一种负载有小分子物质的复合抑菌涂层制备方法
【专利摘要】本发明涉及一种用对生物膜具有抑制作用的小分子物质双(3-氨基丙基)胺制备多结构复合抑菌/抗菌涂层的方法,属于生物膜控制【技术领域】。本发明采用聚丙烯酸(PAA)和聚乙烯亚胺(PEI)通过化学键合的方式构建负载双(3-氨基丙基)胺的多结构复合涂层。该方法简单易行,适用基底广泛,生物毒性小,环境友好,效应持久,经济高效,它克服了基于杀菌机制的传统生物膜控制方法可能产生的生物耐药性问题,对纯菌和混合菌均具有良好的抑菌效果,抑菌效率达到41%-75%。
【专利说明】一种负载有小分子物质的复合抑菌涂层制备方法
【技术领域】
[0001] 本发明涉及一种用对生物膜具有抑制作用的小分子物质双(3-氨基丙基)胺制备 多结构复合抑菌/抗菌涂层的方法,属于生物膜控制【技术领域】。
【背景技术】
[0002] 生物膜是指浮游细菌附着到生物或非生物表面,并且通过其自身分泌的胞外聚合 物(EPS)结合在一起,形成的结构性微生物群落。生物膜广泛存在于环境中,如消毒系统、 自来水管道、工业管道、通风设备、医疗器械及病理状态下的人体组织器官。几乎所有的细 菌在一定条件下都可以形成生物膜。环境中一些不利生物膜的形成会引起很多问题。在医 学领域,一些致病菌在人体内外及医疗材料表面形成生物膜是引起慢性感染疾病反复发作 和难以控制的主要原因之一,人体细菌感染80%都和生物膜相关。在环境领域,生物膜的存 在可引起食物和水体污染、膜材料污染、管道堵塞及金属表面腐蚀等问题。以往对于生物膜 的控制多采用杀菌剂或抗菌剂,如采用氯、纳米银、噬菌体或其它大分子抑菌剂来杀死细菌 或将其负载到材料表面抑制生物膜形成。但是,这些物质的释放无疑带来了新的环境风险, 而且由于EPS对于细菌的屏障保护作用及其形成生物膜后细菌的表型发生变化,这些常规 的杀菌剂很难接触到目标细菌。另外,长期使用抗生素或者杀菌剂还会导致细菌的抗药性 增加,使耐药细菌蔓延。在生物膜形成到解体自然过程中,会受到某些小分子物质的诱导, 它们可以影响或调控生物膜的形成和解体过程。因此,通过人为调控这些小分子物质,有可 能建立一种全新的生物膜控制方法。双(3-氨基丙基)胺就是一种微生物自身产生的小分 子物质,它能够调控生物膜解体过程。它是一种具有特定结构的多胺类物质。双(3-氨基 丙基)胺中的氨基能够和细菌多糖中的负价态或者带极性基团的中性糖发生化学反应,也 可能和胞外DNA发生作用,从而使生物膜解体。利用这类小分子物质的促生物膜解聚特性, 构建具有抑菌抗菌特性的涂层,相关研究尚未见报道。
[0003] 目前,很多抑菌涂层都是采用将一些抑菌或杀菌剂负载的方法。专利申请 号200710016018. 0通过化学键合的方式将纳米银颗粒固定在生产设备的表面,获得了 长效,具有缓释特性的纳米抗菌涂层,实现了对啤酒设备内生物膜的控制;专利申请号 200880011862. 7公开了一种超疏水涂层,表面能小于20mN/m,有效地减少或者避免了持续 水膜和由此引起的细菌附着。在众多的涂层方法中,多结构复合涂层通过交替沉积带有相 反电荷的高聚物形成的聚合电解质涂层(polyelectrolyte multilayer,PEM),由于其灵活 程度相对较高而受到广泛关注。这种复合涂层可以负载多种抗菌剂,从而实现抗菌剂的缓 释功能,且负载量容易调节,制作也非常简单和经济。例如,Chuang等(2008)将抗菌剂(硝 酸银或溴棕三甲铵)负载到了聚丙烯酸和聚乙烯亚胺形成的PEMs中;Schmidt等(2010)将 抗菌剂庆大霉素组装到了可降解的聚氨基酯、玻尿酸或聚丙烯酸形成的PEMs中,随着聚合 物的降解,庆大霉素被释放出来,有效地抑制了金黄色葡萄球菌生物膜的形成;Thierry等 (2005)将抗菌剂紫杉醇成功地负载到了玻尿酸和抗菌糖形成的PEMs中。但是,这些负载有 杀菌剂的涂层缺点是随着细菌耐药性的增加,其抑菌抗菌功效会大大降低。为了解决这些 问题,本专利提出利用一些通过非杀菌方式抑制生物膜形成的小分子物质,将其负载制备 多结构复合抑菌抗菌涂层,这方面研究目前尚未见相关报道。
【发明内容】
[0004] 传统的基于杀菌机制的抑菌/杀菌剂是当前普遍采用的生物膜抑制方法,但随着 微生物耐药性增强,这类杀菌/抑菌剂的抑菌效应将逐渐丧失。本发明是针对现有技术缺 点,提出利用一种能够促进生物膜解聚的小分子物质双(3-氨基丙基)胺,将其负载制备复 合抑菌/抗菌涂层,通过非杀菌机制来抑制生物膜。该方法具有简单、抑菌效果持续稳定, 环境友好等特点。双(3-氨基丙基)胺是某些微生物产生的能够促进生物膜解聚的小分子 物质。它的氨基能够和细菌多糖中的负价态或者带极性基团的中性糖发生化学反应,也可 能和胞外DNA发生作用,从而使生物膜解体,因此是一种基于非杀菌机制的生物膜抑制物。 本发明技术特征在于以双(3-氨基丙基)胺为抑制物,采用聚丙烯酸(PAA)和聚乙烯亚胺 (PEI)通过化学键合的方式负载双(3-氨基丙基)胺,制备复合抑菌/抗菌涂层,具体步骤 包括:
[0005] (1)基底材料的预处理:基底材料的预处理包括清洁和硅烷化处理,适用的基底 材料包括玻璃、钛片和铜片等;当以玻璃片作为基底材料时,预处理方法包括用清洁剂进行 表面清洁、去离子水润洗、甲醇润洗后及氮气干燥,然后用氨基丙基三乙氧基硅烷进行硅烷 化处理;当以铜片和钛片等金属基底材料作为基底材料时,先进行表面抛光,然后依次用蒸 馏水、丙酮和无水乙醇超声清洗,最后真空干燥。
[0006] (2)复合涂层制备的具体步骤包括:分别配制聚合阴离子聚丙烯酸(PAA)和聚合 阳离子聚乙烯亚胺(PEI)水溶液,使其浓度为1?3mg/mL,pH 5. 0?7. 0 ;将双(3-氨基丙 基)胺溶解在上述部分聚合阳离子PEI水溶液中,配成含双(3-氨基丙基)胺的聚合阳离 子PEI水溶液浓度,其中双(3-氨基丙基)胺浓度为0. 5?I. 5mg/mL ;将基底材料交替浸 没在上述聚合阴离子聚丙烯酸(PAA)溶液和聚合阳离子PEI溶液(含有或不含有双(3-氨 基丙基胺)中,每次15_20min,每次浸没后取出,用去离子水润洗3-5次,氮吹干燥;交替浸 渍总次数2-20次,浸渍于含双(3-氨基丙基)胺的聚合阳离子PEI溶液的次数1-10次;浸 渍完成后,取出基底材料,氮吹干燥,负载双(3-氨基丙基)胺的多结构复合抑菌/抗菌涂 层的制备完成。
[0007] 有益效果:
[0008] (1)本发明提出了利用促进生物膜解聚的小分子物质双(3-氨基丙基)胺制备抑 菌涂层,双(3-氨基丙基)胺通过降低细胞胞外多糖产生,抑制生物膜形成。它生物毒性小, 环境友好,效应持久;不同于传统杀菌剂或抑菌剂,克服了基于杀菌机制的生物膜控制方法 可能产生的生物耐药性问题。
[0009] (2)利用聚合阴离子PAA溶液和聚合阳离子PEI负载双(3-氨基丙基)胺制备抑菌 涂层方法,具有简单易行,小分子物质负载量和空间位置可调,适用基底材料广泛等优点。 [0010] (3)利用本发明提出的抑菌涂层制备方法对几种典型纯菌和混合菌均具有良好的 抑菌效果,抑菌效率达到41% -75%。
【专利附图】
【附图说明】
[0011] 图1是负载有双(3-氨基丙基)胺的复合涂层对不同菌群的生物膜抑制效果
[0012] 图2是负载有不同量双(3-氨基丙基)胺涂层对生物膜抑制效果
[0013] 图3是双(3-氨基丙基)胺不同负载位置对生物膜长期抑制效果。《1?表示每 一层类型涂层,表示顶部类型涂层,《1?表示底部类型涂层。
【具体实施方式】
[0014] 为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的 内容不仅仅局限于下面的实施例:
【具体实施方式】 [0015] :
[0016] 实施实例1负载双(3-氨基丙基)胺的复合涂层对几种纯菌和混合菌生物膜抑制 效果
[0017] (1)以玻片基底材料为,首先将玻片浸泡在清洁剂中30-60min,然后取出用去离 子水润洗,再用甲醇溶液润洗,然后氮吹干燥;将玻片置于〇. 5M?3M的3-氨基丙基三乙氧 基硅烷(以甲苯为溶剂)中,于20°C?30°C,60?IOOr .mirT1振荡6?10h,取出后干燥;
[0018] (2)将玻片浸入浓度为3mg/mL,pH 5. 0?7. 0的聚合阴离子PAA溶液中15min, 取出后用去离子水润洗3次,氮吹干燥;浸泡到浓度为3mg/mL,pH 5. 0?7. 0的聚合阳离 子PEI溶液中15min (含有0. 5?1.5mg/mL的双(3-氨基丙基)胺),取出后去离子水润 洗3次,氮吹干燥;重复上述步骤4次,即聚合电解质的层数为4层(4bilayer S),得到高聚 物-双(3-氨基丙基)胺涂层(Polymer-Norspermidine Coating,PNC);
[0019] (3)分别以原始基底材料和负载有PNC的基底材料为基底层,培养三种纯菌 P. aeruginosa,E.coli,B. subtilis和混菌(活性污泥)生物膜,培养条件为30°C,48h。相 比于原始基底材料,负载有PNC的玻片表面形成的生物膜量大大降低,对于P. aeruginosa, E. coli,B. subtiIis和混合菌落分别降低了 41 %,75 %,63 %和64%。可见,负载有双(3-氨 基丙基)胺的复合涂层对不同菌落生物膜的形成均有很好的抑制效果。
[0020] 实施实例2双(3-氨基丙基)胺不同负载量对生物膜形成抑制影响
[0021] 本实施实例与实施实例1不同之处在于:将硅烷化后的基底材料交替置于PAA和 PEI溶液中,分别重复2,4,8次,以此实现不同的双(3-氨基丙基)胺负载量;且为了更贴 近实际环境应用,只采用活性污泥混合菌群培养生物膜,培养条件为30°C,24h。对应于负载 2,4,8层的PNC,生物膜抑制率分别为55. 8 %,64. 0 %,68. 5 %。
[0022] 实施实例3双(3-氨基丙基)胺不同负载位置对生物膜形成长期抑制效果
[0023] (1)以钛片为基底材料,对其进行机械抛光处理去掉表面氧化层后,再用蒸馏水、 丙酮和无水乙醇超声清洗,最后真空干燥;
[0024] (2)底部负载小分子物质涂层制备方法:将钛片浸入lmg/mL PAA溶液中15min,去 离子水润洗3次,氮吹干燥;浸入含有lmg/mL的双(3-氨基丙基)胺的PEI溶液中15min, 去离子水润洗3次,氮吹干燥;重复上述步骤1次;再重复上述步骤两次,但是PEI溶液中不 含有双(3-氨基丙基)胺,即得到的涂层中双(3-氨基丙基)胺只存在于底部两层,称之为 底部类型(bottom-type);
[0025] (3)顶部负载小分子物质涂层制备方法:钛片交替浸入到lmg/mL PAA溶液和lmg/ mLPEI溶液中,每次浸渍时间为15min,取出钛片后去离子水润洗3次,氮吹干燥;重复上述 步骤2次;然后将钛片交替浸入含有lmg/mL双(3-氨基丙基)胺的lmg/LPEI溶液和Img/ mL PAA溶液中,每次浸入15min,取出钛片后去离子水润洗3次,氮吹干燥重复2次,即得到 的涂层在底部负载有双(3-氨基丙基)胺,称为顶部类型(top-type);
[0026] (4)逐层负载小分子物质涂层制备方法:钛片交替浸入到lmg/mL PAA溶液和含 lmg/mL的双(3-氨基丙基)胺的lmg/mL PEI溶液中,每次浸渍时间为15min,取出钛片后 去离子水润洗3次,氮吹干燥;重复上述步骤4次。该方法得到的涂层中双(3-氨基丙基) 胺位于每一层,称为逐层负载类型(each layer-type);
[0027] (5)测定了三种涂层对活性污泥混合菌的抑菌效果,发现三种类型的涂层在持 续7天内都具有一定的生物膜抑制效果,其中逐层负载的涂层效果最佳,生物膜抑制率约 60%长达5天。
【权利要求】
1. 一种利用对生物膜具有抑制作用的小分子物质双(3-氨基丙基)胺制备多结构复合 抑菌/抗菌涂层的方法,其特征在于包括以下步骤: (1) 基底材料表面清洁和硅烷化处理; (2) 分别配制聚合阴离子聚丙烯酸(PAA)溶液和聚合阳离子聚乙烯亚胺(PEI)水溶液, 使其浓度为1?3mg/mL,调整pH 5. 0?7. 0 ; (3) 取上述部分聚合阳离子PEI水溶液,将双(3-氨基丙基)胺溶解在其中,浓度0. 5? 1. 5mg/mL,配成含双(3-氨基丙基)胺的聚合阳离子PEI水溶液; (4) 将上述基底材料交替浸渍在上述聚合阴离子PAA和含或不含双(3-氨基丙基)胺 的聚合阳离子PEI溶液中,每次时间为15-20min,取出后用去离子水润洗3-5次,氮吹干燥; 交替浸渍总次数2-20次,浸渍于含双(3-氨基丙基)胺的聚合阳离子PEI溶液的次数1-10 次; (5) 浸渍完成后,取出基底材料,氮吹干燥,负载双(3-氨基丙基)胺的多结构复合抑菌 /抗囷涂层的制备完成。
2. 根据权利要求1所述的基底材料,包括玻璃、铜片、钛片等。
3. 根据权利要求1所述的基底材料表面清洁和硅烷化处理,当基底材料为玻片时,其 预处理方法包括用清洁剂清洁、去离子水润洗、甲醇润洗后氮气干燥,然后用氨基丙基三乙 氧基娃烧进彳了娃烧化处理。
4. 根据权利要求1所述的基底材料表面清洁和硅烷化处理,当基底材料为铜片和钛片 时,其预处理步骤包括铜片和钛片表面清洁和抛光,然后依次用蒸馏水、丙酮和无水乙醇超 声清洗,最后真空干燥。
【文档编号】C09D5/14GK104387832SQ201410513178
【公开日】2015年3月4日 申请日期:2014年9月29日 优先权日:2014年9月29日
【发明者】全向春, 司秀荣 申请人:北京师范大学