专利名称:一种具有荧光性质的水溶碳纳米粒子材料的制备方法
技术领域:
本发明属于纳米材料领域,尤其涉及一种具有荧光性质的水溶碳纳米粒子材料的 制备方法。
背景技术:
由于在电子和生物领域潜在的巨大应用价值,荧光纳米粒子引起了近期科学界的 巨大关注。目前,典型的荧光粒子是从铅、镉、硅及它们的化合物发展而来的,但是这些材料 对于环境方面的潜在危害以及弱的光稳定性也引起了的人们的普遍关注。在生物研究领 域,对于能够发射从可光区到近红外光区荧光纳米结构材料的需求也在不断增加。相对于 传统的在紫外可见区的检测,在治疗窗口(700 1200nm)范围的荧光光谱具有很多优点, 例如低的背景干扰和对活体组织的高渗透力等等。同时由近红外光激发而获得的近红光区 发射荧光在关于无创性诊断技术等活体研究方面的应用潜力是巨大的。因此一种具有优异 荧光性能且能应用在生物领域的纳米粒子应该稳定、低毒且可以发出近红外光区的荧光。碳的纳米结构被认为是未来电子器件的基本结构单元、新型的发光材料和催化材 料,在生物传感与生物医学领域具有重大的潜在应用价值,相关研究在纳米科学和技术领 域具有重要意义。由于量子尺寸效应和介电限域效应的影响,小尺寸的碳纳米粒子具有独 特的光电性质,使其在发光、照明以及生物医学领域已显示出诱人的应用前景。然而,目前 该领域研究中还存在许多问题需要解决,其中较为突出的是碳纳米粒子制备的方法较为 繁琐复杂,且同时具有荧光性质单一,难以提纯等缺点。为了便于碳基纳米器件制备和碳纳 米结构材料的进一步应用,发展一种简单易行且具有优异荧光性质的碳纳米粒子制备方法 是十分必要和有意义的。在碳的纳米结构,例如碳纳米粒子的合成方面已有关于多种制备方法的报道, 例如激光剥离石墨(典型文献包括=Sun, Y. P. ;Zhou, B. ;Lin, Y. ;Wang,W. ;Fernando, K. Α. S. ;Pathak, P. ;Meziani, M. J. ;Harruff, B. A. ;Wang, X. ;Wang, H. ;Luo, P. G. ;Yang, H. ;Kose, Μ. E. ;Chen, B. ;Veca, L. M. ;Xie, S. Y. J. Am. Chem. Soc. 2006,128, 7756 ;Cao, L. ;Wang, X. ;Meziani, Μ. J. ;Lu, F. ;Wang, H. ;Luo, P. G. ;Lin, Y. ;Harruff, B. A. ;Veca, L. M. ;Murray, D. ;Xie, S. Y. ;Sun, Y. P. J. Am. Chem. Soc. 2007,129,11318 ;Hu, S. L. ;Niu, K. Y. ;Sun, J. ;Yang, J. ;Zhao, N. Q. ;Du, Χ. W. J. Mater. Chem. 2009,19,484 ;Wang, X. ;Cao, L. ;Lu, F. S. ;Meziani, Μ. J. ;Li, H. ;Qi, G. ;Zhou, B. ;Harruff, B. A. ;Kermarrec, F. ;Sun, Y. P. Chem. Commun. 2009,3774.)、电化学氧化石墨(典型文献包括Zhao,Q. L. ;Zhang, Ζ. L. ;Huang, B. H. ;Peng, J. ;Zhang, Μ. ;Pang, D. W. Chem. Commun. 2008,5116 ;Zheng, L. Y.; Chi, Y. W. ;Dong, Y. Q. ;Lin, J. P. ;Wang,B. B. J. Am. Chem. Soc. 2009,131,4564.)、电化学浸 润碳纳米管(典型文献包括Xu,X. ;Ray, R. ;Gu, Y. ;Ploehn, H. J. ;Gearheart, L. ;Raker, K. ;Scrivens, W. J. Am. Chem. Soc. 2004,126,12736 ;Bottini, Μ. ;Balasubramanian, C.; Dawson, Μ. I. ;Bergamaschi, Α. ;Bellucci, S. ;Mustelin, Τ. J. Phys. Chem. B 2006,110, 831 ;Zhou, J. ;Booker, C. ;Li, R. ;Zhou, X. ;Sham, Τ. K. ;Sun Χ. , ;Ding, Ζ. J. Am. Chem.Soc. 2007,129, 744.)、水热相关前躯体(典型文献包括Sun,X. M. ;Li,Y. D. Angew. Chem. Int. Ed. 2004,43,597 ;Bourlinos, A. B. ;Stassinopoulos, Α. ;Anglos, D. ;Zboril, R. ;Georgakilas, V. ;Giannelis, E. P. Chem. Mater. 2008,20,4539 ;Bourlinos, A. B.; Stassinopoulos, A. ;Anglos, D. ;Zboril, R. ;Karakassides, Μ. ;Giannelis, Ε. P. Small 2008,4,455·)、电弧放电(典型文献包括Liu,H. P. ;Ye, T. ;Mao, C. D. Angew. Chem. 2007, 119,6593 ;Angew. Chem. Int. Ed. 2007,46,6473 ;Tian,L. ;Ghosh,D. ;Chen,W. ;Pradhan,S.; Chang, X. ;Chen, S. W. Chem. Mater. 2009, 21, 2803 ;Ray, S. C. ;Saha, Α. ; Jana, N. R. ;Sarkar, R. J. Phys. Chem. B. 2009,113,18546.)、纳米金刚石的剥离(典型文献包括=Yu, S. J. ;Kang, M. W. ;Chang, H. C. ;Chen, K. Μ. ;Yu, Y. C. J. Am. Chem. Soc. 2005,127,17604 ;Fu, C. C. ;Lee, H. Y. ;Chen, K. ;Lim, T. S. ;Wu, H. Y. ;Lin, P. K. ;Wei, P. K. ;Tsao, P. H. ;Chang, H. C. ;Fann, W. ;Proc. Natl. Acad. Sci. U. S. Α. 2007,104,727.)、微波合成和湿化学合成(典型文献包 括:Zhu, H. ;Wang, X. L. ;Li, Y. L. ;Wang, Ζ. J. ;Yang, F. ;Yang, X. R. Chem. Commun. 2009, 5118 ;Liu, R. L ;ffu, D. Q. ;Liu, S. H. ;Koynov, K. ;Knoll, W. ;Li, Q. Angew. Chem. Int. Ed. 2009,48,4598.)等。但目前这些制备方法还不能实现碳纳米结构的简单合成,而且所得到的碳纳米粒 子的荧光性质也比较单一。为了实现碳纳米粒子的简单制备以及得到具有优异荧光性能的 碳纳米粒子,发展一种具有这些荧光性质的碳纳米粒子制备方法是非常必要的。这些荧光 性质包括发射从可光区到近红外光区荧光,由近红外光激发而获得的在近红光区发射的荧 光、以及具有上转换性质的荧光,这些荧光性质对生物领域应用研究具有重大的意义,然 而关于同时具有这三种荧光性质的碳纳米粒子合成方法还未见报道。
发明内容
本发明的目的是提供一种制备同时具有三种荧光性能的水溶碳纳米粒子的方法。 这些荧光性质包括发射从可见光区到近红外光区荧光,由近红外光激发而获得的在近红光 区发射的荧光、以及具有上转换性质的荧光。本发明的目的,将通过以下技术方案得以实现一种具有荧光性质的水溶碳纳米粒子材料的制备方法,包括下述步骤步骤一以葡萄糖为前躯体,加入到去离子水中,配制成葡萄糖水溶液;步骤二 将氧化添加剂加入到步骤一配制的葡萄糖水溶液中;步骤三将步骤二得到的混合液放入反应容器中,于300W功率超声清洗仪中超声 处理,频率为40kHz,超声时间为4 6小时,反应后得到未提纯的碳纳米粒子;步骤四将步骤三制得的未提纯的碳纳米粒子进行加热提纯或调节pH值至中性 再重结晶提纯,即可得到提纯的碳纳米粒子。进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所述 步骤一中配制的葡萄糖水溶液的摩尔浓度为0. 5 1. 0mol/Lo进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所述 氧化添加剂为无机碱,包括氢氧化钠或者氢氧化钾,使用时将其用去离子水配制成水溶液, 所述无机碱水溶液的摩尔浓度为0. 5 1. 0mol/Lo进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所述氧化添加剂为盐酸,所述盐酸为质量分数为36 38%的浓盐酸水溶液。更进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所 述葡萄糖水溶液与所述氧化添加剂的体积比为1 2 1 1。进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所述 葡萄糖水溶液与所述氧化添加剂的体积比为1 1。进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中所述 葡萄糖和氧化添加剂的纯度为分析纯。进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中步骤 三使用的反应容器为玻璃材质。进一步的,上述一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其中步骤 三使用的反应容器为不与氢氟酸发生反应的绝缘材质,包括特富龙。本发明的碳纳米粒子材料的制备方法的有益效果是1.采用酸或碱协助合成碳纳米粒子的超声波合成方法,合成方法简单;2.反应完毕后,碳纳米粒子均勻的分散在反应溶液中,分散性好,表面具有丰富的 含氧基团(羟基、羧基等),表面功能化或者对纳米粒子修饰比较容易;3.碳纳米粒子具有好的水溶性,可以与水任意互溶,粒径小于5nm ;4.碳纳米粒子荧光性质优异(一)具有很好的紫外可见激发可见发射的荧光性 质,其发射光谱能随着激发波长的改变而改变;(二)具有丰富的上转换荧光性质,其发射 光谱能随着激发波长的改变而改变,上转换荧光具有能将低能量的光转换为高能量的光; (三)具有近红外发光近红外发射的性质,其发射光谱能随着激发波长的改变而改变。
图Ia为本发明实施例1制备得到的碳纳米粒子的透射电镜(TEM)照片;图Ib为本发明实施例1制备得到的碳纳米粒子水溶液在自然光照射下的照片;图Ic为本发明实施例1制备得到的碳纳米粒子水溶液在紫外光(365nm)照射下 的照片;图Id为本发明实施例1制备得到的碳纳米粒子在不同波长激发光下的荧光实物 图,其中激发波长为360nm;图Ie为本发明实施例1制备得到的碳纳米粒子在不同波长激发光下的荧光实物 图,其中激发波长为390nm;图If为本发明实施例1制备得到的碳纳米粒子在不同波长激发光下的荧光实物 图,其中激发波长为470nm;图Ig为本发明实施例1制备得到的碳纳米粒子在不同波长激发光下的荧光实物 图,其中激发波长为540nm;图加为本发明实施例1制备得到的碳纳米粒子在紫外可见激发下,可见光区发射 的荧光光谱图(激发波长为350nm,400nm,450nm,500nm,550nm);图2b为本发明实施例2制备得到的碳纳米粒子在紫外可见激发下,可见光区发射 的荧光光谱图(激发波长为350nm,400nm,450nm,500nm,550nm);图3a为本发明实施例1制备得到的碳纳米粒子的近红外激发近红外荧光光谱图
5(激发波长为 700nm, 750nm, 800nm, 850nm);图北为本发明实施例2制备得到的碳纳米粒子的近红外激发近红外荧光光谱图 (激发波长为 700nm, 750nm, 800nm, 850nm);图如为本发明实施例1制备得到的碳纳米粒子的上转换荧光光谱图(激发波长 为 700nm,750nm,800nm,850nm,900nm,950nm,IOOOnm);图4b为本发明实施例1和2制备得到的碳纳米粒子的紫外光谱图。图fe为本发明实施例1制备得到的碳纳米粒子在350nm紫外光激发下的发射光 谱图;图恥为本发明实施例2制备得到的碳纳米粒子在350nm紫外光激发下的发射光 谱图。
具体实施例方式本发明是采用超声合成方法,通过氧化添加剂无机强碱或酸的协助,制备荧光性 质丰富的水溶性碳纳米粒子(粒径小于5nm)。下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此。下述实 施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可 从商业途径获得。实施例1将分析纯葡萄糖固体溶于去离子水中,制成50ml摩尔浓度为0. 5 1. Omol/L的 葡萄糖水溶液,将配置好的50ml摩尔浓度为0. 5 1. 0mol/L (以1. 0mol/L为佳)的氢氧 化钠水溶液加入到上述葡萄糖水溶液中,葡萄糖水溶液与氢氧化钠水溶液二者的体积比为 1 2 1 1,然后往玻璃容器中加入磁力搅拌子,将装有二者混合液的容器放在磁力搅 拌器上搅拌10分钟,搅拌均勻后将装有二者混合液的玻璃容器放到300W功率超声清洗仪 中超声处理,频率为40kHz,超声时间为4 6小时,反应结束后得到未提纯的碳纳米粒子水 溶液。将未提纯的碳纳米粒子水溶液进行提纯,有两种方法,方法一首先,用稀盐酸将未提纯碳纳米粒子溶液的PH值调整为7,然后在搅拌状 态下往溶液中滴加100ml无水乙醇,滴完后搅拌10分钟,加入适量的无水硫酸镁(占溶液 质量分数10 12% ),搅拌20分钟后,静置M小时除去溶液中多余的盐类和水分,最后过 滤得到碳纳米粒子的乙醇溶液,再真空烘干得干燥的碳纳米粒子,再溶于去离子水中得到 碳纳米粒子水溶液。方法二 直接将未提纯的碳纳米粒子溶液在真空烘箱中80°C干燥6小时,将溶液 中剩余的盐酸溶液蒸发后得干燥的碳纳米粒子,然后将其溶于去离子水中得到碳纳米粒子 水溶液。图Ia为本发明实施例1制备得到的碳纳米粒子的透射电镜(TEM)照片;如图Ib c所示,碳纳米粒子水溶液在自然光下为淡黄色,在紫外光(365nm)下为浅蓝色;图Id g 为碳纳米粒子在不同波长激发光下的荧光实物图(激发波长分别为360nm,390nm,470nm, MOnm),颜色依次为深蓝、青色、黄色和红色。实施例2
将分析纯葡萄糖固体溶于去离子水中,制成50ml摩尔浓度为0. 5 1. Omol/L的 葡萄糖溶液,将配置好的50ml质量分数为36 38 %的盐酸水溶液加入到葡萄糖水溶液中, 葡萄糖水溶液与盐酸水溶液二者的体积比为1 2 1 1,然后往玻璃容器中加入磁力 搅拌子,将装有二者混合液的容器放在磁力搅拌器上搅拌10分钟,搅拌均勻后将装有二者 混合液的玻璃容器放到300W功率超声清洗仪中超声处理,频率为40kHz,超声时间为4 6 小时,反应结束后得到未提纯的碳纳米粒子水溶液。再经过上述实施例1的提纯方法,最后 得到碳纳米粒子水溶液。上述的实施例1中,可以将氢氧化钠溶液替换为氢氧化钾溶液。上述的实施例1和2中,可以将无水硫酸镁替换为无水硫酸钠等干燥剂。实施例3将实施例1和2的制备方法所制得的荧光碳纳米粒子进行荧光光谱的测试(一 )荧光发射光谱图2为在紫外可见激发下,可见光区发射的荧光光谱图,荧光发射光谱随着激发 波长的改变而发生移动,激发波长分别为350nm,400nm,450nm,500nm,550nm。其中,图加 为实施例1由氢氧化钠/葡萄糖得到的碳纳米粒子光谱图,图2b为实施例2由盐酸/葡萄 糖得到的碳纳米粒子光谱图。曲线A E分别代表激发波长为350nm,400nm, 450nm, 500nm, 550nm时的荧光谱线。如图2所示,本发明方法制备得到的碳纳米粒子材料具有很好的紫外 可见激发可见发射的荧光性质,由碱或酸性氧化剂协助合成得到的碳纳米粒子在同一激发 波长下的发射光谱峰位置不同,但其发射光谱都是随着激发波长的改变而改变。( 二)近红外激发近红外发射光谱图3为激发波长为700nm,750nm,800nm,850nm时的近红外激发近红外荧光光谱
图,其中,图3a为实施例1由氢氧化钠/葡萄糖得到的碳纳米粒子光谱图,图北为实施例2 由盐酸/葡萄糖得到的碳纳米粒子光谱图。曲线F I分别代表激发波长为700nm,750nm, 800nm,850nm时的荧光谱线。如图3所示,本发明方法制备得到的碳纳米粒子材料具有近红 外发光近红外发射的性质,其发射光谱能随着激发波长的改变而改变,且由酸或碱性氧化 剂协助合成得到的碳纳米粒子在同一激发波长(近红外光区)下的发射光谱峰位置不同, 同时由碱性氧化剂协助得到的碳纳米粒的峰行更平滑一些。(三)上转换荧光光谱图如为本发明实施例1制备得到的碳纳米粒子的上转换荧光光谱图,激发波长为 700nm,750nm,800nm,850nm,900nm,950nm,IOOOnm,曲线 J P 分别代表激发波长为 700nm, 750nm, 800nm, 850nm, 900nm, 950nm, IOOOnm时的荧光谱线。如图4所示,本发明方法制备得
到的碳纳米粒子材料具有丰富的上转换荧光性质,其发射光谱能随着激发波长的改变而改 变,且在不同的激发波长下得到的发射光的强度不同,大体趋势是一个先升高后降低的过程。(四)其他图4b为本发明制备得到的碳纳米粒子的紫外光谱图,曲线I和曲线II分别代表 实施例1和实施例2制备所得的碳纳米粒子的紫外光谱图,其峰位置在200 300nm,类似 于典型芳烃物质的紫外吸收。图5为本发明制备得到的碳纳米粒子在350nm紫外光激发下的发射光谱图,覆盖紫外可见到近红外光区。其中图fe为实施例1的发射光谱图,图恥为实施例2的发射光 谱图。可看出碳纳米粒子荧光性能优异,其中通过碱性氧化剂协助合成的碳纳米粒子峰宽
更窄更平滑。
权利要求
1.一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特征在于,包括下述步骤步骤一以葡萄糖为前躯体,加入到去离子水中,配制成葡萄糖水溶液; 步骤二 将氧化添加剂加入到步骤一配制的葡萄糖水溶液中; 步骤三将步骤二得到的混合液放入反应容器中,于300W功率超声清洗仪中超声处 理,频率为40kHz,超声时间为4 6小时,反应后得到未提纯的碳纳米粒子;步骤四将步骤三制得的未提纯的碳纳米粒子进行加热提纯或调节PH值至中性再重 结晶提纯,即可得到提纯的碳纳米粒子。
2.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于所述步骤一中配制得到的葡萄糖水溶液的摩尔浓度为0. 5 1. 0mol/Lo
3.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于所述氧化添加剂为无机碱,包括氢氧化钠或者氢氧化钾,使用时将其用去离子水配 制成水溶液,所述无机碱水溶液的摩尔浓度为0. 5 1. 0mol/Lo
4.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于所述氧化添加剂为盐酸,所述盐酸为质量分数为36 38%的浓盐酸水溶液。
5.根据权利要求3或4所述的任意一种具有荧光性质的水溶碳纳米粒子材料的制备方 法,其特征在于所述葡萄糖水溶液与所述氧化添加剂的体积比为1 2 1 1。
6.根据权利要求5所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于所述葡萄糖水溶液与所述氧化添加剂的体积比为1 1。
7.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于所述葡萄糖和氧化添加剂的纯度为分析纯。
8.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于步骤三中使用的反应容器为玻璃材质。
9.根据权利要求1所述的一种具有荧光性质的水溶碳纳米粒子材料的制备方法,其特 征在于步骤三中使用的反应容器为对于氢氟酸反应惰性的绝缘材质,包括特富龙。
全文摘要
本发明揭示了一种具有荧光性质的水溶碳纳米粒子材料的制备方法,首先,将前躯体葡萄糖加入到去离子水中,配制成葡萄糖水溶液;然后,将氧化添加剂加入到上述葡萄糖水溶液中;其次,将混合液放到300W功率超声清洗仪中超声4~6小时;最后,对反应产物加热或先用酸调pH值到中性再重结晶处理,除去反应产物中的杂质,得到碳纳米粒子。本发明的制备方法是采用酸或碱协助合成碳纳米粒子的超声波合成方法,合成方法简单,反应完毕后,得到的碳纳米粒子的分散性好,具有好的水溶性,可以与水任意互溶,粒径小于5nm,且荧光性质优异。
文档编号C09K11/65GK102071019SQ20101060413
公开日2011年5月25日 申请日期2010年12月24日 优先权日2010年12月24日
发明者何小蝶, 刘阳, 康振辉, 李海涛, 黄慧 申请人:苏州方昇光电装备技术有限公司