂的应用的利记博彩app
技术领域:
本发明涉及在含水介质中分散粒状固体的化合物,其制备方法,以及含所述化合物和粒状固体的组合物,包括涂料和油墨。
供以水为基质的涂料所用的碾磨基料,常规制备法是将含有不溶于水的粒状固体(例如色素)的含水介质,在树脂和分散剂存在下进行粉碎操作,使细粒固体均匀分布于整个介质中。但是当此种碾磨基料加入涂料中时,分散剂可能对漆的成膜特性,和/或漆膜的耐久性有不良影响。某些分散剂还对所形成的漆膜光彩有损害。因此需要能够在介质中分散较大量颗粒固体,并显示提高分散稳定性,以及使所形成的漆膜有极好性能,尤其是具较高色彩光洁度的改进分散剂。
根据本发明,提供一种式I所示的聚(C2-3亚烷基二醇)-单C1-4烷基醚的磷酸酯,RO(C2H4O)m(C3H6O)n-H1其中R是C1-4烷基;而m和n各自是2-60。
R可以是直链或支链的,但优选直链特别是甲基。
优选m不小于3,尤其不小于5。也优选m不大于45,更优选不大于35,尤其不大于20。
优选n不小于3,更优选不小于5,尤其不小于7,也优选n不大于40,更优选不大于30,尤其不大于25。
式1单烷基醚的分子量优选小于12000,更优选小于8000,甚至更优选小于5000,尤其是小于3000。也优选式1单烷基醚的分子量不小于400,更优选不小于800,尤其优选不小于1000。
m与n之比优选在1∶3至3∶1之间,尤其是2∶5至5∶2之间。
使式1单烷基醚与磷酸试剂反应获得磷酸酯,其中单烷基醚对磷酸试剂的每个磷原子之比为3∶1至1∶1,尤其是2∶1至1∶1。
如果分散剂是单磷酸酯和二磷酸酯的混合物,则特别优选单烷基醚对磷酸试剂每个磷原子之比小于2,例如1.5∶1。
该磷酸酯可以是游离酸的形式,或者可以与碱金属、氨、胺、链烷醇胺,或季铵阳离子形成盐。
该磷酸酯还可以进一步与链烷醇或链烷醇胺反应,优选链烷醇是C1-6,尤其是C1-4链烷醇。如果该磷酸酯进一步与链烷醇反应,则形成另外的酯基团,且式1单烷基醚与磷酸试剂的磷原子之比小于2,尤其小于1.5。
当该磷酸酯与链烷醇胺反应,该链烷醇胺可以形成酯和/或酰氨基和/或胺盐。确信该反应产物主要是胺盐。
优选磷酸试剂是POCl3、多磷酸、尤其是P2O5。
优选碱金属是锂、钾、尤其是钠。
链烷醇胺的例子是乙醇胺、二乙醇胺、2-二甲基氨基乙醇,及2-氨基-2-甲基-1-丙醇。
式1单烷基醚可由本领域已知方法制备,优选使式2多亚乙基二醇单烷基醚与环氧丙烷反应,RO-(C2H4O)mH2其中R和m如本文前面所定义的。
一般情况下,式2单烷基醚与环氧丙烷是在惰性气氛(如通氮气),无水条件下,并在碱金属存在下反应。所述碱金属优选锂、钠、并特别优选钾。碱金属便于以水溶性无机盐、特别是氢氧化物形式加入到式2单烷基醚中,并加热除去水,特别是在加入环氧丙烷以前减压下加热。由于环氧丙烷属挥发性,其与式2单烷基醚的反应在封闭容器中进行,一般温度为40到140℃之间,优选温度是约80℃,尤其是约100℃。
式1单烷基醚与磷酸试剂之间的反应也优选在惰性气氛(如通氮气)无水条件下进行。反应可在惰性溶剂中进行,但在无溶剂条件下更有利于单烷基醚与磷酸试剂反应。反应温度优选60℃以上,尤其80℃以上。为了避免分散剂焦化,优选温度低于120℃,尤其低于100℃。
如果该分散剂还含有该磷酸酯与链烷醇或链烷醇胺反应形成的其它酯、酰氨和/或胺盐基团时,则链烷醇或链烷醇胺、可以在所述单烷基醚与磷酸试剂反应相同之条件下,与所述磷酸酯反应。
如本文前面所指出的,根据本发明的分散剂适宜于将粒状固体均匀分散于液体介质中,特别是分散于含水介质中。
因此,根据本发明的另一方面,提供含本文前面所定义之分散剂和粒状固体的组合物。
优选该组合物还含液体,特别是分散剂能至少部份溶于其中的一种液体,尤其是水或能够与水(包括其混合物)混溶的有机液体。适宜的液体例子包括C1-10脂肪醇之类的醇;C2-6亚烷基二醇之类的二醇;甲氧基-、乙氧基-、丙氧基-及丁氧基乙醇、和甲氧基-、乙氧基-及丙氧基丙醇之类的醇醚;以及二甘醇,和亚丙基二醇之类的二醇醚。总的说来,所挑选的液体要满足该组合物最后使用之要求,特别是要与它将被稀释的任何介质具相容性。优选该液体含相对于组合物总重的至少25%、更优选至少50%、尤其是至少75%重量的水。
该组合物可以含分散剂和粒状固体的紧密混合物,但优选含有分散剂在细颗粒上的涂层。优选该颗粒平均直径小于15μ,更优选小于10μ,特别是小于5μ,尤其是小于3μ。
所述粒状固体可以是能在液体介质中呈稳定细分散状态的任何物质。适宜固体之例是颜料和油墨,漆和其它表面涂料的填料;磁性金属或合金,及磁性氧化物,用于生产磁带,磁盘和记录装置;灰尘及土壤颗粒;杀生物剂、农药及药品。该组合物,无论是干性,或液体介质中的分散形式,均可含其它成份,例如树脂、粘结剂、悬浮剂、抗沉降剂、增塑剂、润湿剂、聚结剂、共溶剂、增稠剂及防腐剂。这些成分可溶于该液体介质、部分溶于该液体介质,或者不溶于该液体介质,或可分散于该液体介质中。
如果固体是颜料,则优选无机颜料、金属颜料、或有机染料的金属盐(有时称色淀或调色剂)。这些颜料可来自任何已知类别的颜料,例如“色彩索引第三版”(1971),以及随后在标题“颜料”一章中的修订及补充内容所介绍的那些颜料。
无机颜料的例子是二氧化钛(包括锐钛矿和金红石形式、以及高紫外线吸收的超精细二氧化钛)、氧化锌、普鲁士兰、硫化镉、氧化铁(包括透明氧化铁)、群青、云母(包括例如用精细二氧化钛处理云母表面而制得的珠光颜料),和铬颜料,包括铬酸盐、钼酸盐、及铅、锌、钡、钙、和混合物的混合铬酸盐和硫酸盐,以及以品名淡黄色、柠檬黄、中黄、橙黄、猩黄、和铬红市售的绿黄至红色颜料的改性产品。
金属颜料的例子是铝碎片、铜粉、及铜碎片。
有机染料的金属盐例子是偶氮金属盐颜料,例如Cl红颜料48(也称为2B调色剂或永久红2B)、Cl红颜料53(也称为色淀红C或红色淀C)、Cl红颜料52、Cl红颜料57(也称为4B调色剂、立索玉红、玉红调色剂,或永久红4B)、Cl红颜料58、Cl红颜料247、Cl黄颜料61、Cl黄颜料62、Cl黄颜料183,和Cl黄颜料191。
填料的例子是碳酸钙、水合氧化铝、滑石、石英、硅石(沉淀硅石、热解及合成硅石)、金属硅酸盐、硫酸钡及硫酸钙、瓷土、氧化锑、石粉、硅灰石和碎玻璃纤维。
可用本领域任何已知方法制备该组合物。因此,可将分散剂和固体颗粒混合在一起,并然后优选研磨该组合物,获得所需的固体颗粒度,由此制备该组合物。但优选在最终配制、或固体颗粒精加工期间,在有液体存在下,将分散剂加入固体颗粒中。总的来说,是将分散剂、固体颗粒和液体介质混合在一起制备组合物、然后将该组合物研磨或者磨细,以得到所需的固体颗粒度。所述液体介质可以是水或最好是至少能部份溶解分散剂的有机液体。如果组合物需制成干性,优选液体介质是挥发性的,以便其能通过简单方法(如蒸发)容易地从固体颗粒中除去。但优选该组合物含有液体介质。
如果干性组合物基本由分散剂和粒状固体组成,则根据粒状固体重量,优选含至少0.2%,更优选含至少0.5%,尤其是至少1%重量分散剂。但最好是根据粒状固体重量,干性组合物中分散剂含量不高于100%重量,优选不高于50%,更优选不高于20%,特别是不高于10%。
当组合物含分散剂,粒状固体,和液体介质时,则根据该组合物总重,其中优选含至少5%,更优选至少20%,尤其是至少40%,最优选至少50%粒状固体。但最好是根据该组合物总重,该组合物中所含固体重量不高于90%,更优选不高于80%,尤其是不高于75%。优选分散剂相对于粒状固体之量,与前面对干性组合物所定义的相同。
正如前面所述,本发明分散剂特别适宜配制含水碾磨基料,所述基料中,粒状固体是在分散剂和成膜树脂粘合剂存在下于液体中碾磨的。
因此,根据本发明的又一方面,提供一种含粒状固体、分散剂和成膜树脂的含水碾磨基料。
一般来说,该碾磨基料含其总重20%至70%的粒状固体,优选粒状固体不少于30%,尤其是不少于50%重量。
碾磨基料中的树脂之量,可在很宽限度范围内变化,但优选不低于该碾磨基料的连续相/液相之重量的10%,特别是不低于20%。但优选树脂之量不大于50%,尤其是不大于40%的该碾磨基料的连续相/液相之重量。
碾磨基料中分散剂之量取决于粒状固体之量,但优选为碾磨基料重量的0.5%至5%。
所述树脂可以是能作为含水漆及印刷油墨之粘合剂的任何成膜树脂。优选该树脂能与交联剂发生交联作用,且优选含烯类不饱和基团的丙烯酸或丙烯酸酯高聚物。
本发明由下述实施例进一步说明,除有不同说明外,所有的份数或百分数均以重量计。中间体聚亚烷基二醇单烷基醚在下面的嵌段共聚物制备详述中,聚亚乙基二醇单甲基醚写作MeOPEG,而聚亚丙基二醇写作PPG。该高聚物的近似分子量在括号内给出。中间体1-MeO PEG(750)PPG(650)将MeO PEG(750)(750份,1M;ex Fluka)与蒸馏水(14.1份)中配制的氢氧化钾(14.1份)溶液一起加入反应瓶中。将反应瓶在20至30mmHg下搅拌加热到110℃除去水。加入环氧丙烷(750份,12.9M),将反应瓶在110℃下搅拌加热8小时,直至反应完全。在110℃和20至30mmHg下除去未反应的环氧丙烷。由此获得棕红色油状的嵌段共聚物(1514份),冷却即固化。该共聚物中PEG∶PPG之比为1.5∶1左右。中间体2-MeO PEG(750)PPG(1260)该制备法与中间体1同,只是环氧丙烷之量增至1400份。获得浅褐色油状嵌段共聚物(1863份),且其中PEG∶PPG之比为1∶1.4左右。中间体3-MeO PEG(350)PPG(930)用中间体1相似的方法制备,只是使用MeO PEG(350)(350份,1M;ex Fluka)。获得该嵌段共聚物为黑褐色油状物。该共聚物中PEG∶PPG之比为2∶1左右,其OH值为48mgs KOH/gm(有效MW=1190)。中间体4-MeO PEG(550)PPG(700)用中间体1相似方法制备,只是使用MeO PEG(550)(550份,M;ex Fluka)和丙二醇(700份,12M),获得该嵌段共聚物为黑黄色油状物,PEG∶PPG之比为约1∶1。测得OH值是50.6mgs KOHgm-1,有效MW是1109。中间体5-MeO PEG(750)PPG(500)用中间体2相同方法制备,只是使用MeO PEG(750)(750份,1M)。获得的嵌段共聚物为黑褐色油状物。其PEG∶PPG之比为2∶1左右。其OH值测得为50.8mgs KOH gm-1,有效MW为1104。分散剂的制备实施例1-MeO PEG(750)PPG(650)(1∶1磷)将中间体1(28份,0.02M)加入经过氮气清吹的反应瓶中。将五氧化二磷(1.42份,0.01M)在20-25℃下加入,并快速搅拌反应物15分钟。然后升温至80℃,80℃搅拌2小时后,逐渐形成白色固体,充氮气下80℃再搅拌16小时,溶解形成含少量固体的浅黄色油状物。将温度升至90℃,氮气下将反应物再搅拌16小时则固体溶解。这便是分散剂1,为清彻黄色油状物,冷却即固化。实施例2-MeO PEG(750)PPG(1260)(1∶1磷)用与实施例1相似的方法制备,只是用中间体2代替中间体1,五氧化二磷为1.06份(0.0075M)。但在P2O5加入后,反应物于80℃总共搅拌21小时。由此制得分散剂2,为浅褐色油状物。实施例3-MeO PEG(350)PPG(930)(1.5∶1磷)将中间体3(35.67份,0.03M)加入反应瓶中,并用氮气清吹。加入P2O5(1.42份,0.01M),充氮气下,于20-25℃将反应物搅拌1小时。P2O5很快分散,并在80℃-90℃,充氮气下再搅拌16小时。由此获得分散剂3,为清彻黄色油状物。实施例4-MeO PEG(550)PPG(700)(1.5∶1磷)由实施例3所述方法制备,只是用中间体4(33.27份,0.03M)代替中间体3。获得分散剂4,为清彻黄色油状物。实施例5-MeO PEG(750)PPG(500)(1.5∶1磷)用实施例3所述方法制备,只是用中间体5(33.12份,0.03M)代替中间体3。获得分散剂5,为浅褐色油状物,放置后变为软糊状。实施例6-MeO PEG(750)PPG(650)(1.5∶1磷)将中间体1(100份)与多聚磷酸(7.94份,含85%P2O5),于90℃氮气氛下一起搅拌24小时,得到褐色油状物(104份),冷却后为腊状固体,这是分散剂6。实施例7-MeO PEG(750)PPG(1260)(1.5∶1磷)中间体2(100份)与多聚磷酸(5.54份)于90℃,充氮气下搅拌24小时,得到褐色油状物(103份),冷却后得到腊状固体。这是分散剂7。实施例8-MeO PEG(350)PPG(930)(1∶1磷)用与分散剂6相似方法制备,只是用中间体3(100份)代替中间体1,并与13.05份多聚磷酸反应。冷却获得黑褐色粘稠油状的分散剂8(110份)。实施例9-MeO PEG(550)PPG(700)(1∶1磷)用与分散剂6相似方法制备,只是用中间体4(100份)代替中间体1,并与13.39份多聚磷酸反应。获得黑褐色粘稠油状的分散剂9(108份)。实施例10-MeO PEG(750)PPG(500)(1∶1磷)仍用与分散剂6相似方法制备,只是用中间体5(100份)代替中间体1,并与13.42份多聚磷酸反应。获得分散剂10,为黑褐色粘稠液体(109份)。实施例11至13在碾磨基料中评估各分散剂在装有3mm玻璃珠(125份)的高能球磨机中,将列于下表1中的各成分进行球磨加工30分钟制备碾磨基料。
碾磨之后,将所得碾磨基料用列于表1的调稀用乳液稀释而转换成可用的涂料。
采用由RK Print-Coat仪器有限公司(Royston,Herts,England)提供的机械化K绕线杆压延系统涂覆铝板和上过底漆的钢板,而制成试验板。将K杆进行校准,使之能留下100微米厚度的湿膜。使漆膜在室温下干燥30分钟,然后于120℃烘烤30分钟。从板表面取5个读数,以其平均值计算各板的20°角平均光泽度。该结果列于表2。
表1
表1注分散剂6-8的水溶液是酸性的,这样加入Neocryl树脂以前加氨使之pH值升至9±1。
加入Neocryl XK90树脂,将漆调稀至最终体积,所加树脂量由下式给出
其中y是碾磨基料产量。
表2
实施例14、15及对比例A-C使用分散剂1和2配制碾磨基料、并且该实施例14和15采用实施例11-13所述方法。两种分散剂1和2所含嵌段共聚物与磷之比为1∶1。将其与分散剂A、B和C加以对比,所述分散剂A、B和C中所含嵌段共聚物与磷之比也是1∶1,但其中共聚物是MeO PEG嵌段共聚物,即与分散剂1和2相比,PPG和PEG片段颠倒。
这些碾磨基料所测得的20°光泽度列于下表3,数据表示,来自通式MeO(PEG)(PPG)嵌段共聚物的分散剂,优于来自通式MeO(PPG)(PEG)嵌段共聚物的分散剂,尤其是当该碾磨基料涂于上过底漆的钢板时更为明显。
表3
表3注分散剂A-C中烷氧基烷醇对磷之比为1∶1。
A是来自MeO PPG(650)PEG(900)的分散剂B是来自MeO PPG(900)PEG(660)的分散剂C是来自MeO PPG(1200)PEG(450)的分散剂实施例16-25在温热条件下,首先将pH值调至10左右而使分散剂(2.55份)和Dehydran1295(0.3份)在水(9.6份)、丙二醇(6.75份)和2-氨基-2-甲基-1-丙醇(0.23份)的混合物中溶解而配制碾磨基料。将所得的溶液冷却并倾入分散罐中。将Neocryl XK90(44.8份)和Tioxide TR92(64份)与1mm玻璃珠(180份)一起加入,在没有外部冷却的条件下,将速度调至3000将碾磨基料碾磨30分钟。然后将所得碾磨基料与玻璃珠分开,并用列于表4之量以Neocryl XK90将其进一步调稀。Dehydran1293是购自Henkel GmbH的消泡剂,NeocrylXK90是购自Zeneca Resins的水/丙二醇中的丙烯酸树脂,而TioxideTR92是购自ICIPLC的二氧化钛。
表4
表4注稀释用的Neocryl XK90之量由下式计算X=y×133128.23]]>其中y是漆产量当用磷酸酯化MeO PEG(750)(1.5∶1磷)代替分散剂1-10时,并不形成分散液。这表明PPG高聚物链与磷酸酯部分相邻的优点。
上面的漆料静置过夜(16小时)使之脱气,然后如实施例11-13所述,将其涂覆于上过底漆的钢板和铝板上。该漆的20°平均光泽度详细列入表5中。
表权利要求
1.一种分散剂,它是式1聚亚烷基醚嵌段共聚物的磷酸酯,RO(C2H4O)m(C3H6O)n-H1其中R是C1-4烷基,而m和n分别各自是2-60。
2.如权利要求1的分散剂,其中R是甲基。
3.如权利要求1或2的分散剂,其中m与n之比在2∶5和5∶2之间。
4.如权利要求1-3任一项的分散剂,它是单磷酸酯和二磷酸酯的混合物。
5.含有权利要求1-4任一项的分散剂和粒状固体的组合物。
6.如权利要求5的组合物,还含有液体介质。
7.如权利要求6的组合物,其中液体介质是水。
8.含有权利要求1-4任一项的分散剂、粒状固体、和成膜树脂的含水碾磨基料。
9.含有权利要求1-4任一项的分散剂,粒状固体和成膜树脂的涂料和油墨。
全文摘要
式MeO(C
文档编号C09D11/16GK1203538SQ9619868
公开日1998年12月30日 申请日期1996年10月18日 优先权日1995年11月30日
发明者D·特福德, M·霍尔布罗克 申请人:曾尼卡有限公司